TI SN74ALVCH16501DLR

SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
FEATURES
•
•
•
•
•
•
•
•
DGG OR DL PACKAGE
(TOP VIEW)
Member of the Texas Instruments Widebus™
Family
UBT™ Transceiver Combines D-Type Latches
and D-Type Flip-Flops for Operation in
Transparent, Latched, or Clocked Modes
Operates From 1.65 V to 3.6 V
Max tpd of 3.9 ns at 3.3 V
±24-mA Output Drive at 3.3 V
Bus Hold on Data Inputs Eliminates the Need
for External Pullup/Pulldown Resistors
Latch-Up Performance Exceeds 250 mA Per
JESD 17
ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
OEAB
LEAB
A1
GND
A2
A3
VCC
A4
A5
A6
GND
A7
A8
A9
A10
A11
A12
GND
A13
A14
A15
VCC
A16
A17
GND
A18
OEBA
LEBA
DESCRIPTION/ORDERING INFORMATION
This 18-bit universal bus transceiver is designed for
1.65-V to 3.6-V VCC operation.
Data flow in each direction is controlled by
output-enable (OEAB and OEBA), latch-enable
(LEAB and LEBA), and clock (CLKAB and CLKBA)
inputs. For A-to-B data flow, the device operates in
the transparent mode when LEAB is high. When
LEAB is low, the A data is latched if CLKAB is held at
a high or low logic level. If LEAB is low, the A data is
stored in the latch/flip-flop on the low-to-high
transition of CLKAB. When OEAB is high, the outputs
are active. When OEAB is low, the outputs are in the
high-impedance state.
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
GND
CLKAB
B1
GND
B2
B3
VCC
B4
B5
B6
GND
B7
B8
B9
B10
B11
B12
GND
B13
B14
B15
VCC
B16
B17
GND
B18
CLKBA
GND
Data flow for B to A is similar to that of A to B, but uses OEBA, LEBA, and CLKBA. The output enables are
complementary (OEAB is active high, and OEBA is active low).
ORDERING INFORMATION
PACKAGE (1)
TA
SSOP - DL
-40°C to 85°C
TSSOP - DGG
VFBGA - GQL
VFBGA - ZQL (Pb-free)
(1)
ORDERABLE PART NUMBER
Tube
SN74ALVCH16501DL
Tape and reel
SN74ALVCH16501DLR
Tape and reel
SN74ALVCH16501DGGR
Tape and reel
SN74ALVCH16501KR
74ALVCH16501ZQLR
TOP-SIDE MARKING
ALVCH16501
ALVCH16501
VH501
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus, UBT are trademarks of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1995–2004, Texas Instruments Incorporated
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
To ensure the high-impedance state during power up or power down, OEBA should be tied to VCC through a
pullup resistor, and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor
is determined by the current-sinking capability of the driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
GQL OR ZQL PACKAGE
(TOP VIEW)
1
2
3
4
5
6
A
B
C
D
E
F
G
H
J
K
TERMINAL ASSIGNMENTS
2
1
2
3
4
5
6
A
A1
LEAB
OEAB
GND
CLKAB
B1
B
A3
A2
GND
GND
B2
B3
C
A5
A4
VCC
VCC
B4
B5
D
A7
A6
GND
GND
B6
B7
E
A9
A8
B8
B9
F
A10
A11
B11
B10
G
A12
A13
GND
GND
B13
B12
H
A14
A15
VCC
VCC
B15
B14
J
A16
A17
GND
GND
B17
B16
K
A18
OEBA
LEBA
GND
CLKBA
B18
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
FUNCTION TABLE (1)
INPUTS
(1)
(2)
(3)
OEAB
LEAB
CLKAB
A
OUTPUT
B
L
X
X
X
Z
H
H
X
L
L
H
H
X
H
H
H
L
↑
L
L
H
L
↑
H
H
H
L
H
X
B0 (2)
H
L
L
X
B0 (3)
A-to-B data flow is shown; B-to-A flow is similar, but uses OEBA,
LEBA, and CLKBA.
