HAT3006R Silicon N Channel / P Channel Power MOS FET High Speed Power Switching ADE-208-480F (Z) 7th. Edition Feb. 1999 Features • • • • Low on-resistance Capable of 4 V gate drive Low drive current High density mounting Outline SOP–8 8 5 7 6 3 1 2 4 5 6 D D 7 8 D D 4 G 2 G S1 S3 Nch Pch 1, 3 Source 2, 4 Gate 5, 6, 7, 8 Drain HAT3006R Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit Nch Pch Drain to source voltage VDSS 30 – 30 V Gate to source voltage VGSS ± 20 ± 20 V Drain current ID 6.5 – 4.5 A 52 – 36 A 6.5 – 4.5 A Drain peak current I D(pulse) Body-drain diode reverse drain current I DR Note1 Pch Note2 2 W Channel dissipation Pch Note3 3 W Channel temperature Tch 150 °C Storage temperature Tstg – 55 to + 150 °C Channel dissipation Note: 1. PW ≤ 10µs, duty cycle ≤ 1 % 2. 1 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW 10s 3. 2 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW 10s Electrical Characteristics (N channel) (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS 30 — — V I D = 10 mA, VGS = 0 Gate to source breakdown voltage V(BR)GSS ± 20 — — V I G = ± 100 µA, VDS = 0 Gate to source leak current I GSS — — ± 10 µA VGS = ± 16 V, VDS = 0 Zero gate voltege drain current I DSS — — 10 µA VDS = 30 V, VGS = 0 Gate to source cutoff voltage VGS(off) 1.0 — 2.0 V VDS = 10 V, I D = 1 mA Static drain to source on state RDS(on) — 0.03 0.045 Ω I D = 4 A, VGS = 10 V Note4 resistance RDS(on) — 0.05 0.08 Ω I D = 4 A, VGS = 4 V Note4 Forward transfer admittance |yfs| 5 8 — S I D = 4 A, VDS = 10 V Note4 Input capacitance Ciss — 560 — pF VDS = 10 V Output capacitance Coss — 380 — pF VGS = 0 Reverse transfer capacitance Crss — 170 — pF f = 1MHz Turn-on delay time t d(on) — 30 — ns VGS = 4 V, ID = 4 A Rise time tr — 270 — ns VDD ≅ 10 V Turn-off delay time t d(off) — 40 — ns Fall time tf — 65 — ns Body–drain diode forward voltage VDF — 0.9 1.4 V IF = 6.5 A, VGS = 0 Note4 Body–drain diode reverse recovery time t rr — 45 — ns IF = 6.5 A, VGS = 0 diF/ dt = 20 A/µs Note: 2 4. Pulse test HAT3006R Electrical Characteristics (P channel) (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS – 30 — — V I D = – 10 mA, VGS = 0 Gate to source breakdown voltage V(BR)GSS ± 20 — — V I G = ± 100 µA, VDS = 0 Gate to source leak current I GSS — — ± 10 µA VGS = ± 16 V, VDS = 0 Zero gate voltege drain current I DSS — — – 10 µA VDS = – 30 V, VGS = 0 Gate to source cutoff voltage VGS(off) – 1.0 — – 2.5 V VDS = –10 V, I D = –1mA Static drain to source on state RDS(on) — 0.07 0.09 Ω I D = – 3 A, VGS = –10V Note5 resistance RDS(on) — 0.11 0.18 Ω I D = – 3 A, VGS = –4V Note5 Forward transfer admittance |yfs| 4 6 — S I D = – 3 A, VDS = –10V Note5 Input capacitance Ciss — 660 — pF VDS = –10 V Output capacitance Coss — 440 — pF VGS = 0 Reverse transfer capacitance Crss — 140 — pF f = 1MHz Turn-on delay time t d(on) — 24 — ns VGS = – 4 V, ID = – 3 A Rise time tr — 165 — ns VDD ≅ –10 V Turn-off delay time t d(off) — 35 — ns Fall time tf — 70 — ns Body–drain diode forward voltage VDF — – 0.9 – 1.4 V IF = – 4.5 A, VGS = 0 Note5 Body–drain diode reverse recovery time t rr — 60 — ns IF = –4.5 A, VGS = 0 diF/ dt = 20A/µs Note: 5. Pulse test 3 HAT3006R Main Characteristics (N channel) Drain Current I D (A) 3 1 DC 20 100 µs 10 µs 30 10 Typical Output Characteristics Maximum Safe Operation Area PW 10 V 1m 16 s Drain Current I D (A) 100 =1 0m Op s era tio n( PW < 1 No 0 s te 5 ) Operation in 0.3 this area is limited by R DS(on) 0.1 Ta = 25 °C 0.03 1 shot Pulse 1 Drive Operation 0.01 0.1 0.3 1 3 10 Drain to Source Voltage V 5V 12 4V 6V Pulse Test 4.5 V 3.5 V 8 3V 4 VGS = 2.5 V 30 (V) DS 0 100 2 4 6 Drain to Source Voltage V 8 10 DS(V) Note 5 : When using the glass epoxy board (FR4 40x40x1.6 mm) Drain to Source Saturation Voltage vs. Gate to Source Voltage Typical Transfer Characteristics (V) DS(on) 16 0.5 Tc = –25 °C 25 °C 75 °C Drain to Source Voltage V Drain Current I D (A) 20 12 8 4 V DS = 10 V Pulse Test 0 4 1 2 3 Gate to Source Voltage V 4 (V) GS 5 Pulse Test 0.4 0.3 0.2 ID= 5 A 0.1 2A 1A 0 2 4 6 Gate to Source Voltage V 8 (V) GS 10 HAT3006R Static Drain to Source on State Resistance vs. Drain Current 0.5 Pulse Test 0.2 0.1 V GS = 4 V 0.05 10 V 0.02 0.01 0.005 0.2 0.5 2 1 5 10 Drain Current I D (A) 20 Static Drain to Source on State Resistance R DS(on) ( W ) Drain to Source On State Resistance R DS(on) ( W ) Main Characteristics (N channel) Forward Transfer Admittance vs. Drain Current Reverse Recovery Time trr (ns) Forward Transfer Admittance |yfs| (S) Tc = –25 °C 5 75 °C 25 °C 2 1 0.5 0.2 0.2 V DS = 10 V Pulse Test 0.5 1 2 5 Drain Current I D(A) 10 0.08 0.06 20 I D = 1 A, 2 A, 5 A V GS = 4 V 0.04 1 A, 2 A, 5 A 0.02 0 –40 500 20 10 Static Drain to Source on State Resistance vs. Temperature 0.10 Pulse Test 10 V 0 40 80 120 Case Temperature Tc (°C) 160 Body–Drain Diode Reverse Recovery Time 200 100 50 20 10 5 0.2 di/dt = 20 A/µs VGS = 0, Ta = 25°C 0.5 1 2 5 10 Reverse Drain Current I DR (A) 20 5 HAT3006R Main Characteristics (N channel) Typical Capacitance vs. Drain to Source Voltage 300 Coss 100 Crss Drain to Source Voltage Ciss 30 10 0 10 20 30 40 Drain to Source Voltage V 12 VDS VGS 20 8 10 0 50 4 V DD = 25 V 10 V 5V DS(V) 8 16 Gate Charge 24 32 Qg (nc) 0 40 Reverse Drain Current vs. Souece to Drain Voltage 20 tr 100 tf t d(off) 50 t d(on) 10 0.1 0.2 0.5 1 2 5 Drain Current I D (A) 10 (A) DR 200 Pulse Test 16 Reverse Drain Current I Switching Time t (ns) 30 VGS = 4 V, V DD= 10 V PW = 3 µs, duty < 1 % 20 6 12 5V VGS = 0, –5 V 8 4 0 0.4 GS(V) 16 V DD = 5 V 10 V 25 V Switching Characteristics 1000 500 40 V 1000 20 I D = 6.5 A V DS(V) VGS = 0 f = 1 MHz 3000 Capacitance C (pF) Dynamic Input Characteristics 50 0.8 1.2 Source to Drain Voltage V 1.6 SD(V) 2.0 Gate to Source Voltage 10000 HAT3006R Main Characteristics (P channel) Maximum Safe Operation Area –100 100 µs –20 10 µs –10 DC –3 PW Op era tio –1 I D (A) –16 1m s =1 0m Drain Current Drain Current I D (A) –30 s PW N < 1 ote 5 0s ) n( Operation in –0.3 this area is limited by R DS(on) –0.1 Ta = 25 °C –0.03 1 shot Pulse 1 Drive Operation –0.01 –1 –3 –10 –0.1 –0.3 Drain to Source Voltage V Typical Output Characteristics –10 V –8 V –6 V –5 V –4.5 V Pulse Test –4 V –12 –3.5 V –8 –3 V –4 –2.5 V VGS = –2 V 0 –30 –100 (V) DS –2 –4 –6 –8 Drain to Source Voltage V DS(V) –10 Note 5 : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm) Drain to Source Saturation Voltage vs. Gate to Source Voltage Typical Transfer Characteristics –20 –0.5 Drain to Source Saturation Voltage V DS(on) (V) Drain Current I D (A) V DS = –10 V Pulse Test –16 –0.3 –12 –8 Tc = 75 °C –4 0 Pulse Test –0.4 25 °C –1 –2 –3 Gate to Source Voltage V –25 °C –4 (V) GS –5 –0.2 I D = –2 A –0.1 –1 A –0.5 A 0 –6 –2 –4 Gate to Source Voltage V –8 (V) GS –10 7 HAT3006R Main Characteristics (P channel) Static Drain to Source on State Resistance vs. Temperature 0.20 Pulse Test 0.5 0.2 VGS = –4 V 0.1 –10 V 0.05 0.02 0.01 –0.2 –0.5 –1 –2 Drain