VND830P-E Double channel high-side driver Features Type RDS(on) IOUT VCC VND830P-E 60 mΩ(1) 6 A(1) 36 V 1. Per each channel. ■ ECOPACK®: lead free and RoHS compliant ■ Automotive Grade: compliance with AEC guidelines ■ Very low standby current ■ CMOS compatible input ■ On-state open-load detection ■ Off-state open-load detection ■ Thermal shutdown protection and diagnosis ■ Undervoltage shutdown ■ Overvoltage clamp ■ Output stuck to VCC detection ■ Load current limitation ■ Reverse battery protection ■ Electrostatic discharge protection Table 1. Description The VND830P-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the devices against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open-load condition both is on-state and off-state. Output shorted to VCC is detected in the off-state. Device automatically turns-off in case of ground pin disconnection. Device summary Order codes Package SO-16L September 2010 Tube Tape and reel VND830P-E VND830PTR-E Doc ID 17546 Rev 2 1/27 www.st.com 1 VND830P-E Contents Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 4 6 3.1.1 Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 16 3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 17 3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Maximum demagnetization energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 5 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16 SO-16L thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 SO-16L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3 SO-16L packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Doc ID 17546 Rev 2 2/27 VND830P-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Power output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Status pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Switching (VCC = 13 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Logic input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical transient requirements on VCC pin (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical transient requirements on VCC pin (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical transient requirements on VCC pin (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SO-16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Doc ID 17546 Rev 2 3/27 VND830P-E List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Switching time waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Off-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 On-state resistance vs VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Open-load on-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Open-load off-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SO-16L maximum turn-off current versus load inductance. . . . . . . . . . . . . . . . . . . . . . . . . 19 SO-16L PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 20 SO-16 L thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . 21 Thermal fitting model of a quad channel HSD in SO-16L . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SO-16L package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SO-16L tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Doc ID 17546 Rev 2 4/27 VND830P-E 1 Block diagram and pin description Block diagram and pin description Figure 1. Block diagram Vcc Vcc CLAMP OVERVOLTAGE UNDERVOLTAGE CLAMP 1 GND OUTPUT1 INPUT1 DRIVER 1 CLAMP 2 STATUS1 CURRENT LIMITER 1 DRIVER 2 LOGIC OUTPUT2 OVERTEMP. 1 OPEN-LOAD ON 1 CURRENT LIMITER 2 INPUT2 OPEN-LOAD OFF 1 OPEN-LOAD ON 2 STATUS2 OPEN-LOAD OFF 2 OVERTEMP. 2 Figure 2. Configuration diagram (top view) 1 VCC VCC N.C. OUTPUT 1 GND OUTPUT 1 INPUT 1 OUTPUT 1 STATUS 1 STATUS 2 OUTPUT 2 OUTPUT 2 INPUT 2 OUTPUT 2 8 VCC Table 2. 16 9 VCC Suggested connections for unused and not connected pins Connection / pin Status N.C. Output Input Floating X X X X To ground - X - Through 10 KΩ resistor Doc ID 17546 Rev 2 5/27 VND830P-E Electrical specifications 2 Electrical specifications 2.1 Absolute maximum ratings Stressing the device above the rating listed in Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document. Table 3. Absolute maximum ratings Symbol VCC Parameter DC supply voltage Value Unit 41 V - VCC Reverse DC supply voltage - 0.3 V - IGND DC reverse ground pin current - 200 mA Internally limited A -6 A IOUT - IOUT DC output current Reverse DC output current IIN DC input current +/- 10 mA ISTAT DC status current +/- 10 mA VESD Electrostatic discharge (Human Body Model: R=1.5 KΩ; C = 100 pF) - INPUT - STATUS - OUTPUT - VCC 4000 4000 5000 5000 V V V V EMAX Maximum switching energy (L = 1.8 mH; RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150 °C; IL = 9 A) 102 mJ Ptot Power dissipation Tlead = 25 °C 8.3 W Tj Junction operating temperature Internally limited °C Tc Case operating temperature - 40 to 150 °C Storage temperature - 55 to 150 °C Tstg Doc ID 17546 Rev 2 6/27 VND830P-E Electrical specifications 2.2 Thermal data Table 4. Thermal data (per island) Symbol Parameter Rthj-lead Thermal resistance junction-lead (max) Rthj-amb Thermal resistance junction-ambient (max) Value Unit 15 °C/W 65(1) 48(2) °C/W 2 1. When mounted on a standard single-sided FR-4 board with 0.5 cm of Cu (at least 35 µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. 2. When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35 µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. 2.3 Electrical characteristics Values specified in this section are for 8 V < VCC < 36 V; -40 °C < Tj < 150 °C, unless otherwise stated. (Per each channel) Figure 3. Current and voltage conventions IS VF1 (1) IIN1 INPUT 1 ISTAT1 VIN1 IOUT1 OUTPUT 1 STATUS 1 VSTAT1 IIN2 VOUT1 INPUT 2 VIN2 VCC VCC IOUT2 ISTAT2 OUTPUT 2 STATUS 2 VSTAT2 VOUT2 GND IGND 1. VFn = VCCn - VOUTn during reverse battery condition. Table 5. Power output Symbol Parameter VCC(1) VUSD(1) VOV(1) RON Min. Typ. Operating supply voltage 5.5 13 36 V Undervoltage shutdown 3 4 5.5 V Overvoltage shutdown 36 On-state resistance Test conditions IOUT = 2 A; Tj = 25 °C IOUT = 2 A; VCC > 8 V Doc ID 17546 Rev 2 Max. Unit V 60 120 mΩ mΩ 7/27 VND830P-E Electrical specifications Table 5. Power output (continued) Symbol IS(1) Parameter Test conditions Supply current Min. Typ. Max. Unit Off-state; VCC = 13 V; VIN = VOUT = 0 V 12 40 µA Off-state; VCC = 13 V; VIN = VOUT = 0 V; Tj = 25°C 12 25 µA On-state; VCC = 13 V; VIN = 5 V; IOUT = 0 A 5 7 mA 0 50 µA -75 0 µA IL(off1) Off-state output current VIN = VOUT = 0 V IL(off2) Off-state output current VIN = 0 V; VOUT = 3.5 V IL(off3) Off-state output current VIN = VOUT = 0 V; VCC = 13 V; Tj = 125 °C 5 µA IL(off4) Off-state output current VIN = VOUT = 0 V; VCC = 13 V; Tj =25 °C 3 µA 1. Per device. Table 6. Symbol Protections(1) Min. Typ. Max. Unit Shutdown temperature 150 175 200 °C TR Reset temperature 135 Thyst Thermal hysteresis 7 TSDL Status delay in overload Tj > TTSD conditions TTSD Ilim Vdemag Parameter Test conditions VCC = 13 V Current limitation °C 15 6 °C 9 5.5 V < VCC < 36 V Turn-off output clamp voltage IOUT = 2 A; L = 6 mH VCC -41 20 µs 15 A 15 A VCC -48 VCC -55 V 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. Table 7. Symbol VF Table 8. Symbol VCC - output diode Parameter Test conditions Forward on voltage -IOUT=1.3 A; Tj=150°C Min. Typ. Max. Unit - - 0.6 V Status pin Parameter Test conditions Min. Typ. Max. Unit VSTAT Status low output voltage ISTAT = 1.6 mA 0.5 V ILSTAT Status leakage current Normal operation; VSTAT = 5 V 10 µA CSTAT Status pin input capacitance Normal operation; VSTAT = 5 V 100 pF Doc ID 17546 Rev 2 8/27 VND830P-E Electrical specifications Table 8. Status pin (continued) Symbol VSCL Parameter Test conditions Min. Typ. Max. ISTAT = 1 mA Status clamp voltage 6 ISTAT = - 1 mA Table 9. 6.8 8 Unit V -0.7 V Switching (VCC = 13 V) Symbol Parameter Test conditions Min. Typ. Max. Unit td(on) Turn-on delay time RL = 6.5 Ω from VIN rising edge to VOUT = 1.3 V - 30 - µs td(off) Turn-off delay time RL = 6.5 Ω from VIN falling edge to VOUT = 11.7 V - 30 - µs dV/dt(on) Turn-on voltage slope RL = 6.5 Ω from VOUT = 1.3 V to VOUT = 10.4 V - See Figure 14 - V/µs dV/dt(off) Turn-off voltage slope RL = 6.5 Ω from VOUT = 11.7 V to VOUT = 1.3 V - See Figure 15 - V/µs Table 10. Open-load detection Symbol Parameter Test conditions IOL Open-load on-state detection VIN = 5 V threshold tDOL(on) Open-load on-state detection IOUT = 0 A delay VOL tDOL(off) Table 11. Symbol Open-load off-state voltage detection threshold Min. 50 VIN = 0 V 1.5 Typ. Max. Unit 100 200 mA 200 µs 3.5 V 1000 µs Max. Unit 1.25 V 2.5 Open-load detection delay at turn-off Logic input Parameter Test conditions VIL Input low level IIL Low level input current VIH Input high level IIH High level input current Vhyst Input hysteresis voltage VICL Input clamp voltage VIN = 1.25 V Min. Typ. 1 µA 3.25 V VIN = 3.25 V 10 0.5 IIN = 1 mA IIN = -1 mA Doc ID 17546 Rev 2 6 µA V 6.8 -0.7 8 V V 9/27 VND830P-E Electrical specifications Figure 4. Switching time waveforms Table 12. Truth table Conditions Input Output Sense Normal operation L H L H H H Current limitation L H H L X X Overtemperature L H L L H L Undervoltage L H L L X X Overvoltage L H L L H H Output voltage > VOL L H H H L H Output current < IOL L H L H H L Doc ID 17546 Rev 2 H (Tj < TTSD) H (Tj > TTSD) L 10/27 VND830P-E Electrical specifications Table 13. Electrical transient requirements on VCC pin (part 1) ISO T/R Test levels 7637/1 test pulse I II III IV Delays and impedance 1 -25 V -50 V -75 V -100 V 2 ms, 10 Ω 2 +25 V +50 V +75 V +100 V 0.2 ms, 10 Ω 3a -25 V -50 V -100 V -150 V 0.1 µs, 50 Ω 3b +25 V +50 V +75 V +100 V 0.1 µs, 50 Ω 4 -4 V -5 V -6 V -7 V 100 ms, 0.01 Ω 5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2 Ω Table 14. Electrical transient requirements on VCC pin (part 2) ISO T/R Test levels results 7637/1 test pulse I II III IV 1 C C C C 2 C C C C 3a C C C C 3b C C C C 4 C C C C 5 C E E E Table 15. Electrical transient requirements on VCC pin (part 3) Class Contents C All functions of the device are performed as designed after exposure to disturbance. E One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. Doc ID 17546 Rev 2 11/27 VND830P-E Electrical specifications Figure 5. Waveforms NORMAL OPERATION INPUTn OUTPUT VOLTAGEn STATUSn UNDERVOLTAGE VUSDhyst VCC VUSD INPUTn OUTPUT VOLTAGEn STATUS undefined OVERVOLTAGE VCC<VOV VCC > VOV VCC INPUTn OUTPUT VOLTAGEn STATUSn OPEN-LOAD with external pull-up INPUTn VOUT > VOL OUTPUT VOLTAGEn VOL STATUSn OPEN-LOAD without external pull-up INPUTn OUTPUT VOLTAGEn STATUSn Tj TTSD TR OVERTEMPERATURE INPUTn OUTPUT CURRENTn STATUSn Doc ID 17546 Rev 2 12/27 VND830P-E Electrical specifications 2.4 Electrical characteristics curves Figure 6. Off-state output current Figure 7. IL(off1) (uA) High level input current Iih (uA) 2.5 5 2.25 4.5 Off state Vcc=36V Vin=Vout=0V 2 1.75 Vin=3.25V 4 3.5 1.5 3 1.25 2.5 1 2 0.75 1.5 0.5 1 0.25 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) Figure 8. 50 75 100 125 150 175 Tc (°C) Input clamp voltage Figure 9. Vicl (V) Status leakage current Ilstat (uA) 8 0.05 7.8 Iin=1mA 7.6 0.04 7.4 Vstat=5V 7.2 0.03 7 6.8 0.02 6.6 6.4 0.01 6.2 6 -50 -25 0 25 50 75 100 125 150 175 0 -50 Tc (°C) -25 0 25 50 75 100 125 150 175 Tc (°C) Figure 10. Status low output voltage Figure 11. Vstat (V) Status clamp voltage Vscl (V) 0.8 8 0.7 7.8 Istat=1.6mA Istat=1mA 7.6 0.6 7.4 0.5 7.2 0.4 7 0.3 6.8 6.6 0.2 6.4 0.1 6.2 0 6 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) -50 -25 0 25 50 75 100 125 150 175 Tc (°C) Doc ID 17546 Rev 2 13/27 VND830P-E Electrical specifications Figure 12. Overvoltage shutdown Figure 13. ILIM vs Tcase Vov (V) Ilim (A) 50 20 48 18 46 16 44 14 42 12 40 10 38 8 36 6 34 4 32 2 Vcc=13V 0 30 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 Figure 14. Turn-on voltage slope 100 125 150 175 150 175 dVout/dt(off) (V/ms) dVout/dt(on) (V/ms) 600 550 Vcc=13V Rl=6.5Ohm 600 75 Figure 15. Turn-off voltage slope 800 700 50 Tc (°C) Tc (°C) Vcc=13V Rl=6.5Ohm 500 450 500 400 400 350 300 300 200 250 100 200 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Figure 16. On-state resistance vs Tcase Figure 17. On-state resistance vs VCC 120 160 Tc=150°C 110 100 Iout=2A Vcc=8V; 13V & 36V 120 125 Ron (mOhm) Ron (mOhm) 140 100 Tc (ºC) Tc (ºC) 90 80 100 70 60 80 Tc=25°C 50 60 40 Tc= - 40°C 30 40 20 20 Iout=5A 10 0 0 -50 -25 0 25 50 75 100 125 150 175 5 10 15 20 25 30 35 40 Vcc (V) Tc (°C) Doc ID 17546 Rev 2 14/27 VND830P-E Electrical specifications Figure 18. Input high level Figure 19. Input low level Vih (V) Vil (V) 3.6 2.6 2.4 3.4 2.2 3.2 2 3 1.8 2.8 1.6 2.6 1.4 2.4 1.2 1 2.2 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 20. Open-load on-state detection threshold Figure 21. Open-load off-state detection threshold Iol (mA) Vol (V) 150 5 140 4.5 Vcc=13V Vin=5V 130 Vin=0V 4 3.5 120 3 110 2.5 2 100 1.5 90 1 80 0.5 0 70 -50 -25 0 25 50 75 100 125 150 175 -50 Tc (°C) -25 0 25 50 75 100 125 150 175 Tc (°C) Figure 22. Input hysteresis voltage Vhyst (V) 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) Doc ID 17546 Rev 2 15/27 VND830P-E 3 Application information Application information Figure 23. Application schematic +5V +5V +5V VCC Rprot STATUS1 Dld μC Rprot INPUT1 OUTPUT1 Rprot STATUS2 Rprot INPUT2 OUTPUT2 GND RGND VGND 3.1 DGND GND protection network against reverse battery This section provides two solutions for implementing a ground protection network against reverse battery. 3.1.1 Solution 1: a resistor in the ground line (RGND only) This can be used with any type of load. The following shows how to dimension the RGND resistor: 1. RGND ≤ 600 mV / (IS(on)max) 2. RGND ≥ (-VCC) / (-IGND) where - IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power dissipation in RGND (when VCC < 0 during reverse battery situations) is: PD = (-VCC)2 / RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Doc ID 17546 Rev 2 16/27 VND830P-E Application information Please note that, if the microprocessor ground is not common with the device ground, then the RGND produces a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift varies depending on how many devices are ON in the case of several highside drivers sharing the same RGND. If the calculated power dissipation requires the use of a large resistor, or several devices have to share the same resistor, then ST suggests using Section 3.1.2 described below. 3.1.2 Solution 2: a diode (DGND) in the ground line A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device is driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network produce a shift (~600 mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. 3.2 Load dump protection Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the VCC maximum DC rating. The same applies if the device is subjected to transients on the VCC line that are greater than those shown in Table 13. 3.3 MCU I/O protection If a ground protection network is used and negative transients are present on the VCC line, the control pins are pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the microcontroller I/O pins from latching up. The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os: -VCCpeak / Ilatchup ≤ Rprot ≤ (VOHμC - VIH - VGND) / IIHmax Example For the following conditions: VCCpeak = -100 V Ilatchup ≥ 20 mA VOHμC ≥ 4.5 V 5 kΩ ≤ Rprot ≤ 65 kΩ. The recommended values are: Rprot = 10 kΩ Doc ID 17546 Rev 2 17/27 VND830P-E 3.4 Application information Open-load detection in off-state Off-state open-load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5 V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1. No false open-load indication when load is connected: in this case it needs to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT = (VPU / (RL + RPU))RL < VOlmin. 2. No misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU < (VPU - VOLmax) / IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pullup resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in Chapter 2: Electrical specifications. Figure 24. Open-load detection in off-state V b a tt. V PU V CC R PU IN P U T D R IV E R + L O G IC IL (o ff2 ) OUT + STATUS R V OL RL GROUND Doc ID 17546 Rev 2 18/27 VND830P-E 3.5 Application information Maximum demagnetization energy Figure 25. SO-16L maximum turn-off current versus load inductance I LM AX (A) 100 10 A C B 1 0,1 1 10 100 L(mH) A = single pulse at TJstart = 150 °C B= repetitive pulse at TJstart = 100 °C C= repetitive pulse at TJstart = 125 °C Conditions: VCC= 13.5 V VIN, IL Demagnetization Demagnetization Demagnetization t Note: Values are generated with RL = 0 Ω. In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. Doc ID 17546 Rev 2 19/27 VND830P-E Package and PCB thermal data 4 Package and PCB thermal data 4.1 SO-16L thermal data Figure 26. SO-16L PC board(1) Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 41 mm x 48 mm, PCB thickness = 2 mm, Cu thickness = 35 µm, Copper areas: 0.5 cm2, 6 cm2). Figure 27. Rthj-amb vs PCB copper area in open box free air condition 70 RTH j-amb (°C/W) 65 60 55 50 45 40 0 1 2 3 4 5 6 7 PCB Cu heatsink area (cm^2) Doc ID 17546 Rev 2 20/27 VND830P-E Package and PCB thermal data Figure 28. SO-16 L thermal impedance junction ambient single pulse Equation 1: pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Figure 29. Thermal fitting model of a quad channel HSD in SO-16L Tj_1 Pd1 Tj_2 C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 C1 C2 R1 R2 Pd2 T_amb Doc ID 17546 Rev 2 21/27 VND830P-E Package and PCB thermal data Table 16. Thermal parameters Area/ island (cm2) Footprint R1 (°C/W) 0.05 R2 (°C/W) 0.3 R3 (°C/W) 2.2 R4 (°C/W) 12 R5 (°C/W) 15 R6 (°C/W) 37 C1 (W.s/°C) 0.001 C2 (W.s/°C) 5.00E-03 C3 (W.s/°C) 0.02 C4 (W.s/°C) 0.3 C5 (W.s/°C) 1 C6 (W.s/°C) 3 Doc ID 17546 Rev 2 6 22 5 22/27 VND830P-E Package and packing information 5 Package and packing information 5.1 ECOPACK® packages In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 5.2 SO-16L package information Figure 30. SO-16L package dimensions Doc ID 17546 Rev 2 23/27 VND830P-E Package and packing information Table 17. SO-16L mechanical data mm. DIM. Min. Typ. A a1 Max. 2.65 0.1 0.2 a2 2.45 b 0.35 0.49 b1 0.23 0.32 C 0.5 c1 45° (typ.) D 10.1 10.5 E 10.0 10.65 e 1.27 e3 8.89 F 7.4 7.6 L 0.5 1.27 M 0.75 S 8° (max.) Doc ID 17546 Rev 2 24/27 VND830P-E 5.3 Package and packing information SO-16L packing information Figure 31. SO-16L tube shipment (no suffix) C Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) B 50 1000 532 3.5 13.8 0.6 A Figure 32. Tape and reel shipment (suffix “TR”) Reel dimensions Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 Tape dimensions According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 12 1.5 1.5 7.5 6.5 2 End Start Top cover tape No components Components No components 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed Doc ID 17546 Rev 2 25/27 VND830P-E 6 Revision history Revision history Table 18. Document revision history Date Revision Changes 25-May-2010 1 Initial release. 22-Sep-2010 2 Changed document status from preliminary data to datasheet. Doc ID 17546 Rev 2 26/27 VND830P-E Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 17546 Rev 2 27/27