NEC UPD75036

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD75036
4 BIT SINGLE-CHIP MICROCOMPUTER
The µPD75036 is a 75X series 4-bit single-chip microcomputer.
The µPD75036 is an expanded version of the µPD75028. It has ROM and RAM with a larger capacity.
The minimum instruction execution time of the µPD75036 is 0.95 µs. In addition to this high-speed capability, it
contains an A/D converter and furnishes high-performance functions such as the serial bus interface (SBI) function
that follows the NEC standard format, providing powerful features and high cost performance.
A built-in PROM product, µPD75P036, is also available. The µPD75P036 is suitable for small-scale production
or experimental production in system development.
The following user’s manual describes the details of functions. Be sure to read it before design.
µPD75028 User’s Manual: IEU-694
FEATURES
• Variable instruction execution time advantageous to high-speed operation and power-saving:
• 0.95 µs, 1.91 µs, or 15.3 µs (at 4.19 MHz when the main system selected)
• 122 µs (at 32.768 kHz when the subsystem clock selected)
•
•
•
•
Program memory (ROM) capacity: 16256 × 8 bits
Data memory (RAM) capacity: 1024 × 4 bits
Built-in A/D converter (8-bit resolution, successive approximation): 8 channels
Powerful timer function: 4 channels
• Usable for 16-bit integral A/D conversion and PWM output
• Built-in NEC standard serial bus interface (SBI)
• Very low-power clock operation allowed (5 µA TYP. at 3 V)
APPLICATIONS
Electric household appliances, air cooling/heating apparatus, cameras, and electronic measuring instruments
ORDERING INFORMATION
Part number
Package
Quality grade
µPD75036CW-×××
64-pin plastic shrink DIP (750 mil)
Standard
µPD75036GC-×××-AB8
64-pin plastic QFP (
Standard
14 mm)
Remark ××× is a mask ROM code number.
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation
to know the specification of quality grade on the devices and its recommended applications.
The information in this document is subject to change without notice.
Document No. IC-3115
(O.D. No. IC-8611)
Date Published October 1993 P
Printed in Japan
The mark ★ shows major revised points.
© NEC Corporation 1993
µPD75036
FUNCTIONS
Function
Item
Instruction execution time
• 0.95, 1.91, 15.3 µs (Main system clock : 4.19 MHz operation)
• 122 µs (Subsystem clock : 32.768 kHz operation)
On-chip memory
ROM
16256 × 8 bits
RAM
1024 × 4 bits
General register
• 4-bit manipulation : 8
• 8-bit manipulation : 4
I/O port
48
4 channels
Timer
12
CMOS input pins
24
CMOS I/O pins
12
N-ch open-drain I/O pins
• On-chip pull-up resistor by software : 27
• On-chip pull-down resistor by software: 4
• Direct LED driving: 4
• Withstand voltage is 10 V
• On-chip pull-up resistor by mask option
• Direct LED driving: 4
• Timer/event counter
• Basic interval timer : Can be used as watchdog timer
• Clock timer
: Buzzer output enabled
Multifunction timer : Can be used as timer, free-running timer or counter for
integration A/D converter, or for PWM output
Serial interface
• Three-wire serial I/O mode
• Two-wire serial I/O mode
• SBI mode
Bit sequential buffer
16 bits
Clock output
Φ, fX/23, fX/24 , fX/26 (Main system clock: 4.19 MHz operation)
A/D converter
• 8-bit resolution × 8 channels (successive-approximation)
• Capable of low-voltage operation: VDD = 2.7 to 6.0 V
Vectored interrupt
External : 3, Internal : 4
Test input
External : 1, Internal : 1
System clock oscillator
• Ceramic/crystal oscillator for main system clock oscillation
• Crystal oscillator for subsystem clock oscillation
Standby function
STOP/HALT mode
★
Operating temperature range
–40 to +85 °C
★
Operating voltage
2.7 to 6.0 V
Package
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP ( 14 mm)
2
µPD75036
CONTENTS
1.
PIN CONFIGURATIONS (TOP VIEW) .......................................................................................
4
2.
BLOCK DIAGRAM ......................................................................................................................
6
3.
PIN FUNCTIONS .......................................................................................................................
7
3.1
PORT PINS .....................................................................................................................................
7
3.2
NON-PORT PINS ...........................................................................................................................
9
3.3
PIN INPUT/OUTPUT CIRCUITS ..................................................................................................
11
3.4
MASK OPTION SELECTION .......................................................................................................
13
3.5
CONNECTION OF UNUSED PINS ................................................................................................
14
4.
ARCHITECTURE AND MEMORY MAP OF THE µPD75036 ..................................................
15
5.
PERIPHERAL HARDWARE FUNCTIONS ................................................................................
17
5.1
PORTS .............................................................................................................................................
17
5.2
CLOCK GENERATOR ....................................................................................................................
17
5.3
CLOCK OUTPUT CIRCUIT ............................................................................................................
19
5.4
BASIC INTERVAL TIMER ..............................................................................................................
20
5.5
CLOCK TIMER ................................................................................................................................
21
5.6
TIMER/EVENT COUNTER ..............................................................................................................
22
5.7
SERIAL INTERFACE ......................................................................................................................
24
5.8
A/D CONVERTER ..........................................................................................................................
26
5.9
MULTIFUNCTION TIMER (MFT) ....................................................................................................
27
6.
INTERRUPT FUNCTION ............................................................................................................
29
7.
STANDBY FUNCTION ................................................................................................................
31
8.
RESET FUNCTION .....................................................................................................................
31
9.
INSTRUCTION SET ...................................................................................................................
32
10. ELECTRICAL CHARACTERISTICS ..........................................................................................
39
11. PACKAGE DIMENSIONS ...........................................................................................................
52
APPENDIX A
DEVELOPMENT TOOLS ........................................................................................
54
APPENDIX B
RELATED DOCUMENTS ........................................................................................
55
3
µPD75036
1. PIN CONFIGURATIONS (TOP VIEW)
• 64-pin plastic shrink DIP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
µ PD75036CW-×××
SB1/SI/P03
SB0/SO/P02
SCK/P01
INT4/P00
BUZ/P23
PCL/P22
PPO/P21
PTO0/P20
MAT/P103
MAZ/P102
MAI/P101
MAR/P100
RESET
X1
X2
IC
XT1
XT2
VDD
AVDD
AVREF+
