ISL9N316AD3ST N-Channel Logic Level PWM Optimized UltraFET® Trench Power MOSFETs General Description Features This device employs a new advanced trench MOSFET technology and features low gate charge while maintaining low on-resistance. • Fast switching Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies. • rDS(ON) = 0.020Ω (Typ), VGS = 4.5V Applications • Qgd (Typ) = 4.5nC • DC/DC converters • CISS (Typ) = 1450pF • rDS(ON) = 0.014Ω (Typ), VGS = 10V • Qg (Typ) = 13nC, VGS = 5V DRAIN (FLANGE) D GATE G SOURCE S TO-252 MOSFET Maximum Ratings TA = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 30 Units V VGS Gate to Source Voltage ±20 V Drain Current ID Continuous (TC = 25oC, VGS = 10V) 48 A Continuous (TC = 100oC, VGS = 4.5V) 28 A 10 A Continuous (TC = 25oC, VGS = 10V, RθJA = 52oC/W) Pulsed PD Power dissipation Derate above 25oC TJ, TSTG Operating and Storage Temperature Figure 4 A 65 0.43 W W/oC o -55 to 175 C Thermal Characteristics RθJC Thermal Resistance Junction to Case TO-252 2.31 o RθJA Thermal Resistance Junction to Ambient TO-252 100 oC/W RθJA Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 52 o C/W C/W Package Marking and Ordering Information Device Marking N316AD ©2002 Fairchild Semiconductor Corporation Device ISL9N316AD3ST Package TO-252AA Reel Size 330mm Tape Width 16mm Quantity 2500 units Rev. B, February 2002 ISL9N316AD3ST February 2002 Symbol Parameter Test Conditions Min Typ Max Units Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V 30 - - V - - 1 - - 250 µA VGS = ±20V - - ±100 nA VDS = 25V VGS = 0V TC = 150o On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 1 - 3 V ID = 48A, VGS = 10V - 0.014 0.0155 ID = 28A, VGS = 4.5V - 0.020 0.023 Ω - 1450 - pF - 300 - pF - 120 - pF VGS = 0V to 10V - 25 38 nC VGS = 0V to 5V V = 15V DD ID = 28A Ig = 1.0mA - 13 20 nC - 1.5 2.3 nC - 4.3 - nC - 4.5 - nC Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance Qg(TOT) Total Gate Charge at 10V Qg(5) Total Gate Charge at 5V Qg(TH) Threshold Gate Charge Qgs Gate to Source Gate Charge Qgd Gate to Drain “Miller” Charge Switching Characteristics VDS = 15V, VGS = 0V, f = 1MHz VGS = 0V to 1V (VGS = 4.5V) tON Turn-On Time - - 115 ns td(ON) Turn-On Delay Time - 15 - ns tr Rise Time - 60 - ns td(OFF) Turn-Off Delay Time - 25 - ns tf Fall Time - 30 - ns tOFF Turn-Off Time - - 83 ns Switching Characteristics VDD = 15V, ID = 10A VGS = 4.5V, RGS = 11Ω (VGS = 10V) tON Turn-On Time - - 57 ns td(ON) Turn-On Delay Time - 8 - ns tr Rise Time - 30 - ns td(OFF) Turn-Off Delay Time - 45 - ns tf Fall Time - 30 - ns tOFF Turn-Off Time - - 115 ns 195 - - µs V VDD = 15V, ID = 10A VGS = 10V, RGS = 11Ω Unclamped Inductive Switching tAV Avalanche Time ID = 2.9A, L = 3.0mH Drain-Source Diode Characteristics ISD = 28A - - 1.25 ISD = 13A - - 1.0 V Reverse Recovery Time ISD = 28A, dISD/dt = 100A/µs - - 20 ns Reverse Recovered Charge ISD = 28A, dISD/dt = 100A/µs - - 7 nC VSD Source to Drain Diode Voltage trr QRR ©2002 Fairchild Semiconductor Corporation Rev. B, February 2002 ISL9N316AD3ST Electrical Characteristics TA = 25°C unless otherwise noted ISL9N316AD3ST Typical Characteristic 1.2 60 VGS = 10V ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 25 50 75 100 150 125 VGS = 4.5V 20 0 25 0 0 40 175 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x R θJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 1000 TC = 25oC IDM , PEAK CURRENT (A) TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I 25 150 VGS = 10V 100 VGS = 5V 40 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2002 Fairchild Semiconductor Corporation Rev. B, February 2002 ISL9N316AD3ST Typical Characteristic (Continued) 100 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 80 ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 80 60 40 TJ = 25oC 20 TJ = 175oC VGS = 4.5V 60 VGS = 4.0V 40 VGS = 3V 20 