ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER GENERAL DESCRIPTION FEATURES The ICS853014 is a low skew, high performance 1-to-5, 2.5V/3.3V Differential-to-LVPECL/ECL HiPerClockS™ Fanout Buffer and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The ICS853014 has two selectable clock inputs. • 5 differential LVPECL/ECL outputs Guaranteed output and par t-to-part skew characteristics make the ICS853014 ideal for those applications demanding well defined performance and repeatability. • Output skew: 13ps (typical) ICS • 2 selectable differential LVPECL clock inputs • PCLKx, nPCLKx pairs can accept the following differential input levels: LVPECL, LVDS, CML, SSTL • Maximum output frequency: > 2GHz • Part-to-part skew: 60ps (typical) • Propagation delay: 460ps (typical) • LVPECL mode operating voltage supply range: VCC = 2.375V to 3.8V, VEE = 0V • ECL mode operating voltage supply range: VCC = 0V, VEE = -3.8V to -2.375V • -40°C to 85°C ambient operating temperature • Lead-Free package fully RoHS compliant BLOCK DIAGRAM PIN ASSIGNMENT Q0 nQ0 Q1 nQ1 Q2 nQ2 Q3 nQ3 Q4 nQ4 D nEN Q LE PCLK0 nPCLK0 PCLK1 nPCLK1 00 11 Q0 nQ0 Q1 nQ1 CLK_SEL Q2 nQ2 V BB 20 19 18 17 16 15 14 13 12 11 VCC nEN VCC nPCLK1 PCLK1 VBB nPCLK0 PCLK0 CLK_SEL VEE ICS853014 Q3 nQ3 20-Lead TSSOP 6.5mm x 4.4mm x 0.92mm package body G Package Top View Q4 nQ4 853014BG 1 2 3 4 5 6 7 8 9 10 www.icst.com/products/hiperclocks.html 1 REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER TABLE 1. PIN DESCRIPTIONS Number Name 1, 2 Q0, nQ0 Output Type Differential output pair. LVPECL / ECL interface levels. Description 3, 4 Q1, nQ1 Output Differential output pair. LVPECL / ECL interface levels. 5, 6 Q2, nQ2 Output Differential output pair. LVPECL / ECL interface levels. 7, 8 Q3, nQ3 Output Differential output pair. LVPECL / ECL interface levels. 9, 10 Q4, nQ4 Output Differential output pair. LVPECL / ECL interface levels. 11 VEE Power 12 CLK_SEL Input 13 PCLK0 Input 14 nPCLK0 Input 15 VBB Output 16 PCLK1 Input 17 nPCLK1 Input 18, 20 VCC Power Negative supply pin. Clock select input. When HIGH, selects CLK1, nCLK1 inputs. Pulldown When LOW, selects CLK0, nCLK0 inputs. LVTTL / LVCMOS interface levels. Pulldown Non-inver ting differential LVPECL clock input. Inver ting differential LVPECL clock input. VCC/2 default when left floating. Bias voltage. Pulldown Non-inver ting differential LVPECL clock input. Inver ting differential LVPECL clock input. VCC/2 default when left floating. Positive supply pins. Synchronizing clock enable. When LOW, clock outputs follow clock input. 19 nEN Input Pulldown When HIGH, Q outputs are forced low, nQ outputs are forced high. LVTTL / LVCMOS interface levels. NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS Symbol Parameter RPULLDOWN Input Pulldown Resistor 75 kΩ RVCC/2 Pullup/Pulldown Resistors 50 kΩ 853014BG Test Conditions Minimum www.icst.com/products/hiperclocks.html 2 Typical Maximum Units REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER TABLE 3A. CONTROL INPUT FUNCTION TABLE Inputs Outputs nEN CLK_SEL Selected Source Q0:Q4 nQ0:nQ4 1 0 PCLK0, nPCLK0 Disabled; LOW Disabled; HIGH 1 1 PCLK1, nPCLK1 Disabled; LOW Disabled; HIGH 0 0 PCLK0, nPCLK0 