HITACHI HAT3008R

HAT3008R/HAT3008RJ
Silicon N/P Channel Power MOS FET
High Speed Power Switching
ADE-208-536B (Z)
3rd. Edition
February 1999
Features
•
•
•
•
For Automotive Application ( at Type Code “J “)
Low on-resistance
Capable of 4 V gate drive
High density mounting
Outline
SOP–8
8
5
7 6
3
1 2
4
5 6
D D
7 8
D D
4
G
2
G
S1
S3
Nch
Pch
1, 3
Source
2, 4
Gate
5, 6, 7, 8 Drain
HAT3008R/HAT3008RJ
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
Nch
Pch
Drain to source voltage
VDSS
60
– 60
V
Gate to source voltage
VGSS
±20
± 20
V
Drain current
ID
5
– 3.5
A
40
– 28
A
Note1
Drain peak current
I D(pulse)
Body-drain diode
I DR
5
– 3.5
A
I AP Note4
—
—
—
5
– 3.5
A
—
—
—
reverse drain current
Avalanche current
HAT3008R
HAT3008RJ
Avalanche energy
HAT3008R
EAR
Note4
HAT3008RJ
2.14
1.05
mJ
Pch
Note2
2
2
W
Channel dissipation
Pch
Note3
3
3
W
Channel temperature
Tch
150
150
°C
Storage temperature
Tstg
– 55 to + 150
–55 to + 150
°C
Channel dissipation
Note:
2
1.
2.
3.
4.
PW ≤ 10µs, duty cycle ≤ 1 %
1 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s
2 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s
Value at Tch=25°C, Rg≥50Ω
HAT3008R/HAT3008RJ
Electrical Characteristics (Ta = 25°C)
( N Channel )
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown voltage
V(BR)DSS
60
—
—
V
I D = 10 mA, VGS = 0
Gate to source breakdown voltage
V(BR)GSS
± 20
—
—
V
I G = ± 100 µA, VDS = 0
Gate to source leak current
I GSS
—
—
± 10
µA
VGS = ± 16 V, VDS = 0
Zero gate voltage
HAT3008R
I DSS
—
—
1
µA
VDS = 60 V, VGS = 0
drain current
HAT3008RJ I DSS
—
—
0.1
µA
Zero gate voltage
HAT3008R
I DSS
—
—
—
µA
VDS = 48 V, VGS = 0
drain current
HAT3008RJ I DSS
—
—
10
µA
Ta = 125°C
Gate to source cutoff voltage
VGS(off)
1.2
—
2.2
V
VDS = 10 V, I D = 1 mA
Static drain to source on state
RDS(on)
—
0.043
0.058
Ω
I D = 3 A, VGS = 10 V Note4
resistance
RDS(on)
—
0.056
0.084
Ω
I D = 3 A, VGS = 4 V Note4
Forward transfer admittance
|yfs|
6
9
—
S
I D = 3 A, VDS = 10 V Note4
Input capacitance
Ciss
—
520
—
pF
VDS = 10 V
Output capacitance
Coss
—
270
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
100
—
pF
f = 1MHz
Turn-on delay time
t d(on)
—
11
—
ns
VGS =10 V, ID = 3 A
Rise time
tr
—
40
—
ns
VDD ≅ 30 V
Turn-off delay time
t d(off)
—
110
—
ns
Fall time
tf
—
80
—
ns
Body–drain diode forward voltage
VDF
—
0.84
1.1
V
IF = 5 A, VGS = 0 Note4
Body–drain diode reverse
recovery time
t rr
—
40
—
ns
IF =5 A, VGS = 0
diF/ dt = 50 A/µs
Note:
5. Pulse test
3
HAT3008R/HAT3008RJ
( P Channel )
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown voltage
V(BR)DSS
– 60
—
—
V
I D = – 10 mA, VGS = 0
Gate to source breakdown voltage
V(BR)GSS
± 20
—
—
V
I G = ± 100 µA, VDS = 0
Gate to source leak current
I GSS
—
—
±10
µA
VGS = ± 16 V, VDS = 0
Zero gate voltage
HAT3008R
I DSS
—
—
–1
µA
VDS = – 60 V, VGS = 0
drain current
HAT3008RJ
I DSS
—
—
–0.1
µA
Zero gate voltage
HAT3008R
I DSS
—
—
—
µA
VDS = – 48 V, VGS = 0
drain current
HAT3008RJ
I DSS
—
—
–10
µA
Ta = 125°C
Gate to source cutoff voltage
VGS(off)
–1.2
—
–2.2
V
VDS = – 10 V, I D = – 1mA
Static drain to source on state
RDS(on)
—
0.12
0.15
Ω
I D = – 2 A, VGS = – 10 V Note4
resistance
RDS(on)
—
0.16
0.23
Ω
I D = – 2 A, VGS = – 4 V Note4
Forward transfer admittance
|yfs|
3
4.5
—
S
I D = – 2 A, VDS = –10 V Note4
Input capacitance
Ciss
—
600
—
pF
VDS = –10 V
Output capacitance
Coss
—
290
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
75
—
pF
f = 1MHz
Turn-on delay time
t d(on)
—
11
—
ns
VGS = –10 V, ID = – 2 A
Rise time
tr
—
30
—
ns
VDD ≅ – 30 V
Turn-off delay time
t d(off)
—
100
—
ns
Fall time
tf
—
55
—
ns
Body–drain diode forward voltage
VDF
—
– 0.98 – 1.28 V
IF = – 3.5 A, VGS = 0 Note4
Body–drain diode reverse
recovery time
t rr
—
70
IF = – 3.5 A, VGS = 0
diF/ dt = 50 A/µs
Note:
4
5. Pulse test
—
ns
HAT3008R/HAT3008RJ
Main Characteristics ( N Channel )
Power vs. Temperature Derating
Maximum Safe Operation Area
100
Test Condition :
When using the glass epoxy board
(FR4 40x40x1.6 mm), PW < 10 s
10 µs
I D (A)
ive
Dr
2.0
Op
er
ion
ive
at
0
Dr
er
1.0
Op
1
50
30
at
ion
150
Ambient Temperature
200
Ta (°C)
1
Op
10
s
ms
(1
sh
ot
at
)
s)
Ta = 25 °C
1 shot pulse
0.01
3
30
0.1 0.3
1
10
100
Drain to Source Voltage V DS (V)
Typical Transfer Characteristics
10
Pulse Test
4
2.5 V
2
(A)
3V
V DS = 10 V
Pulse Test
ID
10 V
4V
3.5 V
Drain Current
I D (A)
Drain Current
DC
=
µs
m
ion
0.3 Operation in
(P
this area is
W N
< ote
0.1 limited by R DS(on)
10 5
Typical Output Characteristics
6
PW
1
er
10
8
0
3
0.03
100
10
10
Drain Current
3.0
2
Channel Dissipation
Pch (W)
4.0
8
6
25°C
4
Tc = 75°C
–25°C
2
VGS = 2 V
0
2
4
6
Drain to Source Voltage
8
10
V DS (V)
0
1
2
3
Gate to Source Voltage
4
5
V GS (V)
5
HAT3008R/HAT3008RJ
0.4
0.3
ID=5A
0.2
Static Drain to Source on State Resistance
R DS(on) ( Ω)
2A
1A
12
4
8
Gate to Source Voltage
16
20
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
0.20
Pulse Test
0.16
1, 2 A
0.12
ID=5A
0.08
V GS = 4 V
1, 2, 5 A
0.04
10 V
0
–40
Static Drain to Source on State Resistance
vs. Drain Current
1.0
Pulse Test
0.5
0.2
0.1
VGS = 4 V
0.05
0.1
0
6
Pulse Test
0
40
80
120
160
Case Temperature Tc (°C)
10 V
0.02
0.01
0.1
0.3
1
3
Drain Current
10
30
I D (A)
100
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
Drain to Source Saturation Voltage
V DS(on) (V)
0.5
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
20
V DS = 10 V
Pulse Test
Tc = –25 °C
10
5
25 °C
75 °C
2
1
0.5
0.1
0.2
1
2
5
0.5
Drain Current I D (A)
10
HAT3008R/HAT3008RJ
Body–Drain Diode Reverse
Recovery Time
Typical Capacitance vs.
Drain to Source Voltage
2000
di / dt = 50 A / µs
V GS = 0, Ta = 25 °C
200
1000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
500
100
50
20
10
Coss
100
50
Crss
0
V GS
40
20
0
V DS
12
V DD = 10 V
25 V
50 V
V DD = 50 V
25 V
10 V
8
16
24
32
Gate Charge Qg (nc)
8
4
0
40
20
30
40
50
Switching Characteristics
300
Switching Time t (ns)
16
1000
V GS (V)
I D = 5A
10
Drain to Source Voltage V DS (V)
Gate to Source Voltage
20
80
60
VGS = 0
f = 1 MHz
10
0.2
0.5
1
2
5
10
Reverse Drain Current I DR (A)
Dynamic Input Characteristics
100
V DS (V)
200
20
5
0.1
Drain to Source Voltage
Ciss
500
t d(off)
100
tf
30
tr
t d(on)
10
3
1
0.1
V GS = 10 V, V DD = 30 V
PW = 5 µs, duty < 1 %
0.2
1
0.5
Drain Current
5
2
I D (A)
10
7
HAT3008R/HAT3008RJ
Maximun Avalanche Energy vs.
Channel Temperature Derating
Reverse Drain Current vs.
Source to Drain Voltage
Repetive Avalanche Energy E AR (mJ)
Reverse Drain Current I DR (A)
10
10 V
8
5V
6
V GS = 0, –5 V
4
2
Pulse Test
0
0.4
0.8
1.2
1.6
Source to Drain Voltage
2.0
2.5
I AP = 5 A
V DD = 25 V
L = 100 µH
duty < 0.1 %
Rg > 50 Ω
2.0
1.5
1.0
0.5
0
25
50
V SD (V)
100
125
Avalanche Waveform
EAR =
L
1
2
• L • I AP •
2
VDSS
VDSS – V DD
I AP
Monitor
V (BR)DSS
I AP
Rg
D. U. T
V DS
VDD
ID
Vin
15 V
50Ω
0
VDD
Switching Time Test Circuit
Switching Time Waveform
Vout
Monitor
Vin Monitor
90%
D.U.T.
RL
Vin
Vin
10 V
50Ω
V DD
= 30 V
Vout
10%
10%
90%
td(on)
8
150
Channel Temperature Tch (°C)
Avalanche Test Circuit
V DS
Monitor
75
tr
10%
90%
td(off)
tf
HAT3008R/HAT3008RJ
( P Channel )
Power vs. Temperature Derating
–100
Test Condition :
When using the glass epoxy board
(FR4 40x40x1.6 mm), PW < 10 s
I D (A)
Pch (W)
4.0
3.0
Maximum Safe Operation Area
–30
10 µs
–10
10
PW
Drain Current
2
Dr
2.0
ive
1
1.0
0
ion
at
er
Op
Channel Dissipation
–3
Dr
ive
Op
er
–0.3
–0.1
DC
=
ion
–0.03
100
150
Ambient Temperature
200
10
Op
ms
er
at
ion
Operation in
(P
this area is
W N
< ote
limited by R DS(on)
1
Ta = 25 °C
1 shot pulse
–0.01
–0.1 –0.3
–1
–3
–10
Drain to Source Voltage
Ta (°C)
s
m
s
0
at
50
–1
0µ
1
s) 6
–30
–100
V DS (V)
Note 6 :
When using the glass epoxy board
(FR4 40x40x1.6 mm)
Typical Transfer Characteristics
Typical Output Characteristics
–10 V
–5 V
–4 V
–3.5 V
V DS = 10 V
Pulse Test
(A)
–8
–10
–8
ID
Pulse Test
–6
–3 V
–4
–2
0
VGS = –2.5 V
–2
–4
–6
Drain to Source Voltage
–8
–10
V DS (V)
Drain Current
Drain Current
I D (A)
–10
–6
–4
Tc = 75 °C
25 °C
–2
–25 °C
0
–1
–2
–3
Gate to Source Voltage
–4
–5
V GS (V)
9
HAT3008R/HAT3008RJ
Drain to Source Saturation Voltage
V DS(on) (V)
–0.5
Pulse Test
–0.4
–0.3
I D = –2 A
–0.2
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
Static Drain to Source on State Resistance
vs. Drain Current
1
Pulse Test
0.5
0.2
VGS = –4 V
0.1
–10 V
0.05
–1 A
–0.1
–0.5 A
0.02
0.01
10
–4
–8
–12
Gate to Source Voltage
–16
–20
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
0.5
Pulse Test
0.4
I D = –2 A
0.3
–1 A
–0.5 A
0.2
0.1
0
–40
V GS = –4 V
–10 V
–2 A
–0.5, –1 A
0
40
80
120
160
Case Temperature Tc (°C)
–0.1
–0.3
–1
–3
Drain Current
Forward Transfer Admittance |y fs | (S)
Static Drain to Source on State Resistance
R DS(on) ( Ω)
0
20
10
5
–10
–30
–100
I D (A)
Forward Transfer Admittance vs.
Drain Current
V DS = 10 V
Pulse Test
Ta = –25 °C
25 °C
2
75 °C
1
0.5
0.2
–0.5 –1 –2
–5
–0.1 –0.2
Drain Current I D (A)
–10
HAT3008R/HAT3008RJ
Body–Drain Diode Reverse
Recovery Time
Typical Capacitance vs.
Drain to Source Voltage
2000
200
100
50
20
Ciss
500
200
50
Crss
di / dt = 50 A / µs
VGS = 0, Ta = 25 °C
10
20
–60
–80
–100
0
–4
–8
V GS
V DS
–12
V DD = –50 V
–25 V
–10 V
32
8
16
24
Gate Charge Qg (nc)
–16
–20
40
Switching Time t (ns)
I D = –3.5 A
–40
–10
–20
–30
–40
–50
Drain to Source Voltage V DS (V)
1000
0
V GS (V)
–20
0
Switching Characteristics
Dynamic Input Characteristics
V DD = –10 V
–25 V
–50 V
10
Gate to Source Voltage
0
V DS (V)
Coss
100
5
–0.1 –0.2 –0.5 –1 –2
–5 –10
Reverse Drain Current I DR (A)
Drain to Source Voltage
VGS = 0
f = 1 MHz
1000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
500
V GS = –10 V, V DD = –30 V
Pw = 5 µs, duty < 1 %
300
t d(off)
100
tf
30
tr
t d(on)
10
3
1
–0.1 –0.2
–0.5 –1 –2
–5
Drain Current I D (A)
–10
11
HAT3008R/HAT3008RJ
Maximun Avalanche Energy vs.
Channel Temperature Derating
Repetive Avalanche Energy E AR (mJ)
Reverse Drain Current vs.
Source to Drain Voltage
Reverse Drain Current I DR (A)
–10
–8
–6
–10 V
V GS = 0, 5 V
–4
–5 V
–2
Pulse Test
0
–0.4
–0.8
–1.2
–1.6
Source to Drain Voltage
2.5
I AP = –3.5 A
V DD = –25 V
L = 100 µH
duty < 0.1 %
Rg > 50 Ω
2.0
1.5
1.0
0.5
–2.0
0
25
50
75
100
125
150
Channel Temperature Tch (°C)
V SD (V)
Avalanche Waveform
Avalanche Test Circuit
EAR =
L
V DS
Monitor
1
2
• L • I AP •
2
VDSS
VDSS – V DD
I AP
Monitor
V (BR)DSS
I AP
Rg
V DS
VDD
D. U. T
ID
Vin
-15 V
50Ω
0
VDD
Switching Time Test Circuit
Switching Time Waveform
Vout
Monitor
Vin Monitor
Vin
10%
D.U.T.
RL
90%
Vin
-10 V
50Ω
V DD
= –30 V
Vout
td(on)
12
90%
90%
10%
10%
tr
td(off)
tf
HAT3008R/HAT3008RJ
Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation)
Normalized Transient Thermal Impedance
γ s (t)
10
1
D=1
0.5
0.1
0.1
0.05
0.2
0.02
0.01
θ ch – f(t) = γ s (t) • θ ch – f
θ ch – f = 125 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.01
e
uls
p
ot
PDM
h
0.001
1s
D=
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
Normalized Transient Thermal Impedance
γ s (t)
10
1
Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation)
D=1
0.5
0.2
0.1
0.01
0.1
0.05
0.02
θ ch – f(t) = γ s (t) • θ ch – f
θ ch – f = 166 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.01
0.001
t
ho
lse
pu
PDM
D=
1s
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
13
HAT3008R/HAT3008RJ
Package Dimensions
Unit: mm
1
4
6.2 Max
0.25 Max
5
1.75 Max
8
4.0 Max
5.0 Max
0 – 8°
0.51 Max
0.25 Max
1.27
1.27 Max
0.15
0.25 M
14
Hitachi code
EIAJ
JEDEC
FP–8DA
—
MS-012AA
HAT3008R/HAT3008RJ
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & IC Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
15