TJ = -55oC 0 0 2 1 3 4 5 0 6 0.5 VGS , GATE TO SOURCE VOLTAGE (V) 1.5 2.0 Figure 6. Saturation Characteristics 2.0 40 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics ID = 48A 30 ID = 28A 20 ID = 10A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1.0 VGS = 10V, ID = 48A 0.5 10 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) -80 10 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) Figure 7. Drain to Source On Resistance vs Gate Voltage and Drain Current Figure 8. Normalized Drain to Source On Resistance vs Junction Temperature 1.4 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.2 NORMALIZED GATE THRESHOLD VOLTAGE VGS = 10V 1.0 0.8 0.6 ID = 250µA 1.1 1.0 0.9 0.4 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE 160 200 (oC) Figure 9. Normalized Gate Threshold Voltage vs Junction Temperature ©2002 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE 160 200 (oC) Figure 10. Normalized Drain to Source Breakdown Voltage vs Junction Temperature Rev. B, February 2002 ISL9N316AD3ST Typical Characteristic (Continued) 10 CISS = CGS + CGD 1000 C, CAPACITANCE (pF) VGS , GATE TO SOURCE VOLTAGE (V) 2000 COSS ≅ CDS + CGD CRSS = CGD VGS = 0V, f = 1MHz VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 28A ID = 10A 2 0 100 0.1 1 10 0 30 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 30 Qg, GATE CHARGE (nC) Figure 11. Capacitance vs Drain to Source Voltage Figure 12. Gate Charge Waveforms for Constant Gate Currents 150 200 VGS = 10V, VDD = 15V, ID = 10A SWITCHING TIME (ns) VGS = 4.5V, VDD = 15V, ID = 10A SWITCHING TIME (ns) 20 100 tr tf td(OFF) 50 150 td(OFF) 100 tf tr 50 td(ON) td(ON) 0 0 0 10 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) Figure 13. Switching Time vs Gate Resistance Figure 14. Switching Time vs Gate Resistance Test Circuits and Waveforms VDS BVDSS tP VDS L IAS VDD VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit ©2002 Fairchild Semiconductor Corporation Figure 16. Unclamped Energy Waveforms Rev. B, February 2002 VDS VDD Qg(TOT) RL VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS - VGS = 1V DUT 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit ©2002 Fairchild Semiconductor Corporation 10% Figure 20. Switching Time Waveforms Rev. B, February 2002 ISL9N316AD3ST Test Circuits and Waveforms (Continued) ISL9N316AD3ST Thermal Resistance vs. Mounting Pad Area ( T JM – T A ) P DM = -----------------------------Z θJA 125 RθJA = 33.32 + 23.84/(0.268+Area) 100 RθJA (oC/W) The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 75 (EQ. 1) 50 In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 25 0.01 0.1 1 10 AREA, TOP COPPER AREA (in2) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. 23.84 ( 0.268 + A rea) R θJA = 33.32 + ------------------------------------- ©2002 Fairchild Semiconductor Corporation (EQ. 2) Rev. B, February 2002 .SUBCKT ISL9N316AD3ST 2 1 3 ;rev May 2001 CA 12 8 9e-10 CB 15 14 9.5e-10 CIN 6 8 1.2e-9 LDRAIN DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DPLCAP 10 5 51 ESLC - IT 8 17 1 GATE 1 11 + 50 17 EBREAK 18 - RDRAIN 6 8 EVTHRES 16 21 + 19 8 + LGATE DBREAK + RSLC2 ESG EVTEMP RGATE + 18 22 9 20 6 DBODY MWEAK MMED MSTRO RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE S1A RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2e-3 RGATE 9 20 1.98 RLDRAIN 2 5 10 RLGATE 1 9 56.1 RLSOURCE 3 7 19.8 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 9.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B RLDRAIN RSLC1 51 EBREAK 11 7 17 18 31.8 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 LGATE 1 9 5.61e-9 LDRAIN 2 5 1.0e-9 LSOURCE 3 7 1.98e-9 DRAIN 2 5 12 S2A S1B CA 15 14 13 13 8 RBREAK 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*110),3))} .MODEL DBODYMOD D (IS = 2.4e-11 N = 1.09 RS = 9.2e-3 TRS1 = 9e-4 TRS2 = 1e-6 XTI=2.2 CJO = 7e-10 M = 0.49 TT = 8e11) .MODEL DBREAKMOD D (RS = 0. 