Enabled Enabled 0 1 PCLK1, nPCLK1 Enabled Enabled After nEN switches, the clock outputs are disabled or enabled following a falling input clock edge as shown in Figure 1. In the active mode, the state of the outputs are a function of the PCLK0, nPCLK0 and PCLK1, nPCLK1 inputs as described in Table 3B. Enabled Disabled nPCLK0, nPCLK1 PCLK0, PCLK1 nEN nQ0:nQ4 Q0:Q4 FIGURE 1. nEN TIMING DIAGRAM TABLE 3B. CLOCK INPUT FUNCTION TABLE Inputs Outputs PCLK0 or PCLK1 nPCLK0 or nPCLK1 Q0:Q4 nQ0:nQ4 0 1 LOW HIGH Input to Output Mode Polarity Differential to Differential Non Inver ting 1 0 HIGH LOW Differential to Differential Non Inver ting 0 Biased; NOTE 1 LOW HIGH Single Ended to Differential Non Inver ting 1 Biased; NOTE 1 HIGH LOW Single Ended to Differential Non Inver ting Biased; NOTE 1 0 HIGH LOW Single Ended to Differential Inver ting Biased; NOTE 1 1 LOW HIGH Single Ended to Differential Inver ting NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels". 853014BG www.icst.com/products/hiperclocks.html 3 REV. C MAY 13, 2005 Integrated Circuit Systems, Inc. ICS853014 LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER ABSOLUTE MAXIMUM RATINGS Supply Voltage, VCC Negative Supply Voltage, VEE Inputs, VI (LVPECL mode) Inputs, VI (ECL mode) Outputs, IO Continuous Current Surge Current VBB Sing/Source, IBB 4.6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage -4.6V (ECL mode, VCC = 0) to the device. These ratings are stress specifi-0.5V to VCC + 0.5V cations only. Functional operation of product at 0.5V to VEE - 0.5V these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. 50mA 100mA ± 0.5mA Operating Temperature Range, TA -40°C to +85°C Storage Temperature, TSTG -65°C to 150°C Package Thermal Impedance, θJA 73.2°C/W (0 lfpm) (Junction-to-Ambient) TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V Symbol Parameter VCC Positive Supply Voltage IEE Power Supply Current Test Conditions Minimum Typical Maximum Units 2.375 3.3 3.8 V 75 mA TABLE 4B. DC CHARACTERISTICS, VCC = 3.3V, VEE = 0V Min -40°C Typ Max Min 25°C Typ Max Min 85°C Typ Max Output High Voltage; NOTE 1 2.175 2.275 2.38 2.225 2.295 2.375 2.22 2.295 2.365 V VOL Output Low Voltage; NOTE 1 1.405 1.545 1.68 1.425 1.52 1.615 1.44 1.535 1.63 V VIH Input High Voltage(Single-Ended) 2.075 2.36 2.075 2.36 2.075 2.36 V VIL Input Low Voltage(Single-Ended) 1.43 1.765 1.43 1.765 1.43 1.765 V VBB Output Voltage Reference; NOTE 2 Input High Voltage Common Mode Range; NOTE 3, 4 Input D0, D1, D2, D3 High Current nD0, nD1,n D2, nD3 D0, D1, D2, D3 Input Low Current nD0, nD1,n D2, nD3 1.86 1.98 1.86 1.98 1.86 1.98 V 1.2 3.3 1.2 3.3 1.2 3. 3 V 150 µA Symbol Parameter VOH VCMR IIH IIL 150 150 Units -10 -10 -10 µA -150 -150 -150 µA Input and output parameters var y 1:1 with VCC. VEE can var y +0.925V to -0.5V. NOTE 1: Outputs terminated with 50Ω to VCC - 2V. NOTE 2: Single-ended input operation is limited. VCC ≥ 3V in LVPECL mode. NOTE 3: Common mode voltage is defined as VIH. NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPLCK0 and PCLK1, nPCLK1 is VCC + 0.3V. 853014BG www.icst.com/products/hiperclocks.html 4 REV. C MAY 13, 2005 Integrated Circuit Systems, Inc. ICS853014 LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V Symbol Parameter VOH -40°C 25°C 85°C Units Min Typ Max Min Typ Max Min Typ Max Output High Voltage; NOTE 1 1.375 1.475 1.58 1.425 1.495 1.57 1.42 1.495 1.565 VOL Output Low Voltage; NOTE 1 0.605 0.745 0.88 0.625 0.72 0.815 0.64 0.735 0.83 V VIH Input High Voltage(Single-Ended) 1.275 1.56 1.275 1.56 1.275 -0.83 V VIL 0.63 0.965 0.63 0.965 0.63 0.965 V 1.2 2.5 1.2 2.5 1. 2 2.5 V IIH Input Low Voltage(Single-Ended) Input High Voltage Common Mode Range; NOTE 2, 3 Input PCLK0, PCLK1 High Current nPCLK0, nPCLK1 150 µA IIL Input Low Current VCMR PCLK0, PCLK1 150 150 -10 -10 -10 V µA -150 -150 -150 nPCLK0, nPCLK1 Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50Ω to VCC - 2V. NOTE 2: Common mode voltage is defined as VIH. NOTE 3: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1 is VCC + 0.3V. µA TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -5.25V TO -2.375V Symbol Parameter VOH -40°C 25°C 85°C Min Typ Max Min Typ Output High Voltage; NOTE 1 -1.125 -1.025 -0.92 -1.075 -1.005 VOL Output Low Voltage; NOTE 1 -1.895 -1.755 -1.62 -1.875 -1.78 VIH Input High Voltage(Single-Ended) -1.225 -0.94 -1.225 -0.94 VIL -1.87 -1.535 -1.87 -1.44 -1.32 VEE+1.2V 0 IIH Input Low Voltage(Single-Ended) Output Voltage Reference; NOTE 2 Input High Voltage Common Mode Range; NOTE 3, 4 Input PCLK0, PCLK1 High Current nPCLK0, nPCLK1 IIL Input Low Current VBB VCMR PCLK0, PCLK1 -10 Typ Max -0.93 -1.08 -1.005 -0.935 V -1.685 -1.86 -1.765 -1.67 V -1.225 -0.94 V -1.535 -1.87 -1.535 V -1.44 -1.32 -1.44 -1.32 V VEE+1.2V 0 VEE+1.2V 0 V 150 µA 150 -10 -10 µA -150 -150 -150 nPCLK0, nPCLK1 Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50Ω to VCC - 2V. NOTE 2: Single-ended input operation is limited. VCC ≥ 3V in LVPECL mode. NOTE 3: Common mode voltage is defined as VIH. NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1 is VCC + 0.3V. 853014BG www.icst.com/products/hiperclocks.html 5 Units Min 150 Max µA REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER TABLE 5. AC CHARACTERISTICS, VCC = 2.375V TO 3.8V, TA = -40°C TO 85°C -40°C Symbol Parameter fMAX Output Frequency tPD Propagation Delay; NOTE 1 Min Typ 25°C Max Min >2 355 440 Typ 85°C Max Min >2 525 37 6 460 550 40 0 Output Skew; NOTE 2, 5 tsk(pp) Par t-to-Par t Skew; NOTE 3, 5 V PP Peak-to-Peak Input Voltage; NOTE 4 150 800 1800 15 0 800 1800 150 tR/tF Output Rise/Fall Time 90 15 0 210 90 150 210 tS Clock Enable Setup Time 100 50 100 tH Clock Enable Hold Time 20 0 140 200 25 13 500 25 12 Units GHz 595 ps 25 ps 130 ps 800 1800 mV 90 150 210 ps 50 100 50 ps 140 200 140 ps 105 20% to 80% Max >2 tsk(o) 13 Typ 105 All parameters tested ≤ 1GHz unless otherwise noted. NOTE 1: Measured from the differential input crossing point to the differential output crossing point. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 4: The VCMR and VPP levels should be such that input low voltage never goes below VEE. NOTE 5: This parameter is defined in accordance with JEDEC Standard 65. 