ETC HAT3006R

HAT3006R
Silicon N Channel / P Channel Power MOS FET
High Speed Power Switching
ADE-208-480F (Z)
7th. Edition
Feb. 1999
Features
•
•
•
•
Low on-resistance
Capable of 4 V gate drive
Low drive current
High density mounting
Outline
SOP–8
8
5
7 6
3
1 2
4
5 6
D D
7 8
D D
4
G
2
G
S1
S3
Nch
Pch
1, 3
Source
2, 4
Gate
5, 6, 7, 8 Drain
HAT3006R
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
Nch
Pch
Drain to source voltage
VDSS
30
– 30
V
Gate to source voltage
VGSS
± 20
± 20
V
Drain current
ID
6.5
– 4.5
A
52
– 36
A
6.5
– 4.5
A
Drain peak current
I D(pulse)
Body-drain diode reverse drain current
I DR
Note1
Pch
Note2
2
W
Channel dissipation
Pch
Note3
3
W
Channel temperature
Tch
150
°C
Storage temperature
Tstg
– 55 to + 150
°C
Channel dissipation
Note:
1. PW ≤ 10µs, duty cycle ≤ 1 %
2. 1 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW 10s
3. 2 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW 10s
Electrical Characteristics (N channel) (Ta = 25°C)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown voltage V(BR)DSS
30
—
—
V
I D = 10 mA, VGS = 0
Gate to source breakdown voltage V(BR)GSS
± 20
—
—
V
I G = ± 100 µA, VDS = 0
Gate to source leak current
I GSS
—
—
± 10
µA
VGS = ± 16 V, VDS = 0
Zero gate voltege drain current
I DSS
—
—
10
µA
VDS = 30 V, VGS = 0
Gate to source cutoff voltage
VGS(off)
1.0
—
2.0
V
VDS = 10 V, I D = 1 mA
Static drain to source on state
RDS(on)
—
0.03
0.045
Ω
I D = 4 A, VGS = 10 V Note4
resistance
RDS(on)
—
0.05
0.08
Ω
I D = 4 A, VGS = 4 V Note4
Forward transfer admittance
|yfs|
5
8
—
S
I D = 4 A, VDS = 10 V Note4
Input capacitance
Ciss
—
560
—
pF
VDS = 10 V
Output capacitance
Coss
—
380
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
170
—
pF
f = 1MHz
Turn-on delay time
t d(on)
—
30
—
ns
VGS = 4 V, ID = 4 A
Rise time
tr
—
270
—
ns
VDD ≅ 10 V
Turn-off delay time
t d(off)
—
40
—
ns
Fall time
tf
—
65
—
ns
Body–drain diode forward voltage
VDF
—
0.9
1.4
V
IF = 6.5 A, VGS = 0 Note4
Body–drain diode reverse
recovery time
t rr
—
45
—
ns
IF = 6.5 A, VGS = 0
diF/ dt = 20 A/µs
Note:
2
4. Pulse test
HAT3006R
Electrical Characteristics (P channel) (Ta = 25°C)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown voltage V(BR)DSS
– 30
—
—
V
I D = – 10 mA, VGS = 0
Gate to source breakdown voltage V(BR)GSS
± 20
—
—
V
I G = ± 100 µA, VDS = 0
Gate to source leak current
I GSS
—
—
± 10
µA
VGS = ± 16 V, VDS = 0
Zero gate voltege drain current
I DSS
—
—
– 10
µA
VDS = – 30 V, VGS = 0
Gate to source cutoff voltage
VGS(off)
– 1.0
—
– 2.5
V
VDS = –10 V, I D = –1mA
Static drain to source on state
RDS(on)
—
0.07
0.09
Ω
I D = – 3 A, VGS = –10V Note5
resistance
RDS(on)
—
0.11
0.18
Ω
I D = – 3 A, VGS = –4V Note5
Forward transfer admittance
|yfs|
4
6
—
S
I D = – 3 A, VDS = –10V Note5
Input capacitance
Ciss
—
660
—
pF
VDS = –10 V
Output capacitance
Coss
—
440
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
140
—
pF
f = 1MHz
Turn-on delay time
t d(on)
—
24
—
ns
VGS = – 4 V, ID = – 3 A
Rise time
tr
—
165
—
ns
VDD ≅ –10 V
Turn-off delay time
t d(off)
—
35
—
ns
Fall time
tf
—
70
—
ns
Body–drain diode forward voltage
VDF
—
– 0.9
– 1.4
V
IF = – 4.5 A, VGS = 0 Note5
Body–drain diode reverse
recovery time
t rr
—
60
—
ns
IF = –4.5 A, VGS = 0
diF/ dt = 20A/µs
Note:
5. Pulse test
3
HAT3006R
Main Characteristics (N channel)
Drain Current I D (A)
3
1
DC
20
100 µs
10 µs
30
10
Typical Output Characteristics
Maximum Safe Operation Area
PW
10 V
1m
16
s
Drain Current I D (A)
100
=1
0m
Op
s
era
tio
n(
PW
< 1 No
0 s te 5
)
Operation in
0.3 this area is
limited by R DS(on)
0.1
Ta = 25 °C
0.03 1 shot Pulse
1 Drive Operation
0.01
0.1
0.3
1
3
10
Drain to Source Voltage V
5V
12
4V
6V
Pulse Test
4.5 V
3.5 V
8
3V
4
VGS = 2.5 V
30
(V)
DS
0
100
2
4
6
Drain to Source Voltage V
8
10
DS(V)
Note 5 :
When using the glass epoxy board
(FR4 40x40x1.6 mm)
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
Typical Transfer Characteristics
(V)
DS(on)
16
0.5
Tc = –25 °C
25 °C
75 °C
Drain to Source Voltage V
Drain Current I D (A)
20
12
8
4
V DS = 10 V
Pulse Test
0
4
1
2
3
Gate to Source Voltage V
4
(V)
GS
5
Pulse Test
0.4
0.3
0.2
ID= 5 A
0.1
2A
1A
0
2
4
6
Gate to Source Voltage V
8
(V)
GS
10
HAT3006R
Static Drain to Source on State Resistance
vs. Drain Current
0.5
Pulse Test
0.2
0.1
V GS = 4 V
0.05
10 V
0.02
0.01
0.005
0.2
0.5
2
1
5
10
Drain Current I D (A)
20
Static Drain to Source on State Resistance
R DS(on) ( W
)
Drain to Source On State Resistance
R DS(on) ( W
)
Main Characteristics (N channel)
Forward Transfer Admittance vs.
Drain Current
Reverse Recovery Time trr (ns)
Forward Transfer Admittance |yfs| (S)
Tc = –25 °C
5
75 °C
25 °C
2
1
0.5
0.2
0.2
V DS = 10 V
Pulse Test
0.5
1
2
5
Drain Current I D(A)
10
0.08
0.06
20
I D = 1 A, 2 A, 5 A
V GS = 4 V
0.04
1 A, 2 A, 5 A
0.02
0
–40
500
20
10
Static Drain to Source on State Resistance
vs. Temperature
0.10
Pulse Test
10 V
0
40
80
120
Case Temperature Tc (°C)
160
Body–Drain Diode Reverse
Recovery Time
200
100
50
20
10
5
0.2
di/dt = 20 A/µs
VGS = 0, Ta = 25°C
0.5
1
2
5
10
Reverse Drain Current I DR
(A)
20
5
HAT3006R
Main Characteristics (N channel)
Typical Capacitance vs.
Drain to Source Voltage
300
Coss
100
Crss
Drain to Source Voltage
Ciss
30
10
0
10
20
30
40
Drain to Source Voltage V
12
VDS
VGS
20
8
10
0
50
4
V DD = 25 V
10 V
5V
DS(V)
8
16
Gate Charge
24
32
Qg (nc)
0
40
Reverse Drain Current vs.
Souece to Drain Voltage
20
tr
100
tf
t d(off)
50
t d(on)
10
0.1
0.2
0.5
1
2
5
Drain Current I D (A)
10
(A)
DR
200
Pulse Test
16
Reverse Drain Current I
Switching Time t (ns)
30
VGS = 4 V, V DD= 10 V
PW = 3 µs, duty < 1 %
20
6
12
5V
VGS = 0, –5 V
8
4
0
0.4
GS(V)
16
V DD = 5 V
10 V
25 V
Switching Characteristics
1000
500
40
V
1000
20
I D = 6.5 A
V
DS(V)
VGS = 0
f = 1 MHz
3000
Capacitance C (pF)
Dynamic Input Characteristics
50
0.8
1.2
Source to Drain Voltage V
1.6
SD(V)
2.0
Gate to Source Voltage
10000
HAT3006R
Main Characteristics (P channel)
Maximum Safe Operation Area
–100
100 µs
–20
10 µs
–10
DC
–3
PW
Op
era
tio
–1
I D (A)
–16
1m
s
=1
0m
Drain Current
Drain Current
I D (A)
–30
s
PW N
< 1 ote 5
0s
)
n(
Operation in
–0.3 this area is
limited by R DS(on)
–0.1
Ta = 25 °C
–0.03 1 shot Pulse
1 Drive Operation
–0.01
–1
–3
–10
–0.1 –0.3
Drain to Source Voltage V
Typical Output Characteristics
–10 V –8 V
–6 V
–5 V
–4.5 V
Pulse Test
–4 V
–12
–3.5 V
–8
–3 V
–4
–2.5 V
VGS = –2 V
0
–30 –100
(V)
DS
–2
–4
–6
–8
Drain to Source Voltage V DS(V)
–10
Note 5 :
When using the glass epoxy board
(FR4 40 x 40 x 1.6 mm)
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
Typical Transfer Characteristics
–20
–0.5
Drain to Source Saturation Voltage
V DS(on) (V)
Drain Current
I D (A)
V DS = –10 V
Pulse Test
–16
–0.3
–12
–8
Tc = 75 °C
–4
0
Pulse Test
–0.4
25 °C
–1
–2
–3
Gate to Source Voltage V
–25 °C
–4
(V)
GS
–5
–0.2
I D = –2 A
–0.1
–1 A
–0.5 A
0
–6
–2
–4
Gate to Source Voltage V
–8
(V)
GS
–10
7
HAT3006R
Main Characteristics (P channel)
Static Drain to Source on State Resistance
vs. Temperature
0.20
Pulse Test
0.5
0.2
VGS = –4 V
0.1
–10 V
0.05
0.02
0.01
–0.2
–0.5 –1
–2
Drain Current
–5 –10
I D (A)
–20
Static Drain to Source on State Resistance
R DS(on) ( W
)
Drain to Source On State Resistance
R DS(on) ( W
)
Static Drain to Source on State Resistance
vs. Drain Current
1
0.12
–10 V
Pulse Test
0
–40
Tc = –25 °C
Reverse Recovery Time trr (ns)
Forward Transfer Admittance |y | fs
(S)
8
0
40
80
Case Temperature Tc
120
(°C)
160
1000
5
25 °C
75 °C
1
0.5
0.2
–0.2
–0.5, –1, –2 A
0.04
Body–Drain Diode Reverse
Recovery Time
20
2
VGS = –4 V
0.08
Forward Transfer Admittance vs.
Drain Current
10
I D = –0.5, –1, –2 A
0.16
V DS = –10 V
Pulse Test
–0.5 –1
–2
–5 –10
Drain Current I D (A)
–20
500
di / dt = 20 A / µs
VGS = 0, Ta = 25 °C
200
100
50
20
10
–0.1 –0.2
–0.5 –1
–2
Reverse Drain Current I
–5
(A)
DR
–10
HAT3006R
Main Characteristics (P channel)
Typical Capacitance vs.
Drain to Source Voltage
Dynamic Input Characteristics
0
DS(V)
Coss
300
Crss
100
30
VGS = 0
f = 1 MHz
10
–10
–20
–30
–40
Drain to Source Voltage V
V
–20
–8
V GS
V DS
–30
–12
V DD = –25 V
–10 V
–40
–5 V
0
–50
–16
I D = –4.5 A
–50
8
16
Gate Charge
DS(V)
–20
40
24
32
Qg (nc)
Reverse Drain Current vs.
Source to Drain Voltage
Switching Characteristics
–20
200
tr
100
tf
50
t d(off)
20
t d(on)
V GS = –4 V, V DD= –10 V
PW = 3 µs, duty < 1 %
5
–0.1 –0.2
–0.5 –1
–2
–5
Drain Current I D (A)
–10
(A)
DR
0
Switching Time t (ns)
Drain to Source Voltage
Ciss
Gate to Source Voltage
1000
10
–4
V
–10
–16
Reverse Drain Current I
Capacitance C (pF)
3000
500
0
VDD = –5 V
–10 V
–25 V
GS(V)
10000
–12
VGS = –5 V
0, 5 V
–8
–4
Pulse Test
0
–0.4
–0.8
–1.2
Source to Drain Voltage V
–1.6
–2.0
SD(V)
9
HAT3006R
Power vs. Temperature Derating
Test Condition :
When using the glass epoxy board
(FR4 40x40x1.6 mm), PW < 10 s
3.0
2
ive
Dr
2.0
1
ive
er
n
Op
tio
0
Dr
ra
1.0
e
Op
Channel Dissipation
Pch (W)
4.0
50
at
ion
100
Ambient Temperature
10
150
Ta (°C)
200
HAT3006R
Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation)
Normalized Transient Thermal Impedance
g s (t)
10
1
D=1
0.5
0.1
0.2
0.1
0.05
0.01
q ch – f(t) = g s (t) • q ch – f
q ch – f = 125 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.02
0.01
lse
0.001
PDM
u
tp
D=
ho
1s
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
Normalized Transient Thermal Impedance
g s (t)
10
1
Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation)
D=1
0.5
0.1
0.01
0.2
0.1
0.05
q ch – f(t) = g s (t) • q ch – f
q ch – f = 166 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.02
0.01
0.001
PDM
e
t
ho
1s
ls
pu
D=
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
11
HAT3006R
N channel
Switching Time Test Circuit
Switching Time Waveform
Vout
Monitor
Vin Monitor
90%
D.U.T.
RL
Vin
Vin
4V
V DD
= 10 V
50W
Vout
10%
10%
90%
td(on)
tr
10%
90%
td(off)
tf
P channel
Switching Time Test Circuit
Switching Time Waveform
Vout
Monitor
Vin Monitor
Vin
10%
D.U.T.
RL
90%
Vin
–4 V
50W
V DD
= –10 V
Vout
td(on)
12
90%
90%
10%
10%
tr
td(off)
tf
HAT3006R
Package Dimensions
As of January, 2001
Unit: mm
3.95
4.90
5.3 Max
5
8
*0.22 ± 0.03
0.20 ± 0.03
4
1.75 Max
1
0.75 Max
+ 0.10
6.10 – 0.30
1.08
0.14 – 0.04
*0.42 ± 0.08
0.40 ± 0.06
+ 0.11
0° – 8°
1.27
+ 0.67
0.60 – 0.20
0.15
0.25 M
*Dimension including the plating thickness
Base material dimension
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
FP-8DA
Conforms
—
0.085 g
13
HAT3006R
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
Europe
Asia
Japan
:
:
:
:
http://semiconductor.hitachi.com/
http://www.hitachi-eu.com/hel/ecg
http://sicapac.hitachi-asia.com
http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straβe 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
14