Output level before the indicated steady-state input conditions were
established, provided that CLKAB was high before LEAB went low
Output level before the indicated steady-state input conditions were
established
space
LOGIC DIAGRAM (POSITIVE LOGIC)
OEAB
CLKAB
LEAB
LEBA
CLKBA
OEBA
A1
1
55
2
28
30
27
3
1D
C1
CLK
54
B1
1D
C1
CLK
To 17 Other Channels
Pin numbers shown are for the DGG and DL packages.
3
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
ABSOLUTE MAXIMUM RATINGS (1)
over operating free-air temperature range (unless otherwise noted)
VCC
Supply voltage range
MIN
MAX
-0.5
4.6
Except I/O ports (2)
-0.5
4.6
I/O ports (2) (3)
-0.5
VCC + 0.5
-0.5
VCC + 0.5
UNIT
V
VI
Input voltage range
VO
Output voltage range (2) (3)
IIK
Input clamp current
VI < 0
-50
mA
IOK
Output clamp current
VO < 0
-50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through each VCC or GND
θJA
Package thermal impedance (4)
Tstg
Storage temperature range
DGG package
64
DL package
56
GQL/ZQL package
(1)
(2)
(3)
(4)
V
V
°C/W
42
-65
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
This value is limited to 4.6 V maximum.
The package thermal impedance is calculated in accordance with JESD 51-7.
RECOMMENDED OPERATING CONDITIONS (1)
VCC
Supply voltage
VCC = 1.65 V to 1.95 V
VIH
High-level input voltage
MIN
MAX
1.65
3.6
UNIT
V
0.65 × VCC
VCC = 2.3 V to 2.7 V
1.7
VCC = 2.7 V to 3.6 V
2
V
0.35 × VCC
VCC = 1.65 V to 1.95 V
VIL
Low-level input voltage
VCC = 2.3 V to 2.7 V
0.7
VI
Input voltage
0
VCC
V
VO
Output voltage
0
VCC
V
VCC = 2.7 V to 3.6 V
IOH
High-level output current
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
TA
Operating free-air temperature
(1)
4
V
0.8
VCC = 1.65 V
-4
VCC = 2.3 V
-12
VCC = 2.7 V
-12
VCC = 3 V
-24
VCC = 1.65 V
4
VCC = 2.3 V
12
VCC = 2.7 V
12
VCC = 3 V
24
-40
mA
mA
10
ns/V
85
°C
All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
ELECTRICAL CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = -100 µA
1.65 V to 3.6 V
1.65 V
IOH = -6 mA
2.3 V
2
2.3 V
1.7
2.7 V
2.2
3V
2.4
IOH = -24 mA
3V
2
IOL = 100 µA
IOH = -12 mA
II(hold)
V
1.65 V to 3.6 V
0.2
1.65 V
0.45
IOL = 6 mA
2.3 V
0.4
2.3 V
0.7
IOL = 24 mA
II
1.2
IOL = 4 mA
IOL = 12 mA
2.7 V
0.4
3V
0.55
3.6 V
VI = 0.58 V
1.65 V
25
VI = 1.07 V
1.65 V
-25
VI = 0.7 V
2.3 V
45
VI = 1.7 V
2.3 V
-45
VI = 0.8 V
3V
75
3V
-75
VI = 0 V to 3.6
VO = VCC or GND
ICC
VI = VCC or GND,
∆ICC
One input at VCC - 0.6 V, Other inputs at VCC or GND
µA
µA
3.6 V
±500
3.6 V
±10
µA
3.6 V
40
µA
3 V to 3.6 V
750
µA
V (2)
IOZ (3)
V
±5
VI = VCC or GND
VI = 2 V
UNIT
VCC - 0.2
IOH = -4 mA
VOH
VOL
MIN TYP (1) MAX
VCC
IO = 0
Ci
Control inputs VI = VCC or GND
3.3 V
4
pF
Cio
A or B ports
3.3 V
8
pF
(1)
(2)
(3)
VO = VCC or GND
All typical values are at VCC = 3.3 V, TA = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to
another.
For I/O ports, the parameter IOZ includes the input leakage current.
TIMING REQUIREMENTS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
VCC = 2.5 V
± 0.2 V
MIN
fclock
Clock frequency
tw
Pulse duration
tsu
Setup time
Hold time
MIN
150
MAX
VCC = 3.3 V
± 0.3 V
MIN
150
3.3
3.3
3.3
CLK high or low
3.3
3.3
3.3
Data before LE↓
2.2
2.1
1.7
CLK high
1.9
1.6
1.5
CLK low
1.3
1.1
1
0.6
0.6
0.7
1.4
1.7
1.4
Data after CLK↑
Data after LE↓
CLK high or low
UNIT
MAX
150
LE high
Data before CLK↑
th
MAX
VCC = 2.7 V
MHz
ns
ns
ns
5
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
SWITCHING CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
A or B
B or A
fmax
tpd
VCC = 2.5 V
± 0.2 V
MIN
MAX
150
LE
A or B
CLK
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
MIN
MAX
150
MIN
UNIT
MAX
150
MHz
1
4.8
4.5
1
3.9
1.1
5.7
5.3
1.3
4.6
1.2
6.1
5.6
1.4
4.9
ns
ten
OEAB
B
1
5.8
5.3
1
4.6
ns
tdis
OEAB
B
1.5
6.2
5.7
1.4
5
ns
ten
OEBA
A
1.3
6.3
6
1.1
5
ns
tdis
OEBA
A
1.3
5.3
4.6
1.3
4.2
ns
OPERATING CHARACTERISTICS
TA = 25°C
PARAMETER
Cpd
6
Power dissipation capacitance
TEST CONDITIONS
Outputs enabled
Outputs disabled
CL = 50 pF, f = 10 MHz
VCC = 2.5 V
VCC = 3.3 V
TYP
TYP
44
54
6
6
UNIT
pF
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
RL
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUT
VCC
1.8 V
2.5 V ± 0.2 V
2.7 V
3.3 V ± 0.3 V
VI
tr/tf
VCC
VCC
2.7 V
2.7 V
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
1.5 V
2 × VCC
2 × VCC
6V
6V
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
tw
VI
Timing
Input
VM
VM
VM
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VM
VM
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VLOAD/2
VM
tPZH
VOH
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPHL
VM
VI
VM
tPZL
VI
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VI
Data
Input
VM
0V
0V
tsu
Output
VI
VM
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
VOH
VM
VOH − V∆
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
7
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
74ALVCH16501DGGRG4
ACTIVE
TSSOP
DGG
56
74ALVCH16501DLG4
ACTIVE
SSOP
DL
56
74ALVCH16501DLRG4
ACTIVE
SSOP
DL
74ALVCH16501ZQLR
ACTIVE
BGA MI
CROSTA
R JUNI
OR
SN74ALVCH16501DGGR
ACTIVE
SN74ALVCH16501DL
MSL Peak Temp (3)
CU NIPDAU
Level-1-260C-UNLIM
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ZQL
56
1000 Green (RoHS &
no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
TSSOP
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SSOP
DL
56
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16501DLR
ACTIVE
SSOP
DL
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16501KR
ACTIVE
GQL
56
1000
SNPB
Level-1-240C-UNLIM
BGA MI
CROSTA
R JUNI
OR
2000 Green (RoHS &
no Sb/Br)
Lead/Ball Finish
20
20
TBD
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0.025 (0,635)
0.0135 (0,343)
0.008 (0,203)
48
0.005 (0,13) M
25
0.010 (0,25)
0.005 (0,13)
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°–ā8°
24
0.040 (1,02)
A
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.004 (0,10)
0.008 (0,20) MIN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
4040048 / E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MO-118
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated