SCES420 – JANUARY 2003 D Optimized for 1.8-V Operation and Is 3.6-V D D A1 A2 A3 A4 A5 A6 A7 A8 DIR VCC 1 20 19 OE 18 B1 2 3 17 B2 16 B3 4 5 15 B4 14 B5 6 7 13 B6 12 B7 8 9 10 11 B8 D D D D D I/O Tolerant to Support Mixed-Mode Signal Operation Ioff Supports Partial-Power-Down Mode Operation Sub 1-V Operable Max tpd of 2 ns at 1.8 V Low Power Consumption, 20-µA Max ICC ±8-mA Output Drive at 1.8 V Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) – 1000-V Charged-Device Model (C101) GND D RGY PACKAGE (TOP VIEW) description/ordering information This octal bus transceiver is operational at 0.8-V to 2.7-V VCC, but is designed specifically for 1.65-V to 1.95-V VCC operation. The SN74AUCH245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so the buses are effectively isolated. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. ORDERING INFORMATION TA PACKAGE† ORDERABLE PART NUMBER TOP-SIDE MARKING –40°C to 85°C QFN – RGY Tape and reel SN74AUCH245RGYR MT245 † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2003, Texas Instruments Incorporated ! "#$ ! %#&'" ( $) (#" ! " !%$"" ! %$ *$ $! $+! ! #$ ! ! (( , -) (#" %"$!!. ($! $"$!!'- "'#($ $! . '' %$ $!) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCES420 – JANUARY 2003 FUNCTION TABLE INPUTS OE DIR OPERATION L L B data to A bus L H A data to B bus H X Isolation logic diagram (positive logic) DIR 1 19 A1 OE 2 18 B1 To Seven Other Channels absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V Voltage range applied to any output in the high-impedance or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA Package thermal impedance, θJA (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-5. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCES420 – JANUARY 2003 recommended operating conditions (see Note 3) VCC VIH Supply voltage High-level High level input in ut voltage VCC = 0.8 V VCC = 1.1 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 0.8 V VIL Low-level Low level input in ut voltage VI Input voltage VO O tp t voltage Output oltage High-level High level out output ut current ∆t/∆v Low-level Low level out output ut current 0.8 2.7 VCC 0.65 × VCC UNIT V V 1.7 0 0.35 × VCC V 0.7 0 3.6 V Active state 0 3-state 0 VCC 3.6 V VCC = 1.4 V VCC = 1.65 V VCC = 2.3 V VCC = 0.8 V IOL MAX VCC = 1.1 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 0.8 V VCC = 1.1 V IOH MIN –0.7 –3 –5 –9 0.7 VCC = 1.1 V VCC = 1.4 V 3 VCC = 1.65 V VCC = 2.3 V 8 Input transition rise or fall rate mA –8 5 mA 9 20 ns/V TA Operating free-air temperature –40 85 °C NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SCES420 – JANUARY 2003 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = –100 µA IOH = –0.7 mA VOH VOL II IBHL‡ IBHH§ IBHLO¶ All inputs TYP† VCC MIN 0.8 V to 2.7 V VCC–0.1 0.8 V MAX 0.55 IOH = –3 mA IOH = –5 mA 1.1 V 0.8 1.4 V 1 IOH = –8 mA IOH = –9 mA 1.65 V 1.2 2.3 V 1.8 IOL = 100 µA IOL = 0.7 mA 0.8 V to 2.7 V V 0.2 0.8 V 0.25 IOL = 3 mA IOL = 5 mA 1.1 V 0.3 1.4 V 0.4 IOL = 8 mA IOL = 9 mA 1.65 V 0.45 2.3 V 0.6 0 to 2.7 V ±5 VI = VCC or GND VI = 0.35 V 1.1 V 10 1.4 V 15 1.65 V 20 VI = 0.7 V VI = 0.8 V 2.3 V 