SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 D Qualification in Accordance With D D D D D Available in Standard-Pinout Small-Outline AEC-Q100† Qualified for Automotive Applications Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Outstanding Combination of DC Precision and AC Performance: Unity-Gain Bandwidth . . . 15 MHz Typ Vn . . . . 3.3 nV/√Hz at f = 10 Hz Typ, 2.5 nV/√Hz at f = 1 kHz Typ VIO . . . . 25 µV Max AVD . . . 45 V/µV Typ With RL = 2 kΩ, 19 V/µV Typ With RL = 600 Ω D D Package Output Features Saturation Recovery Circuitry Macromodels and Statistical information D PACKAGE (TOP VIEW) OFFSET N1 IN − IN + VCC − 1 8 2 7 3 6 4 5 OFFSET N2 VCC + OUT NC † Contact factory for details. Q100 qualification data available on request. description The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hz and 2.5 nV/√Hz at frequencies of 10 Hz and 1 kHz, respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (−7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. ORDERING INFORMATION TA VIOmax AT 25°C ORDERABLE PART NUMBER PACKAGE‡ 25 µV V SOIC (D) Tape and reel 100 µV V SOIC (D) Tape and reel −40°C to 125°C TOP-SIDE MARKING TLE2027AQDRQ1 2027AQ TLE2037AQDRQ1 2037AQ TLE2027QDRQ1 2027Q1 TLE2037QDRQ1 2037Q1 ‡ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2006 Texas Instruments Incorporated !"#$%&" ' ()##*& %' "! +),-(%&" .%&*/ #".)(&' ("!"#$ &" '+*(!(%&"' +*# &0* &*#$' "! *1%' '&#)$*&' '&%.%#. 2%##%&3/ #".)(&" +#"(*''4 ."*' "& *(*''%#-3 (-).* &*'&4 "! %-- +%#%$*&*#'/ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 description (continued) Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The Q-suffix devices are characterized for operation from −40°C to 125°C. symbol OFFSET N1 IN + + OUT IN − − OFFSET N2 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IN − IN + Q1 Q3 Q2 Q4 OFFSET N1 OFFSET N2 Q6 Q5 Q7 Q8 Q9 equivalent schematic Q11 R1 Q10 R2 R3 Q16 Q15 Q12 Q14 Q18 Q17 Q13 R5 R4 Q20 C1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 R12 Q29 Q30 Q34 C3 Q33 R14 Q31 R13 Q32 R18 C4 R17 R16 Q37 61 26 1 4 Resistors epiFET Capacitors TLE2027 Transistors Q38 VCC − Q35 Q36 R15 4 1 26 61 TLE2037 ACTUAL DEVICE COMPONENT COUNT R7 R10 Q26 C2 COMPONENT R6 Q22 Q21 R11 Q25 Q28 Q23 Q24 Q19 R8 Q27 R9 V CC+ R19 Q40 Q41 Q39 R20 Q46 Q45 Q47 Q44 R22 Q43 R21 Q42 R23 R25 Q54 Q57 Q56 Q55 Q60 Q59 Q58 R24 R26 Q52 Q53 Q50 Q51 Q48 Q49 Q62 OUT Q61 5 5 5 55 55 SGLS202A − OCTOBER 2003 − REVISED OCTOBER 2006 3 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V Supply voltage, VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −19 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC± Input current, II (each Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited Junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142°C Operating free-air temperature range, TA: Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 65°C to 150°C Package thermal impedance, θJA (D Package) (0 LFPM) (see Note 4) . . . . . . . . . . . . . . . . . . . . . . 101°C/W Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D package . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC − . 2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately ±1.2 V is applied between the inputs, unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. 4. The thermal impedance is calculated in accordance with JESD 51−7. recommended operating conditions Supply voltage, VCC ± TA = 25°C TA = Full range‡ Common-mode input voltage, VIC Operating free-air temperature, TA ‡ Full range is −40°C to 125°C for Q-suffix devices. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN MAX UNIT V ±4 ±19 −11 11 −10.2 10.2 −40 125 V °C SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TLE20x7-Q1 electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLE20x7-Q1 MIN MAX 20 100 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current Full range RS = 50 Ω VOM + Maximum positive peak output voltage swing µV/°C 25°C 0.006 1 0.006 1 µV/mo 25°C 6 90 6 90 RS = 50 Ω 150 Maximum negative peak VOM − output voltage swing AVD Large-signal differential voltage amplification 10 25°C 12 RL = 2 kΩ Full range −11 VO = ± 11 V, RL = 2 kΩ VO = ± 10 V, RL = 2 kΩ Full range 2.5 25°C 3.5 Full range 1.8 Open-loop output impedance IO = 0 CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 Ω 25°C 10.5 nA −13 to 13 V 12.9 10 13.2 12 −13 −10.5 V 13.2 11 −13 −10 −13.5 2 −12 V −13.5 −11 45 10 45 3.5 38 8 38 V/µV 2.2 19 5 19 25°C 8 8 pF 25°C 50 50 Ω 25°C 100 96 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω 25°C 94 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω Full range 90 No load 12.9 nA 90 150 −10.4 to 10.4 5 Full range VO = 0, 15 −11 to 11 11 −12 VO = ± 10 V, RL = 1 kΩ 90 −13 to 13 −10.5 25°C zo Supply current 10.5 −10 Ci ICC 25°C Full range Input capacitance Supply-voltage rejection ratio (∆VCC ± /∆V / VIO) −11 to 11 Full range 25°C 150 150 Full range 25°C VO = ± 10 V, RL = 600 Ω kSVR 15 −10.3 to 10.3 Full range RL = 600 Ω µV V 1 Full range RL = 2 kΩ 25 105 UNIT 0.2 Full range RL = 600 Ω 10 MAX 1 25°C Common-mode input voltage range TYP 0.4 25°C VICR MIN 200 Full range VIC = 0, TLE20x7A-Q1 TYP 131 117 131 dB 113 144 110 144 dB 25°C Full range 105 3.8 5.3 5.6 3.8 5.3 5.6 mA † Full range is −40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TLE20x7-Q1 operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C (unless otherwise specified) TLE20x7-Q1 PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current TEST CONDITIONS Total harmonic distortion TYP MIN TYP MAX TLE2027 1.7 2.8 1.7 2.8 TLE2037 6 7.5 6 7.5 RL = 2 kΩ, CL = 100 pF, TA = − 55°C to 125°C, See Figure 1 TLE2027 1 1 TLE2037 4.4 4.4 RS = 20 Ω, f = 10 Hz 3.3 8 3.3 4.5 RS = 20 Ω, f = 1 kHz 2.5 4.5 2.5 3.8 50 250 50 130 f = 0.1 Hz to 10 Hz 10 10 f = 1 kHz 0.8 0.8 VO = + 10 V, AVD = 5, See Note 5 Unity-gain bandwidth (see Figure 3) RL = 2 kΩ, CL = 100 pF BOM Maximum output-swing bandwidth RL = 2 kΩ φm Phase margin at unity gain (see Figure 3) RL = 2 kΩ, CL = 100 pF TLE2027 <0.002 UNIT V/µs f = 10 Hz B1 nV/√Hz nV pA/√Hz <0.002 % TLE2037 <0.002 <0.002 TLE2027 7 13 9 13 TLE2037 35 50 35 50 TLE2027 30 30 TLE2037 80 80 TLE2027 55 55 TLE2037 50 50 NOTE 5: Measured distortion of the source used in the analysis was 0.002%. 6 TLE20x7A-Q1 MAX RL = 2 kΩ, CL = 100 pF, See Figure 1 VO = + 10 V, AVD = 1, See Note 5 THD MIN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MHz kHz ° SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 PARAMETER MEASUREMENT INFORMATION 2 kΩ Rf 15 V 15 V − − VO VO RI + + VI CL = 100 pF (see Note A) − 15 V RL = 2 kΩ 20 Ω 20 Ω − 15 V NOTE A: CL includes fixture capacitance. Figure 1. Slew-Rate Test Circuit Figure 2. Noise-Voltage Test Circuit Rf 10 kΩ 15 V 100 Ω VI 15 V − − VO VO RI VI + −15 V CL = 100 pF (see Note A) + CL = 100 pF (see Note A) − 15 V 2 kΩ NOTE A: CL includes fixture capacitance. 