853014BG www.icst.com/products/hiperclocks.html 6 REV. C MAY 13, 2005 Integrated Circuit Systems, Inc. ICS853014 LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER PARAMETER MEASUREMENT INFORMATION 2V VCC Qx VCC SCOPE nPCLK0, nPCLK1 LVPECL V Cross Points PP V CMR PCLK0, PCLK1 nQx VEE V EE -0.375V to -1.8V OUTPUT LOAD AC TEST CIRCUIT DIFFERENTIAL INPUT LEVEL nQx nQx PART 1 Qx Qx nQy nQy PART 2 Qy Qy tsk(pp) tsk(o) PART-TO-PART SKEW OUTPUT SKEW nPCLK0, nPCLK1 80% 80% PCLK0, PCLK1 VSW I N G Clock Outputs nQ0:nQ4 20% 20% tF tR Q0:Q4 tPD OUTPUT RISE/FALL TIME PROPAGATION DELAY nPCLK0, nPCLK1 PCLK0, PCLK1 nEN SETUP AND 853014BG t HOLD t SET-UP HOLD TIME www.icst.com/products/hiperclocks.html 7 REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER APPLICATION INFORMATION WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS Figure 2 shows an example of the differential input that can be wired to accept single ended levels. The reference voltage level VBB generated from the device is connected to the negative input. The C1 capacitor should be located as close as possible to the input pin. VDD(or VCC) CLK_IN + VBB - C1 0.1uF FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT TERMINATION FOR 3.3V LVPECL OUTPUTS 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 3A and 3B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 3.3V Zo = 50Ω 125Ω FOUT FIN Zo = 50Ω Zo = 50Ω FOUT 50Ω 1 RTT = Z ((VOH + VOL) / (VCC – 2)) – 2 o FIN 50Ω Zo = 50Ω VCC - 2V RTT 84Ω FIGURE 3A. LVPECL OUTPUT TERMINATION 853014BG 125Ω 84Ω FIGURE 3B. LVPECL OUTPUT TERMINATION www.icst.com/products/hiperclocks.html 8 REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER TERMINATION FOR 2.5V LVPECL OUTPUT ground level. The R3 in Figure 4B can be eliminated and the termination is shown in Figure 4C. Figure 4A and Figure 4B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to 2.5V VCC=2.5V 2.5V 2.5V VCC=2.5V R1 250 Zo = 50 Ohm R3 250 + Zo = 50 Ohm + Zo = 50 Ohm - Zo = 50 Ohm 2,5V LVPECL Driv er - R1 50 2,5V LVPECL Driv er R2 62.5 R2 50 R4 62.5 R3 18 FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE 2.5V VCC=2.5V Zo = 50 Ohm + Zo = 50 Ohm 2,5V LVPECL Driv er R1 50 R2 50 FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE 853014BG www.icst.com/products/hiperclocks.html 9 REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER LVPECL CLOCK INPUT INTERFACE The PCLKx /nPCLKx accepts LVPECL, CML, SSTL and other differential signals. Both VSWING and VOH must meet the VPP and VCMR input requirements. Figures 5A to 5E show interface examples for the HiPerClockS PCLKx/nPCLKx input driven by the most common driver types. The input interfaces sug- gested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements. 2.5V 3.3V 3.3V 3.3V 2.5V 3.3V R1 50 CML R3 120 R2 50 SSTL Zo = 50 Ohm R4 120 Zo = 60 Ohm PCLK PCLK Zo = 60 Ohm Zo = 50 Ohm nPCLK nPCLK HiPerClockS PCLK/nPCLK R1 120 FIGURE 5A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A CML DRIVER HiPerClockS PCLK/nPCLK R2 120 FIGURE 5B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER 3.3V 3.3V 3.3V 3.3V 3.3V R3 125 3.3V R4 125 Zo = 50 Ohm Zo = 50 Ohm C1 LVDS R3 1K R4 1K PCLK PCLK R5 100 Zo = 50 Ohm nPCLK LVPECL R1 84 C2 nPCLK Zo = 50 Ohm HiPerCloc kS Input R1 1K R2 84 FIGURE 5C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER HiPerClockS PC L K/n PCL K R2 1K FIGURE 5D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER 3.3V 3.3V 3.3V 3.3V LVPECL Zo = 50 Ohm C1 Zo = 50 Ohm C2 R3 84 R4 84 PCLK nPCLK R5 100 - 200 R6 100 - 200 R1 125 HiPerClockS PCLK/nPCLK R2 125 FIGURE 5E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL D RIVER WITH AC COUPLE 853014BG www.icst.com/products/hiperclocks.html 10 REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER SCHEMATIC EXAMPLE This application note provides general design guide using ICS853014 LVPECL buffer. Figure 6 shows a schematic example of the ICS853014 LVPECL clock buffer. In this example, the in- put is driven by an LVPECL driver. CLK_SEL is set at logic high to select PCLK1/nPCLK1 input. Zo = 50 + Zo = 50 - R12 1K 3.3V Zo = 50 3.3V Zo = 50 R2 50 U1 3.3V C2 11 12 13 14 15 16 17 18 19 3.3V 20 VEE CLK_SEL PCLK0 nPCLK0 VBB PCLK1 nPCLK1 VCC nEN VCC nQ4 Q4 nQ3 Q3 nQ2 Q2 nQ1 Q1 nQ0 Q0 10 9 8 7 6 5 4 3 2 1 R9 50 Zo = 50 + R10 50 C1 0.1u - ICS853014 R5 50 C5 0.1u R7 50 C3 0.1u Zo = 50 0.1u LVPECL Driv er R3 50 R1 50 R4 50 R11 1K R6 50 C4 0.1u FIGURE 6. EXAMPLE ICS853014 LVPECL CLOCK OUTPUT BUFFER SCHEMATIC 853014BG www.icst.com/products/hiperclocks.html 11 REV. C MAY 13, 2005 Integrated Circuit Systems, Inc. ICS853014 LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS853014. Equations and example calculations are also provided. 1. Power Dissipation. The total power dissipation for the ICS853014 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for VCC = 3.8V, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. • • Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 75mA = 285mW Power (outputs)MAX = 30.94mW/Loaded Output pair If all outputs are loaded, the total power is 5 * 30.94mW = 154.7mW Total Power_MAX (3.8V, with all outputs switching) = 285mW + 154.7mW = 439.7mW 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C. The equation for Tj is as follows: Tj = θJA * Pd_total + TA Tj = Junction Temperature θJA = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) TA = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used . Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: 85°C + 0.440W * 66.6°C/W = 114.3°C. This is well below the limit of 125°C This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). TABLE 6. THERMAL RESISTANCE θJA FOR 20-PIN TSSOP, FORCED CONVECTION θJA by Velocity (Linear Feet per Minute) 0 Single-Layer PCB, JEDEC Standard Test Boards Multi-Layer PCB, JEDEC Standard Test Boards 114.5°C/W 73.2°C/W 200 500 98.0°C/W 66.6°C/W 88.0°C/W 63.5°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. 853014BG www.icst.com/products/hiperclocks.html 12 REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER 3. Calculations and Equations. LVPECL output driver circuit and termination are shown in Figure 7. VCC Q1 VOUT RL 50 VCC - 2V FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V - 2V. CC • For logic high, VOUT = V OH_MAX (V CC_MAX • -V OH_MAX OL_MAX CC_MAX -V OL_MAX – 0.935V CC_MAX ) = 0.935V For logic low, VOUT = V (V =V =V CC_MAX – 1.67V ) = 1.67V Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. Pd_H = [(V OH_MAX – (V CC_MAX - 2V))/R ] * (V CC_MAX L -V OH_MAX ) = [(2V - (V CC_MAX -V OH_MAX ))/R ] * (V CC_MAX L -V )= OH_MAX [(2V - 0.935V)/50Ω] * 0.935V = 19.92mW Pd_L = [(V OL_MAX – (V CC_MAX - 2V))/R ] * (V L CC_MAX -V OL_MAX ) = [(2V - (V CC_MAX -V OL_MAX ))/R ] * (V L CC_MAX -V OL_MAX )= [(2V - 1.67V)/50Ω] * 1.67V = 11.2mW Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW 853014BG www.icst.com/products/hiperclocks.html 13 REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER RELIABILITY INFORMATION TABLE 7. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP θ by Velocity (Linear Feet per Minute) JA Single-Layer PCB, JEDEC Standard Test Boards Multi-Layer PCB, JEDEC Standard Test Boards 0 200 500 114.5°C/W 73.2°C/W 98.0°C/W 66.6°C/W 88.0°C/W 63.5°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. TRANSISTOR COUNT The transistor count for ICS853014 is: 373 Pin compatible with MC100LVEP14 and SY100EP14U 853014BG www.icst.com/products/hiperclocks.html 14 REV. C MAY 13, 2005 Integrated Circuit Systems, Inc. PACKAGE OUTLINE - G SUFFIX FOR ICS853014 LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER 20 LEAD TSSOP TABLE 8. PACKAGE DIMENSIONS Millimeters SYMBOL Minimum N A Maximum 20 -- 1.20 A1 0.05 0.15 A2 0.80 1.05 b 0.19 0.30 c 0.09 0.20 D 6.40 6.60 E E1 6.40 BASIC 4.30 e 4.50 0.65 BASIC L 0.45 0.75 α 0° 8° aaa -- 0.10 Reference Document: JEDEC Publication 95, MO-153 853014BG www.icst.com/products/hiperclocks.html 15 REV. C MAY 13, 2005 ICS853014 Integrated Circuit Systems, Inc. LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER TABLE 9. ORDERING INFORMATION Part/Order Number Marking Package Shipping Packaging Temperature ICS853014BG ICS853014BG 20 lead TSSOP tube -40°C to 85°C ICS853014BGT ICS853014BG 20 lead TSSOP 2500 tape & reel -40°C to 85°C ICS853014BGLF ICS853014BGL 20 lead "Lead-Free" TSSOP tube -40°C to 85°C ICS853014BGLFT ICS853014BGL 20 lead "Lead-Free" TSSOP 2500 tape & reel -40°C to 85°C NOTE: Par ts that are ordered with an "LF" suffix to the par t number are the Pb-Free configuration and are RoHS compliant. The ICS logo is a registered trademark, and HiPerClockS is a trademark of Integrated Circuit Systems, Inc. All other trademarks are the property of their respective owners and may be registered in certain jurisdictions. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments. 853014BG www.icst.com/products/hiperclocks.html 16 REV. C MAY 13, 2005 Integrated Circuit Systems, Inc. ICS853014 LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER REVISION HISTORY SHEET Rev B Table T4B Page pg. 4 T4C pg. 5 T4D pg. 5 pg. 8 T4B - T4D Description of Change • 3.3V LVPECL table - VOH values changed @ 85° to 2.22V min. and 2.295V typical from 2.295V min. and 2.33V typical. • 3.3V LVPECL table - VOH values changed @ 85° to 2.22V min. and 2.295V typical from 2.295V min. and 2.33V typical. • 3.3V LVPECL table - VOH values changed @ 85° to 2.22V min. and 2.295V typical from 2.295V min. and 2.33V typical. • Revised LVPECL Output Termination drawings. Date 9/10/03 pg. 10 • Revised Figure 5D. pgs. 4-5 • LVPECL & ECL tables - deleted VPP row. C C 853014BG 3/18/04 T9 pg. 6 1 16 • AC Table - added VPP row and changed max. value from 1200mV to 1800mV. Features Section - added Lead-Free bullet. Ordering Information Table - added Lead-Free par t number. www.icst.com/products/hiperclocks.html 17 5/13/05 REV. C MAY 13, 2005