8TRS1 = 1e- 3TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 4e-1 0IS = 1e-3 0N = 10 M = 0.43) .MODEL MMEDMOD NMOS (VTO = 1.625 KP = 4 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.98) .MODEL MSTROMOD NMOS (VTO = 2.08 KP = 55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.32 KP = 0.04 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 19.8 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1e- 3TC2 = -7e-7) .MODEL RDRAINMOD RES (TC1 = 1.7e- 2TC2 = 5e-5) .MODEL RSLCMOD RES (TC1 = 3.5e-4 TC2 = 5e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.1e-3 TC2 = -0.5e-5) .MODEL RVTEMPMOD RES (TC1 = -1.8e- 3TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.0 VOFF= -1.0) VON = -1.0 VOFF= -4.0) VON = -0.3 VOFF= 0.2) VON = 0.2 VOFF= -0.3) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation Rev. B, February 2002 ISL9N316AD3ST PSPICE Electrical Model REV May 2001 template ISL9N316AD3ST n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 2.4e-11, nl = 1.09, rs = 9.2e-3, trs1 = 9e-4, trs2 = 1e-6, xti=2.2, cjo = 7e-10, tt = 8e-11, m = 0.49) dp..model dbreakmod = (rs = 0.8, trs1 = 1e-3, trs2 = -8.9e-6) dp..model dplcapmod = (cjo = 4e-10, isl=10e-30, nl=10, m=0.43) m..model mmedmod = (type=_n, vto = 1.625, kp=4, is=1e-30, tox=1) m..model mstrongmod = (type=_n, vto = 2.08, kp = 55, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.32, kp = 0.04, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4, voff = -1.0) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.0, voff = -4.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) LDRAIN sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3) DPLCAP 5 DRAIN RLDRAIN RSLC1 51 RSLC2 ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod RDRAIN 6 8 ESG LGATE 11 DBODY EVTHRES 16 21 + 19 8 + GATE 1 DBREAK 50 - i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.618e-9 l.lsource n3 n7 = 1.98e-9 2 10 c.ca n12 n8 = 9e-10 c.cb n15 n14 = 9.5e-10 c.cin n6 n8 = 1.2e-9 EVTEMP RGATE + 18 22 9 20 6 MWEAK EBREAK + MMED MSTRO RLGATE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u CIN 17 18 - 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE res.rbreak n17 n18 = 1, tc1 = 1e-3, tc2 = -7e-7 res.rdrain n50 n16 = 2e-3, tc1 = 1.7e-2, tc2 = 5e-5 res.rgate n9 n20 = 1.98 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 56.1 res.rlsource n3 n7 = 19.8 res.rslc1 n5 n51= 1e-6, tc1 = 3.5e-4, tc2 =5e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 9.5e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -2.1e-3, tc02 = -5e-6 S1A 12 13 S2A S1B CA RBREAK 15 14 13 8 17 18 RVTEMP S2B 13 CB 6 8 EGS - 19 IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 31.8 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e-6/110))**3)) } } ©2002 Fairchild Semiconductor Corporation Rev. B, February 2002 ISL9N316AD3ST SABER Electrical Model th JUNCTION REV 23 May 2001 TISL9N316AD3ST CTHERM1 th 6 1.0e-3 CTHERM2 6 5 1.5e-3 CTHERM3 5 4 1.9e-3 CTHERM4 4 3 3e-3 CTHERM5 3 2 5.0e-3 CTHERM6 2 tl 2.5e-2 RTHERM1 th 6 2.5e-3 RTHERM2 6 5 3.5e-3 RTHERM3 5 4 5.2e-2 RTHERM4 4 3 5.0e-1 RTHERM5 3 2 5.7e-1 RTHERM6 2 tl 6.9e-1 RTHERM1 CTHERM1 6 CTHERM2 RTHERM2 5 SABER Thermal Model SABER thermal model TISL9N316AD3ST template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 1.0e-3 ctherm.ctherm2 6 5 = 1.5e-3 ctherm.ctherm3 5 4 = 1.9e-3 ctherm.ctherm4 4 3 = 3e-3 ctherm.ctherm5 3 2 = 5e-3 ctherm.ctherm6 2 tl = 2.5e-2 RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 rtherm.rtherm1 th 6 =2.5e-3 rtherm.rtherm2 6 5 = 3.5e-3 rtherm.rtherm3 5 4 = 5.2e-2 rtherm.rtherm4 4 3 = 5.0e-1 rtherm.rtherm5 3 2 = 5.7e-1 rtherm.rtherm6 2 tl = 6.9e-1 } RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE Rev. B, February 2002 ISL9N316AD3ST SPICE Thermal Model TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4