TI SN74LV4066ADBRG4

SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
1A
1B
2B
2A
2C
3C
GND
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VCC
1C
4C
4A
4B
3B
3A
SN74LV4066A . . . RGY PACKAGE
(TOP VIEW)
description/ordering information
This quadruple silicon-gate CMOS analog switch
is designed for 2-V to 5.5-V VCC operation.
1B
2B
2A
2C
3C
These switches are designed to handle both
analog and digital signals. Each switch permits
signals with amplitudes up to 5.5 V (peak) to be
transmitted in either direction.
VCC
All Ports
High On-Off Output-Voltage Ratio
Low Crosstalk Between Switches
Individual Switch Controls
Extremely Low Input Current
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
1
14
2
13 1C
3
12 4C
4
11 4A
5
10 4B
9 3B
6
7
8
GND
Each switch section has its own enable-input
control (C). A high-level voltage applied to C turns
on the associated switch section.
3A
D
D
D
D
D
SN54LV4066A . . . J OR W PACKAGE
SN74LV4066A . . . D, DB, DGV, N, NS, OR PW PACKAGE
(TOP VIEW)
1A
D 2-V to 5.5-V VCC Operation
D Support Mixed-Mode Voltage Operation on
NC − No internal connection
Applications include signal gating, chopping,
modulation or demodulation (modem), and signal
multiplexing
for
analog-to-digital
and
digital-to-analog conversion systems.
ORDERING INFORMATION
PACKAGE†
TA
Tube of 25
SN74LV4066AN
SN74LV4066AN
QFN − RGY
Reel of 1000
SN74LV4066ARGYR
LW066A
Tube of 50
SN74LV4066AD
Reel of 2500
SN74LV4066ADR
SOP − NS
Reel of 2000
SN74LV4066ANSR
74LV4066A
SSOP − DB
Reel of 2000
SN74LV4066ADBR
LW066A
Tube of 90
SN74LV4066APW
Reel of 2000
SN74LV4066APWR
Reel of 250
SN74LV4066APWT
TVSOP − DGV
Reel of 2000
SN74LV4066ADGVR
LW066A
CDIP − J
Tube of 25
SNJ54LV4066AJ
SNJ54LV4066AJ
CFP − W
Tube of 150
SNJ54LV4066AW
SNJ54LV4066AW
TSSOP − PW
−55°C
55°C to 125°C
†
TOP-SIDE
MARKING
PDIP − N
SOIC − D
40°C to 85°C
−40°C
ORDERABLE
PART NUMBER
LV4066A
LW066A
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 2005, Texas Instruments Incorporated
UNLESS OTHERWISE NOTED this document contains PRODUCTION
DATA information current as of publication date. Products conform to
specifications per the terms of Texas Instruments standard warranty.
Production processing does not necessarily include testing of all
parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
FUNCTION TABLE
(each switch)
INPUT
CONTROL
(C)
SWITCH
L
OFF
H
ON
logic diagram (positive logic)
A
VCC
VCC
B
C
One of Four Switches
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Switch I/O voltage range, VIO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Control-input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA
I/O diode current, IIOK (VIO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
On-state switch current, IT (VIO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Package thermal impedance, θJA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
(see Note 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96°C/W
(see Note 3): DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127°C/W
(see Note 3): N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80°C/W
(see Note 3): NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W
(see Note 3): PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
(see Note 4): RGY package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
4. The package thermal impedance is calculated in accordance with JESD 51-5.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
recommended operating conditions (see Note 5)
VCC
Supply voltage
VCC = 2 V
VIH
High level input voltage,
High-level
voltage control inputs
SN54LV4066A
SN74LV4066A
MIN
MAX
MIN
MAX
2†
5.5
2†
5.5
1.5
VIL
Low level input voltage,
Low-level
voltage control inputs
VI
Control input voltage
VCC × 0.7
VCC × 0.7
VCC = 3 V to 3.6 V
VCC × 0.7
VCC × 0.7
VCC = 4.5 V to 5.5 V
VCC × 0.7
VCC × 0.7
VIO
Input/output voltage
0.5
Δt/Δv
Input transition rise or fall rate
0.5
VCC × 0.3
VCC × 0.3
VCC = 3 V to 3.6 V
VCC × 0.3
VCC × 0.3
VCC × 0.3
VCC × 0.3
5.5
0
5.5
V
0
VCC
0
VCC
V
VCC = 2.3 V to 2.7 V
200
200
VCC = 3 V to 3.6 V
100
100
20
20
Operating free-air temperature
V
0
VCC = 4.5 V to 5.5 V
TA
V
VCC = 2.3 V to 2.7 V
VCC = 4.5 V to 5.5 V
V
1.5
VCC = 2.3 V to 2.7 V
VCC = 2 V
UNIT
−55
125
−40
85
ns/V
°C
†
With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. Only digital signals should be transmitted
at these low supply voltages.
NOTE 5: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
TA = 25°C
MIN
MAX
MIN
MAX
SN74LV4066A
MIN
MAX
UNIT
IT = −1 mA,,
VI = VCC or GND,
VC = VIH
(see Figure 1)
2.3 V
38
180
225
225
3V
29
150
190
190
4.5 V
21
75
100
100
IT = −1 mA,
VI = VCC to GND,
VC = VIH
2.3 V
143
500
600
600
3V
57
180
225
225
4.5 V
31
100
125
125
Difference in
on-state
on
state resistance
between switches
IT = −1 mA,
VI = VCC to GND,
VC = VIH
2.3 V
6
30
40
40
3V
3
20
30
30
4.5 V
2
15
20
20
Control input current
VI = 5.5 V or GND
0 to 5.5 V
±0.1
±1
±1
μA
IS(off)
Off-state
switch leakage
current
VI = VCC and
VO = GND, or
VI = GND and
VO = VCC,
VC = VIL
(see Figure 2)
5.5 V
±0.1
±1
±1
μA
IS(on)
On-state
switch leakage
current
VI = VCC or GND,
VC = VIH
(see Figure 3)
5.5 V
±0.1
±1
±1
μA
ICC
Supply current
VI = VCC or GND
5.5 V
20
20
μA
Cic
Control input
capacitance
1.5
pF
Cio
Switch input/output
capacitance
5.5
pF
CF
Feed-through
capacitance
0.5
pF
ron
ron(p)
Δron
II
On-state
switch resistance
P k
Peak
on-state resistance
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
4
SN54LV4066A
TYP
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
Ω
Ω
Ω
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
switching characteristics over recommended operating free-air temperature range,
VCC = 2.5 V ± 0.2 V (unless otherwise noted)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
TEST
CONDITIONS
TA = 25°C
MIN
SN54LV4066A
TYP
MAX
MIN
MAX
SN74LV4066A
MIN
MAX
UNIT
tPLH
tPHL
Propagation
delay time
A or B
B or A
CL = 15 pF,
(see Figure 4)
1.2
10
16
16
ns
tPZH
tPZL
Switch
turn-on time
C
A or B
CL = 15 pF,
RL = 1 kΩ
(see Figure 5)
3.3
15
20
20
ns
tPLZ
tPHZ
Switch
turn-off time
C
A or B
CL = 15 pF,
RL = 1 kΩ
(see Figure 5)
6
15
23
23
ns
tPLH
tPHL
Propagation
delay time
A or B
B or A
CL = 50 pF,
(see Figure 4)
2.6
12
18
18
ns
tPZH
tPZL
Switch
turn-on time
C
A or B
CL = 50 pF,
RL = 1 kΩ
(see Figure 5)
4.2
25
32
32
ns
tPLZ
tPHZ
Switch
turn-off time
C
A or B
CL = 50 pF,
RL = 1 kΩ
(see Figure 5)
9.6
25
32
32
ns
switching characteristics over recommended operating free-air temperature range,
VCC = 3.3 V ± 0.3 V (unless otherwise noted)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
TEST
CONDITIONS
TA = 25°C
MIN
SN54LV4066A
TYP
MAX
MIN
MAX
SN74LV4066A
MIN
MAX
UNIT
tPLH
tPHL
Propagation
delay time
A or B
B or A
CL = 15 pF,
(see Figure 4)
0.8
6
10
10
ns
tPZH
tPZL
Switch
turn-on time
C
A or B
CL = 15 pF,
RL = 1 kΩ
(see Figure 5)
2.3
11
15
15
ns
tPLZ
tPHZ
Switch
turn-off time
C
A or B
CL = 15 pF,
RL = 1 kΩ
(see Figure 5)
4.5
11
15
15
ns
tPLH
tPHL
Propagation
delay time
A or B
B or A
CL = 50 pF,
(see Figure 4)
1.5
9
12
12
ns
tPZH
tPZL
Switch
turn-on time
C
A or B
CL = 50 pF,
RL = 1 kΩ
(see Figure 5)
3
18
22
22
ns
tPLZ
tPHZ
Switch
turn-off time
C
A or B
CL = 50 pF,
RL = 1 kΩ
(see Figure 5)
7.2
18
22
22
ns
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
switching characteristics over recommended operating free-air temperature range,
VCC = 5 V ± 0.5 V (unless otherwise noted)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
TEST
CONDITIONS
TA = 25°C
MIN
SN54LV4066A
TYP
MAX
MIN
SN74LV4066A
MAX
MIN
MAX
UNIT
tPLH
tPHL
Propagation
delay time
A or B
B or A
CL = 15 pF,
(see Figure 4)
0.3
4
7
7
ns
tPZH
tPZL
Switch
turn-on time
C
A or B
CL = 15 pF,
RL = 1 kΩ
(see Figure 5)
1.6
7
10
10
ns
tPLZ
tPHZ
Switch
turn-off time
C
A or B
CL = 15 pF,
RL = 1 kΩ
(see Figure 5)
3.2
7
10
10
ns
tPLH
tPHL
Propagation
delay time
A or B
B or A
CL = 50 pF,
(see Figure 4)
0.6
6
8
8
ns
tPZH
tPZL
Switch
turn-on time
C
A or B
CL = 50 pF,
RL = 1 kΩ
(see Figure 5)
2.1
12
16
16
ns
tPLZ
tPHZ
Switch
turn-off time
C
A or B
CL = 50 pF,
RL = 1 kΩ
(see Figure 5)
5.1
12
16
16
ns
analog switch characteristics over operating free-air temperature range (unless otherwise noted)
PARAMETER
Frequency response
F
(switch on)
C
t lk
Crosstalk
(between any switches)
Crosstalk
(control input to
signal output)
Feed-through
F
d th
h attenuation
tt
ti
(switch off)
Sine-wave distortion
FROM
(INPUT)
A or B
A or B
C
A or B
A or B
TO
(OUTPUT)
B or A
B or A
A or B
B or A
B or A
TEST
CONDITIONS
VCC
CL = 50 pF, RL = 600 Ω,
fin = 1 MHz (sine wave)
20log10(VO/VI) = −3 dB (see Figure 6)
CL = 50 pF, RL = 600 Ω,
fin
i = 1 MHz (sine wave) (see Figure 7)
CL = 50 pF, RL = 600 Ω,
fin
i = 1 MHz (square wave) (see Figure 8)
CL = 50 pF, RL = 600 Ω, fin = 1 MHz
(see Figure 9)
CL= 50 pF,
pF RL = 10 kΩ
kΩ,
fin = 1 kHz (sine wave)
(see Figure 10)
VI = 2 Vp-p
VI = 2.5 Vp-p
VI = 4 Vp-p
TA = 25°C
MIN
TYP
2.3 V
30
3V
35
4.5 V
50
2.3 V
−45
3V
−45
4.5 V
−45
2.3 V
15
3V
20
4.5 V
50
2.3 V
−40
3V
−40
4.5 V
−40
2.3 V
0.1
3V
0.1
4.5 V
0.1
MAX
UNIT
MHz
dB
mV
dB
%
operating characteristics, TA = 25°C
PARAMETER
Cpd
TEST CONDITIONS
Power dissipation capacitance
CL = 50 pF,
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
f = 10 MHz
TYP
UNIT
4.5
pF
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
PARAMETER MEASUREMENT INFORMATION
VCC
VC = VIH
VCC
VI = VCC or GND
VO
(ON)
GND
r on +
VI – VO
10 –3
W
1 mA
V
VI − VO
Figure 1. On-State Resistance Test Circuit
VCC
VC = VIL
VCC
VI
A
(OFF)
VO
GND
Condition 1: VI = 0, VO = VCC
Condition 2: VI = VCC, VO = 0
Figure 2. Off-State Switch Leakage-Current Test Circuit
VCC
VC = VIH
VCC
VI
A
(ON)
Open
GND
VI = VCC or GND
Figure 3. On-State Leakage-Current Test Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
PARAMETER MEASUREMENT INFORMATION
VCC
VC = VIH
VCC
VI
VO
(ON)
50 Ω
CL
GND
TEST CIRCUIT
tr
VI
A or B
tf
90%
50%
10%
VCC
90%
50%
10%
tPLH
0V
tPHL
VOH
VO
B or A
50%
50%
VOL
VOLTAGE WAVEFORMS
Figure 4. Propagation Delay Time, Signal Input to Signal Output
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
PARAMETER MEASUREMENT INFORMATION
VCC
50 Ω
VC
VCC
VI
S1
VO
RL = 1 kΩ
TEST
S1
S2
tPZL
tPZH
tPLZ
tPHZ
GND
VCC
GND
VCC
VCC
GND
VCC
GND
S2
CL
GND
TEST CIRCUIT
VCC
VC
VCC
50%
50%
0V
0V
tPZL
tPZH
≈VCC
VO
VOL
VOH
50%
50%
≈0 V
(tPZL, tPZH)
VCC
VC
VCC
50%
50%
0V
0V
tPLZ
tPHZ
≈VCC
VO
VOL
VOH
VOL + 0.3 V
VOH − 0.3 V
≈0 V
(tPLZ, tPHZ)
VOLTAGE WAVEFORMS
Figure 5. Switching Time (tPZL, tPLZ, tPZH, tPHZ), Control to Signal Output
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
PARAMETER MEASUREMENT INFORMATION
VCC
VCC
0.1 μF
fin
VCC
VI
VO
(ON)
GND
50 Ω
RL = 600 Ω
CL = 50 pF
VCC/2
Figure 6. Frequency Response (Switch On)
VCC
VC = VCC
50 Ω
VCC
VI
fin
VO1
(ON)
0.1 μF 600 Ω
GND
CL = 50 pF
RL = 600 Ω
VCC/2
VI
VCC
VC = GND
VCC
(OFF)
600 Ω
VO2
GND
RL = 600 Ω
CL = 50 pF
VCC/2
Figure 7. Crosstalk Between Any Two Switches
VCC
50 Ω
VC
VCC
VO
GND
600 Ω
VCC/2
RL = 600 Ω
CL = 50 pF
VCC/2
Figure 8. Crosstalk (Control Input − Switch Output)
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54LV4066A, SN74LV4066A
QUADRUPLE BILATERAL ANALOG SWITCHES
SCLS427I − APRIL 1999 − REVISED APRIL 2005
PARAMETER MEASUREMENT INFORMATION
VCC
VC = GND
0.1 μF
fin
50 Ω
VI
VCC
VO
(OFF)
GND
600 Ω
RL = 600 Ω
CL = 50 pF
VCC/2
VCC/2
Figure 9. Feed-Through Attenuation (Switch Off)
VCC
VC = VCC
10 μF
fin
600 Ω
VI
10 μF
VCC
VO
(ON)
GND
RL = 10 kΩ
CL = 50 pF
VCC/2
Figure 10. Sine-Wave Distortion
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
PACKAGE OPTION ADDENDUM
www.ti.com
22-Dec-2009
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LV4066AD
ACTIVE
SOIC
D
14
SN74LV4066ADBR
ACTIVE
SSOP
DB
SN74LV4066ADBRG4
ACTIVE
SSOP
SN74LV4066ADE4
ACTIVE
SN74LV4066ADG4
50
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
DB
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066ADGVR
ACTIVE
TVSOP
DGV
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066ADGVRE4
ACTIVE
TVSOP
DGV
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066ADGVRG4
ACTIVE
TVSOP
DGV
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066ADR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066ADRE4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066ADRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066AN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
SN74LV4066ANE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
SN74LV4066ANSR
ACTIVE
SO
NS
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066ANSRE4
ACTIVE
SO
NS
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066ANSRG4
ACTIVE
SO
NS
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APW
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APWE4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APWRE4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APWRG4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APWT
ACTIVE
TSSOP
PW
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APWTE4
ACTIVE
TSSOP
PW
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV4066APWTG4
ACTIVE
TSSOP
PW
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
22-Dec-2009
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LV4066ARGYR
ACTIVE
VQFN
RGY
14
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
SN74LV4066ARGYRG4
ACTIVE
VQFN
RGY
14
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
30-Jul-2010
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74LV4066ADBR
SSOP
DB
14
2000
330.0
16.4
8.2
6.6
2.5
12.0
16.0
Q1
SN74LV4066ADGVR
TVSOP
DGV
14
2000
330.0
12.4
6.8
4.0
1.6
8.0
12.0
Q1
SN74LV4066ADR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
SN74LV4066ANSR
SO
NS
14
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
SN74LV4066APWR
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
SN74LV4066ARGYR
VQFN
RGY
14
3000
330.0
12.4
3.75
3.75
1.15
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
30-Jul-2010
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74LV4066ADBR
SSOP
DB
14
2000
346.0
346.0
33.0
SN74LV4066ADGVR
TVSOP
DGV
14
2000
346.0
346.0
29.0
SN74LV4066ADR
SOIC
D
14
2500
346.0
346.0
33.0
SN74LV4066ANSR
SO
NS
14
2000
346.0
346.0
33.0
SN74LV4066APWR
TSSOP
PW
14
2000
346.0
346.0
29.0
SN74LV4066ARGYR
VQFN
RGY
14
3000
346.0
346.0
29.0
Pack Materials-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated