STMICROELECTRONICS VNQ810TR-E

VNQ810-E
QUAD CHANNEL HIGH SIDE DRIVER
Table 1. General Features
Type
VNQ810-E
Figure 1. Package
RDS(on)
Iout
VCC
160mΩ (*)
3.5A (*)
36V
)
s
(
ct
(*) Per each channel
CMOS COMPATIBLE INPUTS
■ OPEN DRAIN STATUS OUTPUTS
■ ON STATE OPEN LOAD DETECTION
■ OFF STATE OPEN LOAD DETECTION
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ PROTECTION AGAINST LOSS OF GROUND
■ VERY LOW STAND-BY CURRENT
■
REVERSE BATTERY PROTECTION (**)
■ IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECTIVE
■
)
(s
u
d
o
r
P
e
t
e
l
o
s
b
O
t
c
u
DESCRIPTION
The VNQ810-E is a quad HSD formed by
assembling two VND810-E chips in the same SO28 package. The VNQ810-E is a monolithic device
made by using STMicroelectronics VIPower M0-3
Technology, intended for driving any kind of load
with one side connected to ground. Active V CC pin
voltage clamp protects the device against low
energy
spikes
(see
ISO7637
transient
compatibility table).
od
r
P
e
SO-28 (DOUBLE ISLAND)
Active current limitation combined with thermal
shutdown and automatic restart protects the
device against overload. The device detects open
load condition both in on and off state. Output
shorted to VCC is detected in the off state. Device
automatically turns off in case of ground pin
disconnection.
t
e
l
o
s
b
O
Table 2. Order Codes
Package
SO-28
Tube
VNQ810-E
Tape and Reel
VNQ810TR-E
Note: (**) See application schematic at page 9
Rev. 1
October 2004
1/20
VNQ810-E
Figure 2. Block Diagram
VCC
VCC
CLAMP
OVERVOLTAGE
UNDERVOLTAGE
GND
CLAMP 1
OUTPUT1
INPUT1
DRIVER 1
CLAMP 2
STATUS1
CURRENT LIMITER 1
)
s
(
ct
DRIVER 2
LOGIC
OVERTEMP. 1
OUTPUT2
OPENLOAD ON 1
u
d
o
CURRENT LIMITER 2
INPUT2
OPENLOAD OFF 1
OPENLOAD ON 2
r
P
e
STATUS2
OPENLOAD OFF 2
t
e
l
o
OVERTEMP. 2
Table 3. Absolute Maximum Ratings
Symbol
)-
s
(
t
c
DC Supply Voltage
VCC
Value
Unit
41
V
- VCC
Reverse DC Supply Voltage
- 0.3
V
- Ignd
DC Reverse Ground Pin Current
- 200
mA
IOUT
DC Output Current
Pr
Internally Limited
A
-6
A
DC Input Current
+/- 10
mA
DC Status Current
+/- 10
mA
4000
V
4000
V
5000
V
5000
V
23
mJ
6.25
W
Internally Limited
°C
- 55 to 150
°C
u
d
o
- IOUT
ISTAT
o
s
b
VESD
Reverse DC Output Current
e
t
e
l
IIN
O
Parameter
s
b
O
Electrostatic Discharge
R=1.5KΩ; C=100pF)
(Human
Body
Model:
- INPUT
- STATUS
- OUTPUT
- VCC
Maximum Switching Energy
EMAX
Ptot
Tj
Tstg
2/20
(L=1.38mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC;
IL=5A)
Power dissipation (per island) at Tlead=25°C
Junction Operating Temperature
Storage Temperature
VNQ810-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
VCC1,2
1
OUTPUT1
INPUT1
OUTPUT1
STATUS1
OUTPUT1
STATUS2
OUTPUT2
INPUT2
OUTPUT2
VCC1,2
OUTPUT2
VCC3,4
OUTPUT3
GND 3,4
OUTPUT3
INPUT3
OUTPUT3
STATUS3
OUTPUT4
STATUS4
OUTPUT4
INPUT4
OUTPUT4
14
VCC3,4
Connection / Pin Status
Floating
X
To Ground
N.C.