2 kΩ NOTES: A. CL includes fixture capacitance. B. For the TLE2037 and TLE2037A, AVD must be ≥ 5. Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit (TLE2027 Only) POST OFFICE BOX 655303 Figure 4. Small-Signal PulseResponse Test Circuit • DALLAS, TEXAS 75265 7 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. initial estimates of parameter distributions In the ongoing program of improving data sheets and supplying more information to our customers, Texas Instruments has added an estimate of not only the typical values, but also the spread around these values. These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown at the points where data was actually collected. The 95% and 5% points are used instead of ±3 sigma, since some of the distributions are not true Gaussian distributions. The number of units tested and the number of different wafer lots used are on all of the graphs where distribution bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always the case on newly released products, since there can only be data available from a few wafer lots. The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices fell outside every distribution bar. SUPPLY CURRENT vs FREE-AIR TEMPERATURE I CC − Supply Current − mA 5 4.5 4 ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ VCC± = ±15 V VO = 0 No Load Sample Size = 835 Units From 2 Water Lots 95% point on the distribution bar (5% of the devices fell above this point.) 90% of the devices were within the upper and lower points on the distribution bar. 5% point on the distribution bar (5% of the devices fell below this point.) 3.5 3 2.5 − 75 − 50 − 25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C Figure 5. Sample Graph With Distribution Bars 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution 6, 7 ∆VIO Input offset voltage change vs Time after power on 8, 9 IIO Input offset current vs Free-air temperature 10 IIB Input bias current vs vs Free-air temperature Common-mode input voltage 11 12 II VO(PP) Input current vs Differential input voltage Maximum peak-to-peak output voltage vs Frequency 14, 15 Maximum (positive/negative) peak output voltage vs vs Load resistance Free-air temperature 16, 17 18, 19 AVD Large-signal differential voltage amplification vs vs vs vs Supply voltage Load resistance Frequency Free-air temperature 20 21 22 − 25 26 zo Output impedance vs Frequency 27 CMRR Common-mode rejection ratio vs Frequency 28 kSVR Supply-voltage rejection ratio vs Frequency 29 IOS Short-circuit output current vs vs vs Supply voltage Elapsed time Free-air temperature 30, 31 32, 33 34, 35 ICC Supply current vs vs Supply voltage Free-air temperature 36 37 Voltage-follower pulse response Small signal Large signal Equivalent input noise voltage vs Noise voltage (referred to input) Over 10-second interval 43 Unity-gain bandwidth vs vs Supply voltage Load capacitance 44 45 Gain bandwidth product vs vs Supply voltage Load capacitance 46 47 Slew rate vs Free-air temperature 48, 49 Phase margin vs vs vs Supply voltage Load capacitance Free-air temperature 50, 51 52, 53 54, 55 Phase shift vs Frequency 22 − 25 VOM Vn B1 SR φm POST OFFICE BOX 655303 Frequency • DALLAS, TEXAS 75265 13 38, 40 39, 41 42 9 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS DISTRIBUTION INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE CHANGE vs TIME AFTER POWER ON ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ 16 Percentage of Amplifiers − % 14 12 AVIO ∆ VIO − Change in Input Offset Voltage − µV 1568 Amplifiers Tested From 2 Wafer Lots VCC± = +15 V TA = 25°C D Package 10 8 6 4 2 0 − 120 − 90 − 60 − 30 0 30 60 90 120 VIO − Input Offset Voltage − µV 12 10 8 6 ÎÎÎÎÎÎÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÎÎÎÎÎÎÎÎÎÎÎ ÁÁ ÎÎÎÎ ÁÁÁÁÁ ÁÁ ÎÎÎÎ 4 50 Amplifiers Tested From 2 Wafer Lots VCC± = ±15 V TA = 25°C D Package 2 0 0 10 20 30 40 50 t − Time After Power On − s Figure 6 Figure 7 INPUT OFFSET CURRENT † vs FREE-AIR TEMPERATURE 6 30 5 25 4 3 ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÁÁÁ ÎÎÎÎ ÁÁÁ ÎÎÎÎ 2 50 Amplifiers Tested From 2 Wafer Lots VCC± = ±15 V TA = 25°C P Package 0 0 20 40 60 80 100 120 140 160 180 IIO I IO − Input Offset Current − nA AVIO ∆ VIO − Change in Input Offset Voltage − µV INPUT OFFSET VOLTAGE CHANGE vs TIME AFTER POWER ON 1 60 ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ VCC± = ±15 V VIC = 0 Sample Size = 833 Units From 2 Wafer Lots 20 15 10 5 0 − 75 − 50 − 25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C t − Time After Power On − s Figure 8 Figure 9 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS INPUT BIAS CURRENT † vs FREE-AIR TEMPERATURE VCC ± = ±15 V VIC = 0 Sample Size = 836 Units From 2 Wafer Lots IIIB IB − Input Bias Current − nA 50 40 30 20 10 0 40 35 IIIB IB − Input Bias Current − nA ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ 60 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE VCC± = ±15 V TA = 25°C 30 25 20 15 10 −10 5 −20 −75 −50 −25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C 0 −12 −8 −4 0 4 8 VIC − Common-Mode Input Voltage − V Figure 10 Figure 11 TLE2027 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE † vs FREQUENCY INPUT CURRENT vs DIFFERENTIAL INPUT VOLTAGE 0.8 IIII − Input Current − mA 0.6 0.4 ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ VO(PP) − Maximum Peak-to-Peak Output Voltage − V 1 VCC ± = ±15 V VIC = 0 TA = 25°C 0.2 0 − 0.2 − 0.4 − 0.6 − 0.8 −1 − 1.8 − 1.2 − 0.6 0 12 0.6 1.2 1.8 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 30 VCC± = ±15 V RL = 2 kΩ 25 20 15 TA = 125°C 10 5 TA = − 55°C 0 10 k VID − Differential Input Voltage − V 100 k 1M 10 M f − Frequency − Hz Figure 13 Figure 12 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS 20 ÎÎÎÎ ÎÎÎÎ 15 TA = 125°C 10 TA = − 55°C 5 0 10 k 100 k 1M 10 M 100 M f − Frequency − Hz Figure 14 − 12 − 10 ÁÁ ÁÁ ÁÁ −8 −6 0 100 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 12 10 8 6 4 VCC ± = ±15 V TA = 25°C 2 0 100 1k RL − Load Resistance − Ω 10 k Figure 15 − 14 −2 14 ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE −4 VVOM+ OM + − Maximum Positive Peak Output Voltage − V VCC ± = ±15 V RL = 2 kΩ 25 ÁÁ ÁÁ ÁÁ VVOM− OM − − Maximum Negative Peak Output Voltage − V ÎÎÎÎÎÎ ÁÁÁÁÁ ÎÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎÎ 30 MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE VCC ± = ±15 V TA = 25°C 1k RL − Load Resistance − Ω 10 k VVOM+ OM + − Maximum Positive Peak Output Voltage − V VO(PP) VO(PP) − Maximum Peak-to-Peak Output Voltage − V TLE2037 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE † vs FREQUENCY MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE † vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ 13.5 13.4 VCC± = ±15 V RL = 2 kΩ Sample Size = 832 Units From 2 Wafer Lots 13.3 13.2 13.1 ÁÁ ÁÁ ÁÁ 13 12.9 − 75 − 50 − 25 Figure 16 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C Figure 17 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE † vs FREE-AIR TEMPERATURE ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ − 13 VCC ± = ±15 V RL = 2 kΩ Sample Size = 831 Units From 2 Wafer Lots − 13.2 − 13.4 TA = 25°C RL = 2 kΩ 40 RL = 1 kΩ 30 ÁÁ ÁÁ ÁÁ − 13.6 − 13.8 ÁÁ ÁÁ ÁÁ ÎÎÎÎ 50 AVD AVD − Large-Signal Differential Voltage Amplification − V/ µ V VVOM− OM − − Maximum Negative Peak Output Voltage − V TYPICAL CHARACTERISTICS − 14 − 75 − 50 − 25 20 RL = 600 Ω 10 0 0 25 50 75 0 100 125 150 4 8 12 16 20 VCC± − Supply Voltage − V TA − Free-Air Temperature − °C Figure 19 Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ AVD AVD − Large-Signal Differential Voltage Amplification − V/ µ V 50 ÁÁ ÁÁ ÁÁ VCC± = ±15 V TA = 25°C 40 30 20 10 0 100 200 400 1k 2k 4k 10 k RL − Load Resistance − Ω Figure 20 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS TLE2027 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 160 75° Phase Shift 100° 120 125° AVD 100 150° 80 175° 60 200° ÁÁ ÁÁ 40 225° VCC± = ±15 V RL = 2 kΩ CL = 100 pF TA = 25°C 20 250° 0 100 100 k f − Frequency − Hz 0.1 Phase Shift AVD AVD− Large-Signal Differential Voltage Amplification − dB 140 275° 100 M Figure 21 TLE2037 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY AVD AVD − Large-Signal Differential Voltage Amplification − dB 140 120 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎ Phase Shift AVD 100 ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 0 0.1 VCC± = ±15 V RL = 2 kΩ CL = 100 pF TA = 25°C 150° 225° 250° 100 100 k f − Frequency − MHz Figure 22 14 125° 200° 60 20 100° 175° 80 40 75° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 275° 100 M Phase Shift 160 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS 6 100° 3 125° 0 150° −3 175° AVD −6 200° Phase Shift −9 225° ÁÁ ÁÁ ÎÎÎÎÎ ÁÁ ÎÎÎÎÎ ÎÎÎÎÎ − 12 250° VCC± = ±15 V RL = 2 kΩ CL = 100 pF TA = 25°C − 15 − 18 275° 20 10 Phase Shift AVD AVD− Large-Signal Differential Voltage Amplification − dB TLE2027 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 40 70 300° 100 f − Frequency − MHz Figure 23 TLE2037 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 100 ° 30 ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ AVD 20 125 ° Phase Shift 150 ° 15 175 ° 10 200 ° 5 225 ° Á ÁÁÁÁÁÁ Á ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ VCC± = ±15 V RL = 2 kΩ CL = 100 pF TA = 25°C 0 −5 250 ° 275 ° 300 ° −10 1 2 Phase Shift AVD AVD − Large-Signal Differential Voltage Amplification − dB 25 4 10 20 f − Frequency − MHz 40 100 Figure 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION † vs FREE-AIR TEMPERATURE OUTPUT IMPEDANCE vs FREQUENCY 60 RL = 1 kΩ ÁÁ ÁÁ ÁÁ 40 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C CMRR − Common-Mode Rejection Ratio − dB 10 AVD = 100 See Note A 1 AVD = 10 −10 −100 10 100 1k 10 k 100 k 1M 10 M 100 M f − Frequency − Hz NOTE A: For this curve, the TLE2027 is AVD = 1 and the TLE2037 is AVD = 5. Figure 25 Figure 26 COMMON-MODE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY ÎÎÎÎÎ ÁÁÁ ÁÁÁ ÎÎÎÎÎ ÎÎÎ ÁÁÁ 140 VCC ± = ±15 V TA = 25°C 120 100 80 60 40 20 0 10 zo - Output Impedance - W RL = 2 kΩ VCC ± = ±15 V TA = 25°C 100 1k 10 k 100 k 1 M f − Frequency − Hz 10 M 100 M 140 KSVR − Supply-Voltage Rejection Ratio − dB AVD AVD − Large-Signal Differential Voltage Amplification − V/ µ V ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ 50 30 −75 −50 −25 ÁÁÁÁÁÁ ÁÁÁÁÁÁ 100 VCC ± = ±15 V ÎÎÎÎÎ ÁÁÁÁ ÁÁÁÁ ÎÎÎÎ VCC ± = ±15 V TA = 25°C 120 ÎÎÎ ÎÎÎ 100 kSVR − 80 ÎÎÎ ÎÎÎ 60 kSVR + 40 20 0 10 100 Figure 27 1k 10 k 100 k 1 M f − Frequency − Hz 10 M 100 M Figure 28 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎ ÁÁ ÁÁ VID = 100 mV VO = 0 TA = 25°C P Package −40 −38 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 44 IIOS OS − Short-Circuit Output Current − mA IIOS OS − Short-Circuit Output Current − mA −42 −36 −34 VID = −100 mV VO = 0 TA = 25°C P Package 42 40 38 36 34 ÁÁ ÁÁ −32 32 30 −30 0 2 4 6 8 10 12 14 16 VCC± − Supply Voltage − V 18 0 20 2 4 6 8 10 12 14 16 VCC± − Supply Voltage − V Figure 29 − 41 SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁÁ ÎÎÎÎÎ − 39 ÁÁ ÁÁ ÁÁ − 37 − 35 0 30 60 90 120 t − Elapsed Time − s ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎ ÁÁÁÁÁ 44 VCC ± = ±15 V VID = 100 mV VO = 0 TA = 25°C P Package IIOS OS − Short-Circuit Output Current − mA IIOS OS − Short-Circuit Output Current − mA − 43 20 Figure 30 SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME − 45 18 150 180 VCC ± = ±15 V VID = 100 mV VO = 0 TA = 25°C P Package 42 40 38 ÁÁ ÁÁ ÁÁ 36 34 0 Figure 31 30 60 90 120 t − Elapsed Time − s 150 180 Figure 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE IIOS OS − Short-Circuit Output Current − mA VCC ± = ±15 V VID = 100 mV VO = 0 P Package − 44 − 40 − 36 − 32 ÁÁ ÁÁ ÁÁ − 28 − 24 − 75 − 50 − 25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 46 IIOS OS − Short-Circuit Output Current − mA ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ − 48 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE VCC ± = ±15 V VID = − 100 mV VO = 0 P Package 42 38 34 ÁÁ ÁÁ ÁÁ 30 26 − 75 − 50 − 25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C Figure 33 Figure 34 SUPPLY CURRENT † vs FREE-AIR TEMPERATURE SUPPLY CURRENT † vs SUPPLY VOLTAGE ÁÁÁÁ ÁÁÁÁ VO = 0 No Load ICC I CC − Supply Current − mA 5 ÁÁ ÁÁ 4 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ TA = 125°C TA = 25°C 3 TA = − 55°C 2 ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ 5 IICC CC − Supply Current − mA 6 4.5 VCC ± = ±15 V VO = 0 No Load Sample Size = 836 Units From 2 Wafer Lots 4 ÁÁ ÁÁ 3.5 3 1 0 0 2 4 6 8 10 12 14 16 VCC± − Supply Voltage − V 18 20 2.5 − 75 − 50 − 25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C Figure 35 Figure 36 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS TLE2027 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VO − Output Voltage − mV VCC± = ±15 V RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 4 50 0 − 50 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 15 VCC± = ±15 V RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 1 10 VO − Output Voltage − V ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 100 TLE2027 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 0 −5 − 10 − 100 − 15 0 200 400 600 t − Time − ns 800 1000 0 5 Figure 37 ÎÎÎÎÎÎ 15 50 V VO O − Output Voltage − V V VO O − Output Voltage − mV 10 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 100 200 ÎÎÎÎÎ ÎÎÎÎÎ 5 0 −5 − 10 − 100 0 VCC ± = ±15 V AVD = 5 RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 1 ÁÁ ÁÁ VCC ± = ±15 V AVD = 5 RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 4 − 50 25 TLE2037 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 100 ÁÁ ÁÁ 20 Figure 38 TLE2037 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 0 10 15 t − Time − µs 300 400 − 15 0 t − Time − ns Figure 39 2 4 6 t − Time − µs 8 10 Figure 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ 10 VCC ± = ±15 V RS = 20 Ω TA = 25°C See Figure 2 Sample Size = 100 Units From 2 Wafer Lots 8 6 4 50 40 30 Noise Voltage − nV ÁÁ ÁÁ ÁÁ Vn V n − Equivalent Input Noise Voltage − nVHz nV/ Hz NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 20 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ VCC ± = ±15 V f = 0.1 to 10 Hz TA = 25°C 10 0 − 10 − 20 2 − 30 − 40 0 1 10 100 1k 10 k 100 k − 50 0 2 4 f − Frequency − Hz Figure 41 52 RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 3 Gain-Bandwidth Product − MHz B1 − Unity-Gain Bandwidth − MHz 10 TLE2037 GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 20 16 14 12 51 ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ f = 100 kHz RL = 2 kΩ CL = 100 pF TA = 25°C 50 49 48 10 0 2 4 6 8 10 12 14 16 18 | VCC± | − Supply Voltage − V 20 22 0 2 4 6 8 10 Figure 44 POST OFFICE BOX 655303 12 14 16 VCC± − Supply Voltage − V Figure 43 20 8 Figure 42 TLE2027 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 18 6 t − Time − s • DALLAS, TEXAS 75265 18 20 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS TLE2027 UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE VCC± = ±15 V RL = 2 kΩ TA = 25°C See Figure 3 12 8 4 VCC± = ±15 V RL = 2 kΩ TA = 25°C 51 50 49 48 100 0 100 1000 CL − Load Capacitance − pF ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ 52 Gain-Bandwidth Product − MHz B1 − Unity-Gain Bandwidth − MHz 16 TLE2037 GAIN-BANDWIDTH PRODUCT vs LOAD CAPACITANCE 10000 1000 Figure 45 Figure 46 TLE2027 SLEW RATE † vs FREE-AIR TEMPERATURE TLE2037 SLEW RATE † vs FREE-AIR TEMPERATURE 3 10 2.8 SR − Slew Rate − V/ µ s SR − Slew Rate − V/ µs 9 2.6 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 2.4 2.2 VCC± = ±15 V AVD = 1 RL = 2 kΩ CL = 100 pF See Figure 1 2 − 75 − 50 − 25 0 10000 CL − Load Capacitance − pF 8 ÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ VCC ± = ±15 V AVD = 5 RL = 2 kΩ CL = 100 pF See Figure 1 7 6 25 50 75 100 125 150 TA − Free-Air Temperature − °C 5 − 75 − 50 − 25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C Figure 47 Figure 48 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS TLE2027 PHASE MARGIN vs SUPPLY VOLTAGE 56° φ m − Phase Margin 54° 52° ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 52° RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 3 AVD = 5 RL = 2 kΩ CL = 100 pF TA = 25°C 50° φ m − Phase Margin 58° TLE2037 PHASE MARGIN vs SUPPLY VOLTAGE 50° ÁÁ ÁÁ 48° 48° 46° 44° 42° 46° 40° 44° 38° 42° 0 2 4 6 8 10 12 14 16 18 20 0 22 2 8 10 12 14 16 VCC± − Supply Voltage − V Figure 49 Figure 50 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 60° ÁÁ ÁÁ 30° 20° 20 ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ 60° VCC ± = ±15 V RL = 2 kΩ TA = 25°C 50° φ m − Phase Margin 40° 18 TLE2037 PHASE MARGIN vs LOAD CAPACITANCE VCC± = ±15 V RL = 2 kΩ TA = 25°C See Figure 3 50° φ m − Phase Margin 6 | VCC± | − Supply Voltage − V TLE2027 PHASE MARGIN vs LOAD CAPACITANCE 40° 30° 20° 10° 10° 0° 100 1000 CL − Load Capacitance − pF 0° 100 1000 CL − Load Capacitance − pF Figure 51 22 4 Figure 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10000 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 TYPICAL CHARACTERISTICS TLE2027 PHASE MARGIN † vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 65° 50° ÁÁ ÁÁ 45° VCC ± = ±15 V AVD = 5 RL = 2 kΩ CL = 100 pF 53° φ m − Phase Margin 55° ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ 55° VCC± = ±15 V RL = 2 kΩ TA = 25°C See Figure 3 60° φ m − Phase Margin TLE2037 PHASE MARGIN † vs FREE-AIR TEMPERATURE 51° 49° 47° 40° 35° − 75 − 50 − 25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 150 45° − 75 − 50 − 25 0 25 50 75 100 125 150 TA − Free-Air Temperature − °C Figure 53 Figure 54 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 APPLICATION INFORMATION input offset voltage nulling The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not needed, the null pins may be left disconnected. 1 kΩ VCC + 10 kΩ 4.7 kΩ VCC + 4.7 kΩ IN − − IN − − OUT OUT IN + + + IN + VCC − VCC − (b) ADJUSTMENT WITH IMPROVED SENSITIVITY (a) STANDARD ADJUSTMENT Figure 55. Input Offset Voltage Nulling Circuits voltage-follower applications The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56). CF = 20 to 50 pF IF ≤ 1 mA RF VCC − VO VI + VCC − Figure 56. Voltage Follower 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • • • • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Gain-bandwidth product Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 3 VCC + 9 egnd rc1 1 rp c1 Q1 2 dp vc Q2 14 re1 + dip − r2 C2 6 ree cee dc − vin + 7 gcm vlim 8 − ro1 54 de − 91 + vip − + ga 10 4 90 hlim 53 re2 lee 92 ro2 − − 13 dln − fb vb + IN − VCC − + 12 11 IN + rc2 99 + 5 + ve OUT Figure 57. Boyle Macromodel PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SGLS202A − OCTOBER 2003 – REVISED OCTOBER 2006 APPLICATION INFORMATION macromodel information (continued) .subckt TLE2027 1 2 3 4 5 * c1 11 12 4.003E-12 c2 6 7 20.00E-12 dc 5 53 dz de 54 5 dz dlp 90 91 dz dln 92 90 dx dp 4 3 dz egnd 99 0 poly(2) (3,0) (4,0) 0 5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 954.8E6 −1E9 1E9 1E9 −1E9 ga 6 0 11 12 2.062E-3 gcm 0 6 10 99 531.3E-12 iee 10 4 dc 56.01E-6 hlim 90 0 vlim 1K q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3 rc1 3 11 530.5 rc2 3 12 530.5 re1 13 10 −393.2 re2 14 10 −393.2 ree 10 99 3.571E6 ro1 8 5 25 ro2 7 99 25 rp 3 4 8.013E3 vb 9 0 dc 0 vc 3 53 dc 2.400 ve 54 4 dc 2.100 vlim 7 8 dc 0 vlp 91 0 dc 40 vln 0 92 dc 40 .modeldx D(Is=800.0E-18) .modelqx NPN(Is=800.0E-18 Bf=7.000E3) .ends Figure 58. TLE2027 Macromodel Subcircuit .subckt TLE2037 1 2 3 4 5 * c1 11 12 4.003E−12 c2 6 7 7.500E−12 dc 5 53 dz de 54 5 dz dlp 90 91 dz dln 92 90 dx dp 4 3 dz egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vip vln 0 923.4E6 A800E6 800E6 800E6 A800E6 ga 6 0 11 12 2.121E−3 gcm 0 6 10 99 597.7E−12 iee 10 4 dc 56.26E−6 hlim 90 0 vlim 1K q1 11 2 13 qx q2 12 1 14 qz r2 6 9 100.0E3 rc1 3 11 471.5 rc2 3 12 471.5 re1 13 10 A448 re2 14 10 A448 ree 10 99 3.555E6 ro1 8 5 25 ro2 7 99 25 rp 3 4 8.013E3 vb 9 0 dc 0 vc 3 53 dc 2.400 ve 54 4 dc 2.100 vlim 7 8 dc 0 vlp 91 0 dc 40 vln 0 92 dc 40 .model dxD(Is=800.0E−18) .model qxNPN(Is=800.0E−18 Bf=7.031E3) .ends Figure 59. TLE2037 Macromodel Subcircuit 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 4-Oct-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLE2037AQDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLE2037AQDRQ1 ACTIVE SOIC D 8 2500 CU NIPDAU Level-2-250C-1 YEAR/ Level-1-235C-UNLIM TLE2037QDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLE2037QDRQ1 ACTIVE SOIC D 8 2500 CU NIPDAU Level-2-250C-1 YEAR/ Level-1-235C-UNLIM Pb-Free (RoHS) Pb-Free (RoHS) Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated