VHF 36 IdAVM = 40 A VRRM = 800-1600 V Half Controlled Single Phase Rectifier Bridge with Freewheeling Diode VRSM VDSM VRRM VDRM V V 900 1300 1500 1700 800 1200 1400 1600 2 Type 1 3 1 6 4 Test Conditions IdAV IdAVM ① IFRMS, ITRMS TK = 85°C, module module per leg IFSM, ITSM TVJ = 45°C; VR = 0 V 3 6 4 VHF 36-08io5 VHF 36-12io5 VHF 36-14io5 VHF 36-16io5 Symbol 2 8 Maximum Ratings 8 Features Package with DCB ceramic base plate Isolation voltage 3600 V~ Planar passivated chips ¼" fast-on terminals UL registered E 72873 ● I2t (di/dt)cr (dv/dt)cr 36 40 28 A A A t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine 320 350 A A TVJ = TVJM VR = 0 V t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine 280 310 A A TVJ = 45°C VR = 0 V t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine 500 520 A2s A2s TVJ = TVJM VR = 0 V t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine 390 400 A2s A2s TVJ = 125°C f =50 Hz, tP =200 ms VD = 2/3 VDRM IG = 0.3 A, diG/dt = 0.3 A/ms repetitive, IT = 50 A 150 non repetitive, IT = 1/2 • IdAV A/ms 500 A/ms 1000 V/ms ● Applications Supply for DC power equipment DC motor control ● ● Advantages Easy to mount with two screws Space and weight savings Improved temperature and power cycling ● Dimensions in mm (1 mm = 0.0394") tp = 30 ms tp = 500 ms tp = 10 ms 10 V 10 5 1 0.5 W W W W -40...+125 125 -40...+125 °C °C °C 3000 3600 V~ V~ 2-2.5 18-22 50 Nm lb.in. g £ £ £ PGAVM TVJ TVJM Tstg VISOL 50/60 Hz, RMS IISOL £ 1 mA t = 1 min t=1s Md Mounting torque (M5) (10-32 UNF) Weight ● ● TVJ = TVJM; VDR = 2/3 VDRM RGK = ¥; method 1 (linear voltage rise) TVJ = TVJM IT = ITAVM ● ● VRGM PGM ● Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated. ① for resistive load IXYS reserves the right to change limits, test conditions and dimensions. © 2000 IXYS All rights reserved 1-3 VHF 36 Symbol Test Conditions Characteristic Values IR, ID VR = VRRM; VD = VDRM VT, VF IT, IF = 45 A; TVJ = 25°C VT0 rT For power-loss calculations only (TVJ = 125°C) TVJ = TVJM TVJ = 25°C £ £ 5 0.3 mA mA £ 1.45 V 0.85 13 V mW VD = 6 V; TVJ = 25°C TVJ = -40°C TVJ = 25°C TVJ = -40°C TVJ = 125°C £ £ £ £ £ 1.0 1.2 65 80 50 V V mA mA mA TVJ = TVJM; TVJ = TVJM; VD = 2/3 VDRM VD = 2/3 VDRM £ £ 0.2 5 V mA VGT VD = 6 V; IGT VGD IGD IL IG = 0.3 A; tG = 30 ms; diG/dt = 0.3 A/ms; £ £ £ 150 200 100 mA mA mA IH TVJ = 25°C; VD = 6 V; RGK = ¥ £ 100 mA tgd TVJ = 25°C; VD = 1/2 VDRM IG = 0.3 A; diG/dt = 0.3 A/ms £ 2 ms tq Qr TVJ = 125°C, IT = 15 A, tP = 300 ms, VR = 100 V di/dt = -10 A/ms, dv/dt = 20 V/ms, VD = 2/3 VDRM typ. 150 75 ms mC RthJC per thyristor (diode); DC current per module per thyristor (diode); DC current per module 1.15 0.29 1.55 0.39 K/W K/W K/W K/W Creeping distance on surface Creepage distance in air Max. allowable acceleration 12.6 6.3 50 mm mm m/s2 RthJK dS dA a TVJ = 25°C TVJ = -40°C TVJ = 125°C 10 1: IGT, TVJ = 125°C 2: IGT, TVJ = 25°C 3: IGT, TVJ = -40°C V VG 1 1 2 3 6 4 0.1 4: PGAV = 0.5 W 5: PGM = 1 W 6: PGM = 10 W IGD, TVJ = 125°C 1 10 5 100 1000 IG mA Fig. 1 Gate trigger range 1000 TVJ = 25°C µs tgd 100 typ. Limit 10 1 10 100 mA 1000 IG 750 Fig. 2 Gate controlled delay time tgd © 2000 IXYS All rights reserved 2-3 VHF 36 70 300 A A 60 2 As 250 IFSM typ. IF 50 103 50Hz, 80% VRRM VR = 0 V I2t TVJ = 45°C TVJ = 45°C 200 max. TVJ = 125°C TVJ = 25°C 40 TVJ = 125°C 102 150 30 100 20 TVJ = 125°C 50 10 0 0.0 0.5 1.0 1.5 101 0 0.001 V 2.0 0.01 0.1 VF 1 s 1 2 3 t Fig. 3 Forward current versus voltage drop per diode 4 5 6 78 ms910 t Fig. 5 I2t versus time per diode Fig. 4 Surge overload current 120 W 50 A RthHA : 100 0.5 1.0 1.5 2.0 3.0 4.0 6.0 Ptot 80 60 40 Id(AV)M K/W K/W K/W K/W K/W K/W K/W 30 20 40 10 20 0 0 0 10 20 30 40 A 0 20 40 60 IF(AV)M 80 100 120 °C 140 0 20 40 60 Tamb Fig. 6 Power dissipation versus direct output current and ambient temperature 80 100 120 °C TH Fig. 7 Max. forward current versus heatsink temperature 2.0 K/W 1.5 ZthJH 1.0 Constants for ZthJH calculation: i 1 2 3 4 0.5 0.0 0.001 0.01 0.1 Fig. 8 Transient thermal impedance junction to heatsink © 2000 IXYS All rights reserved s 1 Rthi (K/W) ti (s) 0.005 0.2 0.875 0.47 0.008 0.05 0.06 0.25 10 t 3-3