Current –5 –10 I D (A) –20 Static Drain to Source on State Resistance R DS(on) ( W ) Drain to Source On State Resistance R DS(on) ( W ) Static Drain to Source on State Resistance vs. Drain Current 1 0.12 –10 V Pulse Test 0 –40 Tc = –25 °C Reverse Recovery Time trr (ns) Forward Transfer Admittance |y | fs (S) 8 0 40 80 Case Temperature Tc 120 (°C) 160 1000 5 25 °C 75 °C 1 0.5 0.2 –0.2 –0.5, –1, –2 A 0.04 Body–Drain Diode Reverse Recovery Time 20 2 VGS = –4 V 0.08 Forward Transfer Admittance vs. Drain Current 10 I D = –0.5, –1, –2 A 0.16 V DS = –10 V Pulse Test –0.5 –1 –2 –5 –10 Drain Current I D (A) –20 500 di / dt = 20 A / µs VGS = 0, Ta = 25 °C 200 100 50 20 10 –0.1 –0.2 –0.5 –1 –2 Reverse Drain Current I –5 (A) DR –10 HAT3006R Main Characteristics (P channel) Typical Capacitance vs. Drain to Source Voltage Dynamic Input Characteristics 0 DS(V) Coss 300 Crss 100 30 VGS = 0 f = 1 MHz 10 –10 –20 –30 –40 Drain to Source Voltage V V –20 –8 V GS V DS –30 –12 V DD = –25 V –10 V –40 –5 V 0 –50 –16 I D = –4.5 A –50 8 16 Gate Charge DS(V) –20 40 24 32 Qg (nc) Reverse Drain Current vs. Source to Drain Voltage Switching Characteristics –20 200 tr 100 tf 50 t d(off) 20 t d(on) V GS = –4 V, V DD= –10 V PW = 3 µs, duty < 1 % 5 –0.1 –0.2 –0.5 –1 –2 –5 Drain Current I D (A) –10 (A) DR 0 Switching Time t (ns) Drain to Source Voltage Ciss Gate to Source Voltage 1000 10 –4 V –10 –16 Reverse Drain Current I Capacitance C (pF) 3000 500 0 VDD = –5 V –10 V –25 V GS(V) 10000 –12 VGS = –5 V 0, 5 V –8 –4 Pulse Test 0 –0.4 –0.8 –1.2 Source to Drain Voltage V –1.6 –2.0 SD(V) 9 HAT3006R Power vs. Temperature Derating Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s 3.0 2 ive Dr 2.0 1 ive er n Op tio 0 Dr ra 1.0 e Op Channel Dissipation Pch (W) 4.0 50 at ion 100 Ambient Temperature 10 150 Ta (°C) 200 HAT3006R Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation) Normalized Transient Thermal Impedance g s (t) 10 1 D=1 0.5 0.1 0.2 0.1 0.05 0.01 q ch – f(t) = g s (t) • q ch – f q ch – f = 125 °C/W, Ta = 25 °C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 lse 0.001 PDM u tp D= ho 1s PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 10 100 1000 10000 Pulse Width PW (S) Normalized Transient Thermal Impedance g s (t) 10 1 Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation) D=1 0.5 0.1 0.01 0.2 0.1 0.05 q ch – f(t) = g s (t) • q ch – f q ch – f = 166 °C/W, Ta = 25 °C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 0.001 PDM e t ho 1s ls pu D= PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 10 100 1000 10000 Pulse Width PW (S) 11 HAT3006R N channel Switching Time Test Circuit Switching Time Waveform Vout Monitor Vin Monitor 90% D.U.T. RL Vin Vin 4V V DD = 10 V 50W Vout 10% 10% 90% td(on) tr 10% 90% td(off) tf P channel Switching Time Test Circuit Switching Time Waveform Vout Monitor Vin Monitor Vin 10% D.U.T. RL 90% Vin –4 V 50W V DD = –10 V Vout td(on) 12 90% 90% 10% 10% tr td(off) tf HAT3006R Package Dimensions As of January, 2001 Unit: mm 3.95 4.90 5.3 Max 5 8 *0.22 ± 0.03 0.20 ± 0.03 4 1.75 Max 1 0.75 Max + 0.10 6.10 – 0.30 1.08 0.14 – 0.04 *0.42 ± 0.08 0.40 ± 0.06 + 0.11 0° – 8° 1.27 + 0.67 0.60 – 0.20 0.15 0.25 M *Dimension including the plating thickness Base material dimension Hitachi Code JEDEC EIAJ Mass (reference value) FP-8DA Conforms — 0.085 g 13 HAT3006R Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica Europe Asia Japan : : : : http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 14