40 1.1 V –5 VI = 0.9 V VI = 1.07 V 1.4 V –15 1.65 V –20 VI = 1.7 V 2.3 V –40 1.3 V 75 VI = 0.47 V VI = 0.57 V VI = 0 to VCC IBHHO# VI = 0 to VCC Ioff IOZ|| VI or VO = 2.7 V VO = VCC or GND ICC Ci VI = VCC or GND, VI = VCC or GND 1.6 V 125 1.95 V 175 2.7 V 275 1.3 V –75 1.6 V –125 1.95 V –175 2.7 V –275 µA A µA A 0.8 V to 2.7 V 2.5 V µA µA A 2.7 V Cio V A µA 0 IO = 0 UNIT 2.5 ±10 µA ±10 µA 20 µA 3 pF VO = VCC or GND 2.5 V 8 8.5 pF † All typical values are at TA = 25°C. ‡ The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max. § The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min. ¶ An external driver must source at least IBHLO to switch this node from low to high. # An external driver must sink at least IBHHO to switch this node from high to low. || For I/O ports, the parameter IOZ includes the input leakage current. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCES420 – JANUARY 2003 switching characteristics over recommended operating free-air temperature range, CL = 15 pF (unless otherwise noted) (see Figure 1) FROM (INPUT) TO (OUTPUT) tpd A or B ten tdis PARAMETER VCC = 0.8 V VCC = 1.2 V ± 0.1 V VCC = 1.5 V ± 0.1 V VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V UNIT TYP MIN MAX MIN MAX MIN TYP MAX MIN MAX B or A 5 1 3.2 0.6 2 0.5 1 1.7 0.4 1.4 ns OE A or B 9 1.2 4.9 1 3 0.8 1.2 2.4 0.6 1.8 ns OE A or B 9.5 1.9 5.7 1.2 4 0.9 1.9 4.1 0.6 2.9 ns switching characteristics over recommended operating free-air temperature range, CL = 30 pF (unless otherwise noted) (see Figure 1) FROM (INPUT) TO (OUTPUT) tpd A or B ten tdis PARAMETER VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V UNIT MIN TYP MAX MIN MAX B or A 0.6 1.3 2.2 0.5 1.8 ns OE A or B 1.1 1.5 3 1.1 2.4 ns OE A or B 1.6 2.2 4 0.8 2.6 ns operating characteristics, TA = 25°C PARAMETER Cpd d Power dissipation capacitance TEST CONDITIONS Outputs enabled Outputs disabled VCC = 0.8 V TYP VCC = 1.2 V TYP VCC = 1.5 V TYP VCC = 1.8 V TYP VCC = 2.5 V TYP 19 20 21 23 28 1 1 1 1 1 f = 10 MHz UNIT pF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SCES420 – JANUARY 2003 PARAMETER MEASUREMENT INFORMATION 2 × VCC S1 RL From Output Under Test Open GND CL (see Note A) RL VCC 0.8 V 1.2 V ± 0.1 V 1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V LOAD CIRCUIT TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open 2 × VCC GND CL RL 15 pF 15 pF 15 pF 15 pF 15 pF 30 pF 30 pF 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 1 kΩ 500 Ω V∆ 0.1 V 0.1 V 0.1 V 0.15 V 0.15 V 0.15 V 0.15 V VCC Timing Input VCC/2 0V tw tsu VCC VCC/2 Input VCC/2 th VCC VCC/2 Data Input VCC/2 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC VCC/2 Input VCC/2 0V tPHL tPLH VOH VCC/2 Output VCC/2 VOL VCC/2 VCC/2 VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS VCC/2 0V tPLZ tPZL VCC VCC/2 Output Waveform 2 S1 at GND (see Note B) VOL + V∆ VOL tPHZ tPZH VOH Output Output Waveform 1 S1 at 2 × VCC (see Note B) tPLH tPHL VCC Output Control VCC/2 VOH – V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, slew rate ≥ 1 V/ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2004, Texas Instruments Incorporated