AVREF–
AN7
AN6
AN5
AN4
AN3/P113
AN2/P112
AN1/P111
AN0/P110
AVSS
TI0/P13
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
VSS
P30
P31
P32
P33
P40
P41
P42
P43
P50
P51
P52
P53
P60/KR0
P61/KR1
P62/KR2
P63/KR3
P70/KR4
P71/KR5
P72/KR6
P73/KR7
P80
P81
P82
P83
P90
P91
P92
P93
P10/INT0
P11/INT1
P12/INT2
P50
P51
P52
P53
P60/KR0
P61/KR1
P62/KR2
P63/KR3
P70/KR4
P71/KR5
P72/KR6
P73/KR7
P80
P81
P82
P83
• 64-pin plastic QFP
64 63 62 6160 59 58 57 56 55 54 53 52 51 50 4948
1
47
2
46
3
45
4
44
5
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 313233
PTO0/P20
MAT/P103
MAZ/P102
MAI/P101
MAR/P100
RESET
X1
X2
IC
XT1
XT2
VDD
AVDD
AVREF+
AVREF–
AN7
µ PD75036GC-×××-AB8
P43
P42
P41
P40
P33
P32
P31
P30
VSS
SB1/SI/P03
SB0/SO/P02
SCK/P01
INT4/P00
BUZ/P23
PCL/P22
PPO/P21
IC: Internally connected (Should be directly connected to VDD)
4
P90
P91
P92
P93
P10/INT0
P11/INT1
P12/INT2
TI0/P13
AVSS
AN0/P110
AN1/P111
AN2/P112
AN3/P113
AN4
AN5
AN6
µPD75036
Pin names
:
Port 0
: Port 0
P10-13
:
Port 1
: Port 1
P20-23
:
Port 2
: Port 2
P30-33
:
Port 3
: Port 3
P40-43
:
Port 4
: Port 4
P50-53
:
Port 5
: Port 5
P60-63
:
Port 6
: Port 6
P70-73
:
Port 7
: Port 7
P80-83
:
Port 8
: Port 8
P90-93
:
Port 9
: Port 9
P100-103:
Port 10
: Port 10
P110-113:
Port 11
: Port 11
KR0-7
:
Key Return
: Key interrupt input
SCK
:
Serial Clock
: Serial clock I/0
SI
:
Serial Input
: Serial data input
SO
:
Serial Output
: Serial data output
SB0, 1
:
RESET :
Serial Bus 0, 1
: Serial bus I/O
Reset Input
: Reset input
TI0
:
Timer Input 0
: External event pulse input
PTO0
:
Programmable Timer Output 0
: Timer/event counter output
BUZ
:
Buzzer Clock
: Arbitrary frequency output
PCL
:
Programmable Clock
: Clock output
INT0, 1, 4:
External Vectored Interrupt 0, 1, 4
: External vectored interrupt input
INT2
:
External Test Input 2
: External test input
X1, 2
:
Main System Clock Oscillation 1, 2
: Main system clock oscillation pin
XT1, 2
:
Subsystem Clock Oscillation 1, 2
: Subsystem clock oscillation pin
MAR
:
Reference Integration Control
MAI
:
Integration Control
MAZ
:
Autozero Control
MAT
:
External Comparate Timing Input
PPO
:
: Reverse integration signal output
MFT A/D : Integration signal output
: Autozero signal output
mode
: External comparator signal input





P00-03
MFT A/D
mode





Programmable Pulse Output
... MFT timer mode
: Pulse output ... MFT timer mode
AN0-7
:
Analog Input 0-7
: Analog input
AVREF+
:
Analog Reference (+)
: Analog reference voltage (+) input
AVREF-
:
Analog Reference (-)
: Analog reference voltage (-) input
AVDD
:
Analog VDD
: A/D converter power supply input
AVSS
:
Analog VSS
: A/D converter GND input
VDD
:
Positive Power Supply
: Main power supply pin
VSS
:
Ground
: GND potential pin
Remark MFT: Multifunction timer
5
INTBT
TI0/P13
PTO0/P20
Timer/
counter 0
Program
counter
P00-P03
Port 1
P10-P13
Port 2
P20-P23
Port 3
P30-P33
Port 4
P40-P43
Port 5
P50-P53
Port 6
P60-P63
Port 7
P70-P73
Port 8
P80-P83
Port 9
P90-P93
Port 10
P100-P103
SP
CY
ALU
INTT0
Bank
SI/SB1/P03
SO/SB0/P02
Port 0
Serial
interface
2. BLOCK DIAGRAM
6
Bit sequential
buffer
Basic interval
timer
SCK/P01
INTCS1
INT0/P10
General register
INT1/P11
INT2/P12
Interrupt
control
ROM
program
memory
16256 × 8 bits
INT4/P00
KR0-KR3/P60-P63
KR4-KR7/P70-P73
BUZ/P23
Decode
and control
Watch timer
RAM
data
memory
1024 × 4 bits
INTW
AVDD
AVREF+
AVREF–
AVSS
A/D
converter
AN0-AN3/P110-P113
AN4-AN7
fX/2N
MAR/P100
MAI/P101
MAZ/P102
Multi function
timer
Clock
output
control
Clock
divider
CPU clock
Φ
Clock generator
Sub
Main
Stand by
control
Port 11
MAT/P103
PCL/P22
INTMFT
XT1 XT2
X1
X2
VDD VSS RESET
P110-P113
µPD75036
PPO/P21
µPD75036
3. PIN FUNCTIONS
3.1
PORT PINS (1/2)
Pin
Input/
output
Shared
pin
P00
Input
INT4
P01
I/O
SCK
P02
I/O
SO/SB0
FF-B
P03
I/O
SI/SB1
MF-C
P10
Input
INT0
P11
INT1
P12
INT2
P13
TI0
P20
I/O
PTO0
P21
PPO
P22
PCL
P23
BUZ
P30Note 2
I/O
–
P31Note 2
–
P32Note 2
–
P33Note 2
–
Function
4-bit input port (PORT0).
For P01 - P03, pull-up resistors can be
provided by software in units of 3 bits.
8-bit
I/O
When reset
I/O circuit
typeNote 1
×
Input
B
FF-A
×
Input
BF-C
4-bit I/O port (PORT2).
Pull-up resistors can be provided by
software in units of 4 bits.
×
Input
E-B
Programmable 4-bit I/O port (PORT3).
I/O can be specified bit by bit. Pull-up
resistors can be provided by software in
units of 4 bits.
×
Input
E-B
With noise elimination function
4-bit input port (PORT1).
Pull-up resistors can be provided by
software in units of 4 bits.
P40 - P43 Note 2
I/O
–
N-ch open-drain 4-bit I/O port (PORT4).
A pull-up resistor can be provided for
each bit (mask option). This opendrain port has a withstand voltage of
10 V.
High level
(when pullup resistors
are provided)
or high
impedance
M
P50 - P53 Note 2
I/O
–
N-ch open-drain 4-bit I/O port (PORT5).
A pull-up resistor can be provided for
each bit (mask option). This open-drain
port has a withstand voltage of 10 V.
High level
(when pullup resistors
are provided)
or high
impedance
M
Notes 1. The circle (
) indicates the Schmitt trigger input.
2. Can directly drive the LED.
7
µPD75036
3.1
PORT PINS (2/2)
Pin
Input/
output
Shared
pin
P60
I/O
KR0
P61
KR1
P62
KR2
P63
KR3
P70
I/O
KR4
P71
KR5
P72
KR6
P73
KR7
4-bit I/O port (PORT7).
Pull-up resistors can be provided by
software in units of 4 bits.
Input
FF-A
Input
E-B
Input
E-D
4-bit I/O port (PORT8).
Pull-up resistors can be provided by
software in units of 4 bits.
P90-P93
I/O
–
4-bit I/O port (PORT9).
Pull-down resistors can be provided by
software in units of 4 bits.
P100Note 2
I/O
MAR
P101Note 2
MAI
P102Note 2
MAZ
P103Note 2
MAT
N-ch open-drain 4-bit I/O port (PORT10).
A pull-up resistor can be provided bit by bit
(mask option).
This open-drain port has a withstand
voltage of 10 V.
AN0
4-bit input port (PORT11)
AN1
P112
AN2
P113
AN3
Notes 1. The circle (
) indicates the Schmitt trigger input.
2. Can directly drive the LED.
I/O circuit
typeNote 1
FF-A
–
P111
When reset
Input
I/O
Input
8-bit
I/O
Programmable 4-bit I/O port (PORT6).
I/O can be specified bit by bit. Pull-up
resistors can be provided by software in
units of 4 bits.
P80-P83
P110
8
Function
×
×
High level
(when pull-up
resistors are
provided) or
high impedance
Input
M
Y-A
µPD75036
3.2
NON-PORT PINS (1/2)
Pin
Input/
output
Shared
pin
TI0
Input
P13
Input for receiving external event pulse signal for
timer/event counter
PTO0
I/O
P20
Timer/event counter output
Input
E-B
PCL
I/O
P22
Clock output
Input
E-B
BUZ
I/O
P23
Output for arbitrary frequency output (for buzzer
output or system clock trimming)
Input
E-B
SCK
I/O
P01
Serial clock I/O
Input
FF-A
SO/SB0
I/O
P02
Serial data output
Serial bus I/O
Input
FF-B
SI/SB1
I/O
P03
Serial data input
Serial bus I/O
Input
MF-C
INT4
Input
P00
Edge detection vectored interrupt input (either
rising edge or falling edge detection)
–
B
INT0
Input
P10
Edge detection vectored interrupt input
(detection edge selectable)
P11
INT1
Function
I/O circuit
typeNote 1
–
BF-C
–
BF-C
–
BF-C
Note 3
INT2
Input
P12
KR0 - KR3
I/O
P60 - P63
Parallel falling edge detection testable input
Input
FF-A
KR4-KR7
I/O
P70 - P73
Parallel falling edge detection testable input
Input
FF-A
MAR
I/O
P100
Reverse integration signal output
Note 4
M
MAI
I/O
P101
Integration signal output
Note 4
M
MAZ
I/O
P102
Autozero signal output
Note 4
M
MAT
I/O
P103
Comparator input
Note 4
M
PPO
I/O
P21
Timer pulse output
Input
E-B
AN0 - AN3
Input
8-bit analog input
Input
Y-A
AN4 - AN7
AVREF+
Input
AV REF-
Input
AVDD
AV SS
Edge detection testable input (rising edge
detection)
Note 2
When reset
In MFT
integral A/D
converter
mode
In MFT timer
mode
P110 - P113 For A /D
converter
–
only
–
Note 3
Y
Reference voltage input
(on AVDD side)
–
Z-A
–
Reference voltage input
(on AVSS side)
–
Z-A
–
–
Operating power supply
–
–
–
–
Reference GND potential
–
–
Notes 1. The circle (
) indicates the Schmitt trigger input.
2. Clock synchronous
3. Asynchronous
4. High level (when pull-up resistors are provided) or high impedance
Remark MFT: Multifunction Timer
9
µPD75036
3.2
NON-PORT PINS (2/2)
Pin
Input/
output
Shared
pin
Function
When reset
I/O circuit
typeNote
X1, X2
Input
–
Crystal/ceramic connection for main system clock
generation. When external clock signal is used, it
is applied to X1, and its reverse phase signal is
applied to X2.
–
–
XT1, XT2
Input
–
Crystal connection for subsystem clock generation. When external clock signal is used, it is
applied to XT1, and its reverse phase signal is
applied to XT2, XT1 can be used as a 1-bit input
(test).
–
–
RESET
Input
–
System reset input
–
B
IC
–
–
Internally connected. (To be directly connected to
VDD)
–
–
VDD
–
–
Positive power supply
–
–
VSS
–
–
GND potential
–
–
Note The circle (
10
) indicates the Schmitt trigger input.
µPD75036
3.3
PIN INPUT/OUTPUT CIRCUITS
The input/output circuit of each µPD75036 pin is shown below in a simplified manner.
(1/3)
Type A (For type E-B)
Type D (For type E-B, F-A)
VDD
VDD
Data
P-ch
P-ch
OUT
IN
N-ch
CMOS input buffer
Type B
Output
disable
N-ch
Push-pull output which can be set to high-impedance output
(off for both P-ch and N-ch)
Type E-B
VDD
P.U.R.
P.U.R.
enable
IN
P-ch
Data
IN/OUT
Type D
Output
disable
Type A
P.U.R.: Pull-Up Resistor
Schmitt trigger input with hysteresis
Type B-C
Type E-D
Data
VDD
Output
disable
IN/OUT
Type D
P.U.R.
P-ch
P.U.R.
enable
Type A
P.D.R.
enable
N-ch
IN
P.D.R.
P.U.R.: Pull-Up Resistor
P.D.R.: Pull-Down Resistor
11
µPD75036
(2/3)
Type F-A
Type M-C
VDD
VDD
P.U.R.
P.U.R.
P.U.R.
enable
P.U.R.
enable
P-ch
P-ch
IN/OUT
Data
IN/OUT
Type D
Data
Output
disable
N-ch
Output
disable
Type B
P.U.R.: Pull-Up Resistor
P.U.R.: Pull-Up Resistor
Type F-B
Type Y
VDD
P.U.R.
AVDD
P.U.R.
enable
Output
disable
(P)
P-ch
IN
VDD
P-ch
N-ch
+
Sampling C
AVDD
P-ch
–
IN/OUT
Data
AVSS
Output
disable
AVSS
N-ch
Output
disable
(N)
Reference voltage
(from voltage tap of
serial resistor string)
Input
enable
P.U.R.: Pull-Up Resistor
Type M
Type Y-A
VDD
IN
P.U.R.
enable
(Mask option)
IN/OUT
Input buffer
Data
Output
disable
N-ch
(Can sustain
+10 V)
IN
AVDD
P-ch
N-ch
AVDD
Sampling C
+
–
AVSS
AVSS
Middle-voltage input buffer
(Can sustain +10 V)
P.U.R.: Pull-Up Resistor
12
Reference voltage
(from voltage tap of
serial resistor string)
µPD75036
(3/3)
Type Z-A
AVREF+
Reference voltage
AVREF-
3.4
MASK OPTION SELECTION
The following mask options are available for selection for each pin.
Mask option
Pin name
P40 - P43,
P50 - P53,
P100-P103
1
Pull-up resistor provided
(specifiable bit by bit)
2
Pull-up resistor not provided
(specifiable bit by bit)
XT1, XT2
1
Feedback resistor provided
(if a subsystem clock is used)
2
Feedback resistor not provided
(if a subsystem clock is not used)
13
µPD75036
★
3.5 CONNECTION OF UNUSED PINS
Pin
Recommended connection
P00/INT4
To be connected to VSS
P01/SCK
To be connected to VSS or VDD
P02/SO/SB0
P03/SI/SB1
P10/INT0-P12/INT2
To be connected to VSS
P13/TI0
P20/PTO0
P21/PPO
Input state
: To be connected to VSS or
VDD
Output state:To be open
P22/PCL
P23/BUZ
P30-P33
P40-P43
P50-P53
P60/KR0-P63/KR3
P70/KR4-P73/KR7
P80-P83
P90-P93
P100/MAR
P101/MAI
P102/MAZ
P103/MAT
P110/AN0-P113/AN3
To be connected to VSS or VDD
AN4-AN7
AVREF+
To be connected to VSS
AVREFAVSS
14
AVDD
To be connected to VDD
XT1
To be connected to VSS or VDD
XT2
To be open
IC
To be directly connected to VDD
µPD75036
4. ARCHITECTURE AND MEMORY MAP OF THE µPD75036
The µPD75036 has two architectural features:
• Bank configuration of data memory : Static RAM (1024 words × 4 bits)
Peripheral hardware (128 × 4 bits)
• Memory mapped I/O
Fig. 4-1 and 4-2 show the memory maps for the µPD75036.
