VNQ830-E QUAD CHANNEL HIGH SIDE DRIVER Table 1. General Features Type VNQ830-E Figure 1. Package RDS(on) Iout VCC 60mΩ (*) 6A (*) 36V (*) Per each channel CMOS COMPATIBLE INPUTS OPEN DRAIN STATUS OUTPUTS ■ ON STATE OPEN LOAD DETECTION ■ OFF STATE OPEN LOAD DETECTION ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ LOSS OF GROUND PROTECTION ■ VERY LOW STAND-BY CURRENT ■ ■ SO-28 (DOUBLE ISLAND) REVERSE BATTERY PROTECTION (**) ■ IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE ■ DESCRIPTION The VNQ830-E is a quad HSD formed by assembling two VND830-E chips in the same SO28 package. The VNQ830-E is a monolithic device made by using| STMicroelectronics VIPower M0-3 Technology. The VNQ830-E is intended for driving any type of multiple loads with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both in on and off state. Output shorted to V CC is detected in the off state. Device automatically turns off in case of ground pin disconnection. Table 2. Order Codes Package SO-28 Tube VNQ830-E Tape and Reel VNQ830TR-E Note: (**) See application schematic at page 10 Rev. 2 November 2004 1/21 VNQ830-E Figure 2. Block Diagram VCC1,2 Vcc OVERVOLTAGE CLAMP UNDERVOLTAGE GND1,2 CLAMP 1 OUTPUT1 INPUT1 DRIVER 1 CLAMP 2 STATUS1 CURRENT LIMITER 1 LOGIC DRIVER 2 OUTPUT2 OVERTEMP. 1 OPENLOAD ON 1 CURRENT LIMITER 2 INPUT2 OPENLOAD OFF 1 OPENLOAD ON 2 STATUS2 OPENLOAD OFF 2 OVERTEMP. 2 VCC3,4 Vcc CLAMP OVERVOLTAGE UNDERVOLTAGE GND3,4 CLAMP 3 OUTPUT3 INPUT3 DRIVER 3 CLAMP 4 STATUS3 CURRENT LIMITER 3 OVERTEMP. 3 LOGIC DRIVER 4 OUTPUT4 OPENLOAD ON 3 CURRENT LIMITER 4 INPUT4 OPENLOAD OFF 3 OPENLOAD ON 4 STATUS4 OPENLOAD OFF 4 OVERTEMP. 4 2/21 VNQ830-E Table 3. Absolute Maximum Ratings Symbol VCC Parameter Value Unit 41 V DC Supply Voltage - VCC Reverse DC Supply Voltage - 0.3 V - IGND DC Reverse Ground Pin Current - 200 mA Internally Limited A -6 A DC Input Current +/- 10 mA DC Status Current +/- 10 mA 4000 V 4000 V 5000 V 5000 V (L=2.5mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=9A) 140 mJ Power dissipation (per island) at Tlead=25°C 6.25 W Internally Limited °C - 55 to 150 °C IOUT - IOUT IIN ISTAT DC Output Current Reverse DC Output Current Electrostatic Discharge (Human R=1.5KΩ; C=100pF) VESD Body Model: - INPUT - STATUS - OUTPUT - VCC Maximum Switching Energy EMAX Ptot Tj Tstg Junction Operating Temperature Storage Temperature Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins VCC1,2 1 28 VCC1,2 GND 1,2 OUTPUT1 INPUT1 OUTPUT1 STATUS1 OUTPUT1 STATUS2 OUTPUT2 INPUT2 OUTPUT2 VCC1,2 OUTPUT2 VCC3,4 OUTPUT3 GND 3,4 OUTPUT3 INPUT3 OUTPUT3 STATUS3 OUTPUT4 STATUS4 OUTPUT4 INPUT4 OUTPUT4 VCC3,4 Connection / Pin Status Floating X To Ground 14 N.C. X X 15 Output X VCC3,4 Input X Through 10KΩ resistor 3/21 VNQ830-E Figure 4. Current and Voltage Conventions IS3,4 IS1,2 VCC3,4 VCC3,4 VCC1,2 VF1 (*) VCC1,2 IIN1 ISTAT1 VIN1 IIN2 VSTAT1 ISTAT2 VIN2 IIN3 VSTAT2 ISTAT3 VIN3 VSTAT3 IIN4 VIN4 ISTAT4 VSTAT4 INPUT1 IOUT1 STATUS1 OUTPUT1 VOUT1 IOUT2 INPUT2 OUTPUT2 STATUS2 VOUT2 IOUT3 INPUT3 OUTPUT3 STATUS3 IOUT4 INPUT4 OUTPUT4 STATUS4 GND3,4 VOUT3 VOUT4 GND1,2 IGND3,4 IGND1,2 (*) VFn = VCCn - VOUTn during reverse battery condition Table 4. Thermal Data (Per island) Symbol Parameter Rthj-lead Thermal Resistance Junction-lead per chip Rthj-amb Thermal Resistance Junction-ambient (one chip ON) Rthj-amb Thermal Resistance Junction-ambient (two chips ON) 60 (1) 1 46 ( ) Value Unit 20 °C/W 44 (2) °C/W 31 (2) °C/W Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35µm thick) connected to all V CC pins. Horizontal mounting and no artificial air flow Note: 2. When mounted on a standard single-sided FR-4 board with 6cm 2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow 4/21 VNQ830-E ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C< Tj <150°C, unless otherwise specified) (Per each channel) Table 5. Power Output Symbol Parameter VCC (**) Min. Typ. Max. Unit Operating Supply Voltage 5.5 13 36 V VUSD (**) Undervoltage Shut-down 3 4 5.5 V VOV (**) Overvoltage Shut-down 36 Ron On State Resistance Test Conditions IOUT=2A; Tj=25°C 65 mΩ IOUT=2A; VCC>8V 130 mΩ 12 40 µA 12 25 µA 5 7 mA 0 50 µA -75 0 µA Off State; VCC=13V; VIN=VOUT=0V IS (**) Supply Current V Off State; VCC=13V; VIN=VOUT=0V; Tj =25°C On State; VCC=13V; VIN=5V; IOUT=0A IL(off1) Off State Output Current VIN=VOUT=0V IL(off2) Off State Output Current VIN=0V; VOUT =3.5V IL(off3) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =125°C 5 µA IL(off4) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =25°C 3 µA Note: (**) Per island Table 6. Protection (Per each channel) (See note 1) Symbol Parameter TTSD Min. Typ. Max. Unit Shut-down Temperature 150 175 200 °C TR Reset Temperature 135 Thyst Thermal Hysteresis 7 tSDL Status Delay in Overload Conditions Ilim Current limitation Vdemag Turn-off Output Clamp Voltage Test Conditions °C 15 Tj>TTSD 6 9 5.5V<VCC<36V IOUT =2A; L=6mH °C 20 µs 15 A 15 A VCC-41 VCC-48 VCC-55 V Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles Table 7. VCC - Output Diode (Per each channel) Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=1.2A; Tj=150°C Min Typ Max 0.6 Unit V 5/21 VNQ830-E ELECTRICAL CHARACTERISTICS (continued) Table 8. Status Pin (Per each channel) Symbol Parameter Test Conditions VSTAT Status Low Output Voltage ISTAT =1.6mA ILSTAT Status Leakage Current Normal Operation; VSTAT=5V Status Pin Input Normal Operation; VSTAT=5V CSTAT Capacitance ISTAT =1mA VSCL Status Clamp Voltage ISTAT =-1mA Min 6 Typ 6.8 Max 0.5 10 Unit V µA 100 pF 8 V -0.7 V Table 9. Switching (Per each channel) (VCC=13V) Symbol Parameter td(on) Turn-on Delay Time td(off) Turn-off Delay Time dVOUT /dt(on) Turn-on Voltage Slope dVOUT /dt(off) Turn-off Voltage Slope Test Conditions RL=6.5Ω from VIN rising edge to VOUT =1.3V RL=6.5Ω from VIN falling edge to VOUT =11.7V Min RL=6.5Ω from VOUT=1.3V to VOUT =10.4V RL=6.5Ω from VOUT=11.7V to VOUT =1.3V Typ Max Unit 30 µs 30 µs See relative V/µs diagram See relative V/µs diagram Table 10. Openload Detection (Per each channel) Symbol IOL tDOL(on) VOL tDOL(off) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off Test Conditions VIN=5V Min Typ Max Unit 50 100 200 mA 200 µs 3.5 V 1000 µs Max 1.25 Unit V µA V µA V V IOUT=0A VIN=0V 1.5 2.5 Table 11. Logic Input (Per each channel) Symbol VIL IIL VIH IIH VI(hyst) VICL 6/21 Parameter Test Conditions Input Low Level Low Level Input Current VIN=1.25V Input High Level High Level Input Current VIN=3.25V Input Hysteresis Voltage IIN=1mA Input Clamp Voltage IIN=-1mA Min Typ 1 3.25 10 0.5 6 6.8 -0.7 8 V VNQ830-E Table 12. Truth Table CONDITIONS INPUT OUTPUT SENSE Normal Operation L H L H H H Current Limitation L H H L X X H (Tj < TTSD) H (Tj > TTSD) L Overtemperature L H L L H L Undervoltage L H L L X X Overvoltage L H L L H H Output Voltage > VOL L H H H L H Output Current < IOL L H L H H L Figure 5. OPEN LOAD STATUS TIMING (with external pull-up) VOUT > VOL OVER TEMP STATUS TIMING IOUT < IOL Tj > TTSD