TI SN74AUC16245

SN74AUC16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES392E – MARCH 2002 – REVISED DECEMBER 2002
D
D
D
D
D
D
D
D
D
DGG OR DGV PACKAGE
(TOP VIEW)
Member of the Texas Instruments
Widebus Family
Optimized for 1.8-V Operation and is 3.6-V
I/O Tolerant to Support Mixed-Mode Signal
Operation
Ioff Supports Partial-Power-Down Mode
Operation
Sub 1-V Operable
Max tpd of 2 ns at 1.8 V
Low Power Consumption, 20-µA Max ICC
±8-mA Output Drive at 1.8 V
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
1DIR
1B1
1B2
GND
1B3
1B4
VCC
1B5
1B6
GND
1B7
1B8
2B1
2B2
GND
2B3
2B4
VCC
2B5
2B6
GND
2B7
2B8
2DIR
description/ordering information
This 16-bit (dual-octal) noninverting bus
transceiver is operational at 0.8-V to 2.7-V VCC,
but is designed specifically for 1.65-V to 1.95-V
VCC operation.
The
SN74AUC16245
is
designed
for
asynchronous communication between data
buses. The control-function implementation
minimizes external timing requirements.
1
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17
32
18
31
19
30
20
29
21
28
22
27
23
26
24
25
1OE
1A1
1A2
GND
1A3
1A4
VCC
1A5
1A6
GND
1A7
1A8
2A1
2A2
GND
2A3
2A4
VCC
2A5
2A6
GND
2A7
2A8
2OE
This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the
A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR)
input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
ORDERING INFORMATION
PACKAGE†
TA
–40°C to 85°C
ORDERABLE
PART NUMBER
TOP-SIDE
MARKING
TSSOP – DGG
Tape and reel
SN74AUC16245DGGR
AUC16245
TVSOP – DGV
Tape and reel
SN74AUC16245DGVR
MH245
VFBGA – GQL
Tape and reel
SN74AUC16245GQLR
MH245
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus is a trademark of Texas Instruments.
Copyright  2002, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74AUC16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES392E – MARCH 2002 – REVISED DECEMBER 2002
GQL PACKAGE
(TOP VIEW)
1
2
3
4
5
6
terminal assignments
1
2
3
4
5
6
A
A
1DIR
NC
NC
NC
NC
1OE
B
B
1B2
1B1
GND
GND
1A1
1A2
C
C
1B4
1B3
1A4
D
1B6
1B5
VCC
GND
1A3
D
VCC
GND
1A5
1A6
E
1B8
1B7
1A7
1A8
F
2B1
2B2
2A2
2A1
G
2B3
2B4
GND
GND
2A4
2A3
H
2B5
2B6
2A5
2B7
2B8
VCC
GND
2A6
J
VCC
GND
2A8
2A7
K
2DIR
NC
NC
NC
NC
2OE
E
F
G
H
J
K
NC – No internal connection
FUNCTION TABLE
(each 8-bit section)
INPUTS
OPERATION
OE
DIR
L
L
B data to A bus
L
H
A data to B bus
H
X
Isolation
logic diagram (positive logic)
1DIR
1
2DIR
48
1A1
25
1OE
47
2A1
2
24
36
13
1B1
To Seven Other Channels
To Seven Other Channels
Pin numbers shown are for the DGG and DGV packages.
2
POST OFFICE BOX 655303
2OE
• DALLAS, TEXAS 75265
2B1
SN74AUC16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES392E – MARCH 2002 – REVISED DECEMBER 2002
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V
Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 2): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
GQL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
VCC
VIH
Supply voltage
High-level input voltage
VCC = 0.8 V
VCC = 1.1 V to 1.95 V
VCC = 2.3 V to 2.7 V
VCC = 0.8 V
VIL
Low-level input voltage
VI
Input voltage
VO
Output voltage
High-level output current
∆t/∆v
Low-level output current
0.8
2.7
VCC
0.65 × VCC
UNIT
V
V
1.7
0
0.35 × VCC
V
0.7
0
3.6
V
Active state
0
3-state
0
VCC
3.6
V
VCC = 1.4 V
VCC = 1.65 V
VCC = 2.3 V
VCC = 0.8 V
IOL
MAX
VCC = 1.1 V to 1.95 V
VCC = 2.3 V to 2.7 V
VCC = 0.8 V
VCC = 1.1 V
IOH
MIN
–0.7
–3
–5
–9
0.7
VCC = 1.1 V
VCC = 1.4 V
3
VCC = 1.65 V
VCC = 2.3 V
8
Input transition rise or fall rate
mA
–8
5
mA
9
5
ns/V
TA
Operating free-air temperature
–40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74AUC16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES392E – MARCH 2002 – REVISED DECEMBER 2002
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
0.8 V to 2.7 V
IOH = –100 µA
IOH = –0.7 mA
VOH
VOL
II
Ioff
All inputs
TYP†
MIN
MAX
0.8 V
0.55
IOH = –3 mA
IOH = –5 mA
1.1 V
0.8
1.4 V
1
IOH = –8 mA
IOH = –9 mA
1.65 V
1.2
2.3 V
1.8
IOL = 100 µA
IOL = 0.7 mA
0.8 V to 2.7 V
V
0.2
0.8 V
0.25
IOL = 3 mA
IOL = 5 mA
1.1 V
0.3
1.4 V
0.4
IOL = 8 mA
IOL = 9 mA
1.65 V
0.45
2.3 V
0.6
VO = VCC or GND
VI = VCC or GND,
±5
µA
±10
µA
2.7 V
±10
µA
0.8 V to 2.7 V
20
Ci
VI = VCC or GND
µA
0 to 2.7 V
IO = 0
V
0
VI = VCC or GND
VI or VO = 2.7 V
IOZ‡
ICC
UNIT
VCC–0.1
Cio
VO = VCC or GND
† All typical values are at TA = 25°C.
‡ For I/O ports, the parameter IOZ includes the input leakage current.
2.5 V
3
pF
2.5 V
7
pF
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figure 1)
VCC = 1.2 V
± 0.1 V
VCC = 1.5 V
± 0.1 V
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
FROM
(INPUT)
TO
(OUTPUT)
VCC = 0.8 V
TYP
MIN
MAX
MIN
MAX
MIN
TYP
MAX
MIN
MAX
tpd
A or B
B or A
5.6
0.5
3.1
0.5
2
0.5
1.5
2
0.4
1.9
ns
ten
OE
A or B
10
0.7
4.6
0.7
3.1
0.7
2.1
3.1
0.7
2.6
ns
tdis
OE
A or B
12.8
0.8
6.8
0.8
5
0.8
3.4
4.8
0.5
2.9
ns
PARAMETER
UNIT
operating characteristics, TA = 25°C
PARAMETER
Cpd
4
Power
dissipation
capacitance
Outputs
enabled
Outputs
disabled
TEST
CONDITIONS
VCC = 0.8 V
TYP
VCC = 1.2 V
TYP
VCC = 1.5 V
TYP
VCC = 1.8 V
TYP
VCC = 2.5 V
TYP
22
23
24
25
29
1
1
1
1
1
f = 10 MHz
UNIT
pF
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74AUC16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES392E – MARCH 2002 – REVISED DECEMBER 2002
PARAMETER MEASUREMENT INFORMATION
2 × VCC
S1
RL
From Output
Under Test
GND
CL
(see Note A)
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
Open
RL
VCC
0.8 V
1.2 V ± 0.1 V
1.5 V ± 0.1 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
LOAD CIRCUIT
CL
RL
15 pF
15 pF
15 pF
30 pF
30 pF
2 kΩ
2 kΩ
2 kΩ
1 kΩ
500 Ω
V∆
0.1 V
0.1 V
0.1 V
0.15 V
0.15 V
VCC
Timing Input
VCC/2
0V
tw
tsu
VCC
VCC/2
Input
th
VCC
VCC/2
VCC/2
Data Input
VCC/2
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC
VCC/2
Input
0V
tPHL
tPLH
VCC/2
VOL
tPHL
VOH
Output
tPLZ
VCC
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
tPZH
VCC/2
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPLH
VCC/2
VCC/2
tPZL
VOH
VCC/2
Output
VCC
Output
Control
VCC/2
VCC/2
VOH – V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, slew rate ≥ 1 V/ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2004, Texas Instruments Incorporated