X
X
IS3,4
)-
VCC3,4
IIN1
s
(
t
c
ISTAT1
du
VSTAT1
VIN2
o
r
P
VSTAT2
s
b
O
ISTAT2
IIN3
ISTAT3
VIN3
e
t
e
ol
IIN2
VSTAT3
IIN4
VIN4 ISTAT4
VSTAT4
)
s
(
ct
u
d
o
VCC3,4
15
Figure 4. Current and Voltage Conventions
VIN1
VCC1,2
28
GND 1,2
r
P
e
Output
X
Input
X
Through 10KΩ resistor
t
e
l
o
s
b
O
VCC3,4
IS1,2
VCC1,2
VF1 (*)
INPUT1
VCC1,2
IOUT1
STATUS1
OUTPUT1
VOUT1
IOUT2
INPUT2
OUTPUT2
STATUS2
VOUT2
IOUT3
INPUT3
OUTPUT3
STATUS3
VOUT3
IOUT4
INPUT4
OUTPUT4
STATUS4
GND3,4
VOUT4
GND1,2
IGND3,4
IGND1,2
(*) VFn = VCCn - VOUTn during reverse battery condition
Table 4. Thermal Data (Per island)
Symbol
Parameter
Rthj-lead
Thermal Resistance Junction-lead per chip
Rthj-amb
Thermal resistance Junction-ambient (one chip ON)
Rthj-amb
Thermal resistance Junction-ambient (two chips ON)
Value
Unit
20
°C/W
60 (1)
44 (2)
°C/W
(1)
(2)
°C/W
46
31
Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins.Horizontal
mounting and no artificial air flow
Note: 2. When mounted on a standard single-sided FR-4 board with 6cm 2 of Cu (at least 35µm thick) connected to all VCC pins.Horizontal
mounting and no artificial air flow
3/20
VNQ810-E
ELECTRICAL CHARACTERISTICS
(8V<VCC<36V; -40°C< Tj <150°C, unless otherwise specified)
(Per each channel)
Table 5. Power Output
Symbol
Parameter
VCC (**)
Test Conditions
Min.
Typ.
Max.
Unit
Operating Supply Voltage
5.5
13
36
V
VUSD (**)
Undervoltage Shut-down
3
4
5.5
V
VOV (**)
Overvoltage Shut-down
36
On State Resistance
RON
IS (**)
IOUT=1A; Tj=25°C
160
IOUT=1A; VCC>8V
320
mΩ
40
ct
µA
25
µA
7
mA
0
50
µA
-75
0
µA
12
Off State; VCC=13V; VIN=VOUT=0V
Off State; VCC=13V; VIN=VOUT=0V;
Supply Current
V
du
12
Tj =25°C
On State; VCC=13V; VIN=5V; IOUT=0A
o
r
P
5
e
t
e
ol
mΩ
(s)
IL(off1)
Off State Output Current
VIN=VOUT=0V
IL(off2)
Off State Output Current
VIN=0V; VOUT =3.5V
IL(off3)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =125°C
5
µA
IL(off4)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =25°C
3
µA
Note: (**) Per island
)
(s
s
b
O
Table 6. Protection (Per each channel) (See note 1)
Symbol
Parameter
TTSD
Shut-down Temperature
TR
Reset Temperature
Thyst
Thermal Hysteresis
ete
ol
bs
O
o
r
P
Status Delay in Overload
Conditions
tsdl
Ilim
du
VDEMAG
ct
Current limitation
Turn-off Output Clamp
Voltage
Test Conditions
Min.
Typ.
Max.
Unit
150
175
200
°C
135
7
°C
15
Tj>TTSD
3.5
5
5.5V<VCC<36V
IOUT =1A; L=6mH
VCC-41 VCC-48
°C
20
µs
7.5
A
7.5
A
VCC-55
V
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration
and number of activation cycles
Table 7. VCC - Output Diode
Symbol
VF
4/20
Parameter
Forward on Voltage
Test Conditions
-IOUT=0.5A; Tj=150°C
Min
Typ
Max
0.6
Unit
V
VNQ810-E
ELECTRICAL CHARACTERISTICS (continued)
Table 8. Status Pin (Per each channel)
Symbol
Parameter
Test Conditions
VSTAT Status Low Output Voltage ISTAT =1.6mA
ILSTAT Status Leakage Current
Normal Operation; VSTAT=5V
Status Pin Input
Normal Operation; VSTAT=5V
CSTAT
Capacitance
ISTAT =1mA
VSCL
Status Clamp Voltage
ISTAT =-1mA
Min
6
Typ
6.8
Max
0.5
10
Unit
V
µA
100
pF
8
V
-0.7
V
Table 9. Switching (Per each channel) (VCC=13V)
Symbol
Parameter
td(on)
Turn-on Delay Time
td(off)
Turn-off Delay Time
Test Conditions
RL=13Ω from VIN rising edge to
VOUT =1.3V
RL=13Ω from VIN falling edge to
VOUT =11.7V
dVOUT /dt(on) Turn-on Voltage Slope
RL=13Ω from VOUT =1.3V to VOUT =10.4V
dVOUT /dt(off) Turn-off Voltage Slope
RL=13Ω from VOUT =11.7V to VOUT =1.3V
IOL
Parameter
Openload ON State
Detection Threshold
Openload ON State
Test Conditions
s
(
t
c
du
tDOL(on)
VOL
Detection Delay
Openload OFF State
Voltage Detection
Threshold
Openload Detection Delay
at Turn Off
e
t
e
l
tDOL(off)
o
s
b
o
r
P
)-
s
b
O
VIN=5V
Typ
30
o
r
P
See
relative
diagram
See
relative
diagram
Unit
µs
µs
V/µs
V/µs
Min
Typ
Max
Unit
20
40
80
mA
200
µs
3.5
V
1000
µs
Max
1.25
Unit
V
µA
V
µA
V
V
IOUT=0A
VIN=0V
)
s
(
t
Max
c
u
d
30
e
t
e
ol
Table 10. Openload Detection
Symbol
Min
1.5
2.5
Table 11. Logic Input (Per each channel)
O
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Test Conditions
Input Low Level
Low Level Input Current VIN=1.25V
Input High Level
High Level Input Current VIN=3.25V
Input Hysteresis Voltage
IIN=1mA
Input Clamp Voltage
IIN=-1mA
Min
Typ
1
3.25
10
0.5
6
6.8
-0.7
8
V
5/20
VNQ810-E
Table 12. Truth Table
CONDITIONS
INPUT
OUTPUT
SENSE
Normal Operation
L
H
L
H
H
H
Current Limitation
L
H
H
L
X
X
H
(Tj < TTSD) H
(Tj > TTSD) L
Overtemperature
L
H
L
L
H
L
Undervoltage
L
H
L
L
X
X
Overvoltage
L
H
L
L
Output Voltage > VOL
L
H
H
H
Output Current < IOL
L
H
L
H
)
(s
VOUT > VOL
VINn
t
c
u
d
o
r
VSTATn
P
e
t
e
l
o
s
b
O
6/20
IOUT < IOL
tDOL(off)
du
e
t
e
ol
Figure 5.
s
b
O
OPEN LOAD STATUS TIMING (with external pull-up)
)
s
(
ct
H
H
o
r
P
H
L
OVER TEMP STATUS TIMING
Tj > TTSD
VINn
VSTATn
tSDL
tDOL(on)
L
H
tSDL
VNQ810-E
Figure 6. Switching time Waveforms
VOUTn
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
t
VINn
td(on)
)
s
(
ct
td(off)
u
d
o
r
P
e
ISO T/R 7637/1
Test Pulse
I
1
2
3a
3b
4
5
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
s
b
O
1
2
3a
3b
4
5
CLASS
C
E
s
(
t
c
u
d
o
r
P
e
t
e
l
o
ISO T/R 7637/1
Test Pulse
)-
II
I
C
C
C
C
C
C
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
t
e
l
o
s
b
O
Table 13. Electrical Transient Requirements On VCC Pin
t
TEST LEVELS
III
IV
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure and cannot be
returned to proper operation without replacing the device.
7/20
VNQ810-E
Figure 7. Waveforms
NORMAL OPERATION
INPUTn
OUTPUT VOLTAGEn
STATUSn
)
s
(
ct
UNDERVOLTAGE
VUSDhyst
VCC
VUSD
u
d
o
INPUTn
OUTPUT VOLTAGEn
STATUSn
t
e
l
o
OVERVOLTAGE
VCC>VOV
VCC<VOV
VCC
INPUTn
OUTPUT VOLTAGEn
STATUSn
)
(s
t
c
u
s
b
O
OPEN LOAD with external pull-up
d
o
r
INPUTn
OUTPUT VOLTAGEn
P
e
STATUSn
t
e
l
o
bs
O
>V
VV
>V
OUT
OL
OUT
OL
VOL
OL
OPEN LOAD without external pull-up
INPUTn
OUTPUT VOLTAGEn
STATUSn
OVERTEMPERATURE
Tj
TTSD
TR
INPUTn
OUTPUT CURRENTn
STATUSn
8/20
r
P
e
undefined
VNQ810-E
Figure 8. Application Schematic
+5V +5V
+5V
VCC1,2
VCC3,4
Rprot
STATUS1
Rprot
INPUT1
)
s
(
ct
Dld
Rprot
STATUS2
Rprot
INPUT2
Rprot
STATUS3
µC
Rprot
OUTPUT1
u
d
o
r
P
e
t
e
l
o
INPUT3
OUTPUT2
Rprot
STATUS4
OUTPUT4
INPUT4
du
e
t
e
ol
OUTPUT3
O
)
s
(
t
c
Rprot
bs
o
r
P
GND1,2
GND3,4
RGND
VGND
+5V +5V
DGND
s
b
O
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / 2(IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the of
the device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggest to utilize Solution 2 .
9/20
VNQ810-E
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also
required to prevent that, during battery voltage transient,
the current exceeds the Absolute Maximum Rating.
Safest configuration for unused INPUT and STATUS pin
is to leave them unconnected.
OPEN LOAD DETECTION IN OFF STATE
Off state open load detection requires an external pull-up
resistor (RPU) connected between OUTPUT pin and a
positive supply voltage (VPU) like the +5V line used to
supply the microprocessor.
The external resistor has to be selected according to the
following requirements:
1) no false open load indication when load is connected:
in this case we have to avoid VOUT to be higher than
VOlmin; this results in the following condition
VOUT=(VPU/(RL+RPU))RL<VOlmin
)
s
(
ct
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating.
The same applies if the device will be subject to
transients on the VCC line that are greater than the ones
shown in the ISO T/R 7637/1 table.
.µC I/Os PROTECTION:
If a ground protection network is used and negative
transient are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between
the leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up
limit of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
)
(s
2) no misdetection when load is disconnected: in this
case the VOUT has to be higher than VOLmax; this
results in the following condition RPU<(VPU–VOLmax)/
IL(off2).
Because Is(OFF) may significantly increase if Vout is
pulled high (up to several mA), the pull-up resistor RPU
should be connected to a supply that is switched OFF
when the module is in standby.
The values of VOLmin, VOLmax and IL(off2) are available in
the Electrical Characteristics section.
u
d
o
r
P
e
t
e
l
o
s
b
O
Figure 9. Open Load detection in off state
t
c
u
od
r
P
e
t
e
l
o
bs
O
INPUT
V batt.
VPU
VCC
RPU
DRIVER
+
LOGIC
IL(off2)
OUT
+
R
STATUS
VOL
GROUND
10/20
RL
VNQ810-E
Figure 13. High Level Input Current
Figure 10. Off State Output Current
IL(off1) (uA)
Iih (uA)
1.6
5
1.44
4.5
Off state
Vcc=36V
Vin=Vout=0V
1.28
1.12
Vin=3.25V
4
3.5
0.96
3
0.8
2.5
0.64
2
0.48
1.5
0.32
1
0.16
0.5
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
8
Iin=1mA
bs
7.6
0.04
7.4
7.2
)
s
(
ct
7
6.8
6.6
du
-25
0
25
e
t
e
ol
o
r
P
50
75
100
125
175
125
150
175
125
150
175
u
d
o
-O
Vstat=5V
0.03
0.02
0.01
0
150
175
-50
-25
0
25
Tc (°C)
50
75
100
Tc (°C)
Figure 12. Status Low Output Voltage
s
b
O
150
t
e
l
o
0.05
6.4
125
r
P
e
Ilstat (uA)
7.8
-50
100
Figure 14. Status Leakage Current
Vicl (V)
6
75
Tc (°C)
Figure 11. Input Clamp Voltage
6.2
50
)
s
(
ct
Figure 15. Status Clamp Voltage
Vstat (V)
Vscl (V)
0.8
8
7.8
0.7
Istat=1mA
Istat=1.6mA
7.6
0.6
7.4
0.5
7.2
0.4
7
6.8
0.3
6.6
0.2
6.4
0.1
6.2
0
6
-50
-25
0
25
50
75
Tc (°C)
100
125
150
175
-50
-25
0
25
50
75
100
Tc (°C)
11/20
VNQ810-E
Figure 16. Overvoltage Shutdown
Figure 19. ILIM Vs Tcase
Vov (V)
Ilim (A)
50
10
48
9
46
8
44
7
42
6
40
5
38
4
36
3
34
2
Vcc=13V
32
1
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
1000
500
900
450
Vcc=13V
Rl=13Ohm
350
600
)-
500
s
(
t
c
400
300
du
200
-25
0
o
r
P
25
e
t
e
ol
50
75
u
d
o
100
150
175
125
150
175
t
e
l
o
Rl=13Ohm
s
b
O
400
700
-50
125
r
P
e
dVout/dt(off) (V/ms)
0
100
Figure 20. Turn-off Voltage Slope
dVout/dt(on) (V/ms)
100
75
Tc (°C)
Figure 17. Turn-on Voltage Slope
800
50
)
s
(
ct
300
250
200
150
100
50
0
150
-50
175
-25
0
25
Tc (ºC)
50
75
100
125
Tc (°C)
Figure 18. On State Resistance Vs Tcase
Figure 21. On State Resistance Vs VCC
s
b
O
Ron (mOhm)
Ron (mOhm)
400
300
275
350
Iout=0.5A
250
Iout=0.5A
Vcc=8V; 13V & 36V
300
Tc= 150°C
225
250
200
175
200
150
150
Tc= 25°C
125
100
100
Tc= - 40°C
50
75
0
50
-50
-25
0
25
50
75
Tc (°C)
12/20
100
125
150
175
5
10
15
20
25
Vcc (V)
30
35
40
VNQ810-E
Figure 22. Input High Level
Figure 25. Input Low Level
Vih (V)
Vil (V)
3.6
2.6
3.4
2.4
3.2
2.2
3
2
2.8
1.8
2.6
1.6
2.4
1.4
2.2
1.2
2
1
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
5
55
4.5
4
O
)
45
40
s
(
t
c
30
u
d
o
r
P
e
15
10
-50
-25
0
t
e
l
o
25
50
75
u
d
o
100
125
150
175
t
e
l
o
bs
Vcc=13V
Vin=5V
35
125
r
P
e
Vol (V)
60
20
100
Figure 26. Openload Off State Detection
Threshold
Iol (mA)
25
75
Tc (°C)
Figure 23. Openload On State Detection
Threshold
50
50
)
s
(
ct
Vin=0V
3.5
3
2.5
2
1.5
1
0.5
0
150
175
Tc (°C)
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
Figure 24. Input Hysteresis Voltage
s
b
O
Vhyst (V)
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
13/20
VNQ810-E
Figure 27. SO-28 (Double Island) Maximum turn off current versus load inductance
ILMAX (A)
10
A
B
)
s
(
ct
C
u
d
o
r
P
e
t
e
l
o
1
0.01
0.1
)
(s
t
c
u
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
od
r
P
e
t
e
l
o
Conditions:
VCC=13.5V
s
1
b
OL(mH)
10
100
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
s
b
O
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
14/20
VNQ810-E
SO-28 Double Island Thermal Data
Figure 28. SO-28 Double Island PC Board
)
s
(
ct
u
d
o
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.5cm2, 3cm2, 6cm2).
r
P
e
t
e
l
o
Table 14. Thermal Calculation According To The Pcb Heatsink Area
Chip 1
ON
OFF
ON
ON
Chip 2
OFF
ON
ON
ON
Tjchip1
RthA x Pdchip1 + Tamb
RthC x Pdchip2 + Tamb
RthB x (Pdchip1 + Pdchip2) + Tamb
(RthA x Pdchip1) + RthC x Pdchip2 + Tamb
)
(s
Tjchip2
Note
RthC x Pdchip1 + Tamb
RthA x Pdchip2 + Tamb
RthB x (Pdchip1 + Pdchip2) + Tamb
Pdchip1=Pdchip2
(RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1≠Pdchip2
s
b
O
t
c
u
RthA = Thermal resistance Junction to Ambient with one chip ON
RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2
RthC = Mutual thermal resistance
d
o
r
Figure 29. Rthj-amb Vs. PCB Copper Area In Open Box Free Air Condition
P
e
s
b
O
t
e
l
o
RTHj_am b
(°C/W)
70
60
RthA
50
RthB
40
RthC
30
20
10
0
1
2
3
4
5
PCB Cu heatsink area (cm ^2)/island
6
7
15/20
VNQ810-E
Figure 30. SO-28 Thermal Impedance Junction Ambient Single Pulse
Zth(°C/W)
100
0,5 cm ^2/is land
3 cm ^2/is land
6 cm ^2/is land
10
One channel ON
)
s
(
ct
Two channels
ON on same chip
1
u
d
o
r
P
e
0.1
t
e
l
o
0.01
0.0001
0.001
0.01
)
(s
0.1
1
time(s)
t
c
u
od
Figure 31. Thermal fitting model of a double
channel HSD in SO-28
e
t
e
ol
Tj_1
Pd1
bs
Tj_2
O
C1
C2
R1
R2
C13
R13
Pr
C4
C5
C6
R3
R4
R5
R6
R14
R17
R18
C7
C8
C9
R7
R8
R9
C15
R15
C10
R10
C16
R16
Pd4
T_amb
16/20
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
δ = tp ⁄ T
Table 15. Thermal Parameter
C14
C11
C12
Pd3
Tj_4
10
where
C3
Pd2
Tj_3
s
b
O
R11
R12
Area/island (cm2)
R1=R7=R13=R15 (°C/W)
R2=R8=R14=R16 (°C/W)
R3=R9 (°C/W)
R4=R10 (°C/W)
R5=R11 (°C/W)
R6=R12 (°C/W)
C1=C7=C13=C15 (W.s/°C)
C2=C8=C14=C16 (W.s/°C)
C3=C9 (W.s/°C)
C4=C10 (W.s/°C)
C5=C11 (W.s/°C)
C6=C12 (W.s/°C)
R17=R18 (°C/W)
0.5
0.05
0.3
3.4
11
15
30
0.001
5.00E-03
1.00E-02
0.2
1.5
5
150
6
13
8
VNQ810-E
PACKAGE MECHANICAL
Table 16. SO-28 Mechanical Data
millimeters
Symbol
Min
A
a1
b
b1
C
c1
D
E
e
e3
F
L
S
Typ
Max
2.65
0.30
0.49
0.32
0.10
0.35
0.23
0.50
45° (typ.)
17.7
10.00
18.1
10.65
)
s
(
ct
1.27
16.51
7.40
0.40
7.60
1.27
8° (max.)
u
d
o
r
P
e
Figure 32. SO-28 Package Dimensions
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
17/20
VNQ810-E
Figure 33. SO-28 Tube Shipment (No Suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
B
28
700
532
3.5
13.8
0.6
All dimensions are in mm.
A
)
s
(
ct
u
d
o
Figure 34. Tape And Reel Shipment (Suffix “TR”)
r
P
e
REEL DIMENSIONS
let
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
o
s
b
O
)
s
(
t
c
u
d
o
r
P
e
TAPE DIMENSIONS
1000
1000
330
1.5
13
20.2
16.4
60
22.4
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
t
e
l
o
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
s
b
O
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
16
4
12
1.5
1.5
7.5
6.5
2
End
All dimensions are in mm.
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
18/20
500mm min
VNQ810-E
REVISION HISTORY
Date
Oct. 2004
Revision
1
- First Issue
Description of Changes
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
19/20
VNQ810-E
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
20/20