VINn VINn VSTATn VSTATn tSDL tDOL(off) tSDL tDOL(on) 7/21 VNQ830-E Figure 6. Switching time Waveforms VOUTn 90% 80% dVOUT/dt(off) dVOUT/dt(on) 10% t VINn td(on) td(off) t Table 13. Electrical Transient Requirements On V CC Pin ISO T/R 7637/1 Test Pulse I II TEST LEVELS III IV 1 2 3a 3b 4 5 -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E 8/21 I C C C C C C TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device. VNQ830-E Figure 7. Waveforms NORMAL OPERATION INPUTn LOAD VOLTAGEn STATUSn UNDERVOLTAGE VUSDhyst VCC VUSD INPUTn LOAD VOLTAGEn STATUS undefined OVERVOLTAGE VCC<VOV VCC>VOV VCC INPUTn LOAD VOLTAGEn STATUSn OPEN LOAD with external pull-up INPUTn VOUT>VOL LOAD VOLTAGEn VOL STATUSn OPEN LOAD without external pull-up INPUTn LOAD VOLTAGEn STATUSn Tj TTSD TR OVERTEMPERATURE INPUTn LOAD CURRENTn STATUSn 9/21 VNQ830-E Figure 8. Application Schematic +5V +5V +5V VCC1,2 VCC3,4 Rprot STATUS1 Rprot INPUT1 Dld Rprot STATUS2 Rprot INPUT2 Rprot STATUS3 µC OUTPUT1 OUTPUT2 OUTPUT3 Rprot INPUT3 Rprot STATUS4 OUTPUT4 Rprot INPUT4 GND1,2 GND3,4 RGND VGND +5V +5V DGND Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2. GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / 2(IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: 10/21 PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2. VNQ830-E For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. OPEN LOAD DETECTION IN OFF STATE Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL<VOlmin. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. 2) no misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU<(VPU–VOLmax)/ IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pull-up resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in the Electrical Characteristics section. .µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: Figure 9. Open Load detection in off state V batt. VPU VCC RPU INPUT DRIVER + LOGIC IL(off2) OUT + R STATUS VOL RL GROUND 11/21 VNQ830-E Figure 13. High Level Input Current Figure 10. Off State Output Current IL(off1) (uA) Iih (uA) 2.5 5 2.25 4.5 Off state Vcc=36V Vin=Vout=0V 2 1.75 Vin=3.25V 4 3.5 1.5 3 1.25 2.5 1 2 0.75 1.5 0.5 1 0.25 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 125 150 175 125 150 175 Tc (°C) Figure 14. Status Leakage Current Figure 11. Input Clamp Voltage Vicl (V) Ilstat (uA) 8 0.05 7.8 Iin=1mA 7.6 0.04 7.4 Vstat=5V 7.2 0.03 7 6.8 0.02 6.6 6.4 0.01 6.2 6 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 Tc (°C) Figure 12. Status Low Output Voltage Figure 15. Status Clamp Voltage Vstat (V) Vscl (V) 0.8 8 7.8 0.7 Istat=1mA Istat=1.6mA 7.6 0.6 7.4 0.5 7.2 0.4 7 6.8 0.3 6.6 0.2 6.4 0.1 6.2 0 6 -50 -25 0 25 50 75 Tc (°C) 12/21 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) 100 VNQ830-E Figure 16. Overvoltage Shutdown Figure 19. ILIM Vs Tcase Vov (V) Ilim (A) 50 20 48 18 46 16 44 14 42 12 40 10 38 8 36 6 34 4 32 2 Vcc=13V 30 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 100 125 150 175 150 175 Figure 20. Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 800 600 550 Vcc=13V Rl=6.5Ohm 600 75 Tc (°C) Figure 17. Turn-on Voltage Slope 700 50 Vcc=13V Ri=6.5Ohm 500 500 450 400 400 300 350 200 300 100 250 0 200 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 Figure 18. On State Resistance Vs Tcase Ron (mOhm) 160 120 Tc=150°C 110 Iout=2A Vcc=8V; 13V & 36V 120 125 Figure 21. On State Resistance Vs VCC Ron (mOhm) 140 100 Tc (°C) 100 90 80 100 70 80 60 Tc=25°C 50 60 40 40 Tc= - 40°C 30 20 20 Iout=2A 10 0 0 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 5 10 15 20 25 30 35 40 Vcc (V) 13/21 VNQ830-E Figure 22. Input High Level Figure 25. Input Low Level Vih (V) Vil (V) 3.6 2.6 3.4 2.4 3.2 2.2 3 2 2.8 1.8 2.6 1.6 2.4 1.4 2.2 1.2 2 1 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 75 100 125 150 175 Tc (°C) Figure 23. Openload On State Detection Threshold Figure 26. Openload Off State Detection Threshold Vol (V) Iol (mA) 5 150 4.5 140 Vin=0V Vcc=13V Vin=5V 130 4 120 3.5 110 3 100 2.5 90 2 80 1.5 70 1 60 0.5 0 50 -50 -25 0 25 50 75 100 125 150 175 Figure 24. Input Hysteresis Voltage Vhyst (V) 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 Tc (°C) -50 -25 0 25 50 75 Tc (°C) Tc (°C) 14/21 50 100 125 150 175 100 125 150 175 VNQ830-E Figure 27. Maximum turn off current versus load inductance ILM AX (A) 100 10 A B C 1 0.1 1 10 100 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at T Jstart=100ºC C= Repetitive Pulse at T Jstart=125ºC Conditions: VCC=13.5V Values are generated with R L=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 15/21 VNQ830-E SO-28 Double Island Thermal Data Figure 28. Double Island PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 3cm2, 6cm2). Table 14. Thermal Calculation According To The Pcb Heatsink Area Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb RthA = Thermal resistance Junction to Ambient with one chip ON RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 RthC = Mutual thermal resistance Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1≠Pdchip2 Figure 29. Rthj-amb Vs. PCB Copper Area In Open Box Free Air Condition RTHj_am b (°C/W) 70 RthA 60 RthB 50 40 RthC 30 20 10 0 16/21 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7 VNQ830-E Figure 30. SO-28 Thermal Impedance Junction Ambient Single Pulse One channel ON ZT H (°C/W) 1000 Two channels ON on same chip 100 Footprint 6 cm2 10 1 0.1 0.0001 0.001 0.01 0.1 1 Time (s) Figure 31. Thermal fitting model of a double channel HSD in SO-28 Tj_1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 C13 R13 C14 R14 Pd2 R17 Tj_3 R18 C7 C8 C9 R7 R8 R9 C10 C11 C12 Pd3 Tj_4 1000 Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) δ = tp ⁄ T Table 15. Thermal Parameter Pd1 Tj_2 100 Pulse calculation formula where C1 10 C15 R15 R10 C16 R16 Pd4 T_amb R11 R12 Area/island (cm2) R1=R7=R13=R15 (°C/W) R2=R8=R14=R16 (°C/W) R3=R9 (°C/W) R4=R10 (°C/W) R5=R11 (°C/W) R6=R12 (°C/W) C1=C7=C13=C15 (W.s/°C) C2=C8=C14=C16 (W.s/°C) C3=C9 (W.s/°C) C4=C10 (W.s/°C) C5=C11 (W.s/°C) C6=C12 (W.s/°C) R17=R18 (°C/W) 0.5 0.05 0.3 3.4 11 15 30 0.001 5.00E-03 1.00E-02 0.2 1.5 5 150 6 13 8 17/21 VNQ830-E PACKAGE MECHANICAL Table 16. SO-28 Mechanical Data Symbol A a1 b b1 C c1 D E e e3 F L S millimeters Min Max 2.65 0.30 0.49 0.32 0.10 0.35 0.23 0.50 45° (typ.) 17.7 10.00 18.1 10.65 1.27 16.51 7.40 0.40 Figure 32. SO-28 Package Dimensions 18/21 Typ 7.60 1.27 8° (max.) VNQ830-E Figure 33. SO-28 Tube Shipment (No Suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 28 700 532 3.5 13.8 0.6 All dimensions are in mm. A Figure 34. Tape And Reel Shipment (Suffix “TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) 16 4 12 1.5 1.5 7.5 6.5 2 End All dimensions are in mm. Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 19/21 VNQ830-E REVISION HISTORY Date Nov. 2004 20/21 Revision Description of Changes 2 - RDS(on) value correction: 60mΩ instead of 65mΩ VNQ830-E Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 21/21