Fig. 4-1 Program Memory Map
Address
0000H
0002H
0004H
0006H
0008H
000AH
7
6
5
MBE
0
0
MBE
MBE
MBE
MBE
MBE
0
0
0
0
0
0
0
0
0
0
0
Internal reset start address
(high-order 6 bits)
Internal reset start address
(low-order 8 bits)
INTBT/INT4 start address
(high-order 6 bits)
INTBT/INT4 start address
(low-order 8 bits)
INT0 start address
(high-order 6 bits)
INT0 start address
(low-order 8 bits)
INT1 start address
(high-order 6 bits)
INT1 start address
(low-order 8 bits)
INTCSI start address
(high-order 6 bits)
INTCSI start address
(low-order 8 bits)
INTT0 start address
(high-order 6 bits) CALLF
!faddr
(low-order 8 bits) instruction
(high-order 6 bits) entry
address
(low-order 8 bits)
INTT0 start address
000CH
MBE
0
0
INTMFT start address
INTMFT start address
CALL !addr
instruction
subroutine
entry address
BR !addr
instruction
branch
address
BRCB
!caddr
instruction
branch
address
BR $addr
instruction
relative
branch
address
(-15 to -1,
+2 to +16)
Branch
address and
subroutine
entry
address
specified in
GETI
instruction
0020H
GETI instruction reference table
007FH
0080H
07FFH
0800H
0FFFH
1000H
BRCB !caddr instruction branch address
1FFFH
2000H
BRCB !caddr instruction branch address
2FFFH
3000H
BRCB !caddr instruction branch address
3F7FH
Remark In addition to the above, the BR PCDE and BR PCXA instructions can cause a branch to an address
with only the low-order 8 bits of the PC changed.
15
µPD75036
Fig. 4-2
Data Memory Map
Data memory
General
register
area
Stack
area
Memory bank
000H
(8 × 4)
007H
0
008H
256 × 4
0FFH
100H
Data area
Static RAM
(1024 × 4)
256 × 4
1
256 × 4
2
256 × 4
3
1FFH
200H
2FFH
300H
3FFH
Not contained
F80H
Peripheral
hardware area
128 × 4
FFFH
16
15
µPD75036
5. PERIPHERAL HARDWARE FUNCTIONS
5.1
PORTS
The µPD75036 has the following three types of I/O port:
• 12 CMOS input ports (Ports 0, 1, and 11)
• 24 CMOS I/O ports (Ports 2, 3, 6, 7, 8, and 9)
• 12 N-ch open-drain I/O ports (Ports 4, 5, and 10)
Total: 48 ports
Table 5-1
Port (symbol)
Function
Functions of Ports
Operation and feature
Remarks
PORT0
PORT1
4-bit input
Allows input and test at any time regardless of the operation
modes of dual function pins.
Also used as SO/SB0, SI/
SB1, SCK, INT0-INT2, INT4,
and TI0 pins.
PORT3Note
4-bit I/O
Allows input or output mode setting in units of one bit.
Port 6 is also used as KR0KR3 pins.
Allows input or output mode setting in units of four bits.
Ports 6 and 7 make a pair, allowing data I/O in units of
eight bits.
Port 2 is also used as PTO0,
PPO, PCL, and BUZ pins.
4-bit I/O
(N-ch
open-drain,
withstand
voltage:
10 V)
Allows input or output mode setting in units of four bits.
Ports 4 and 5 make a pair, allowing data I/O in units of
eight bits.
Use of an internal pull-up
registor can be maskprogrammed in units of one
bit.
PORT8
PORT9
4-bit I/O
Allows input or output mode setting in units of four bits.
PORT11
4-bit input
Port for 4-bit input
PORT6
PORT2
PORT7
PORT4Note
PORT5Note
PORT10Note
Also used as KR4-KR7 pins.
Port 10 is also used as
MAR, MAI, MAZ, and MAT
pins.
Port 11 is also used as AN0AN3 pins.
Note Ports 3, 4, 5 and 10 can directly drive an LED.
5.2
CLOCK GENERATOR
Operation of the clock generator is specified by the processor clock control register (PCC) and system clock control
register (SCC).
The main system clock or subsystem clock can be selected.
The instruction execution time is variable.
• 0.95 µ s, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz)
• 122 µ s (subsystem clock: 32.768 kHz)
17
µPD75036
Fig. 5-1
★
Block Diagram of the Clock Generator











XT1
VDD
XT2
Subsystem
clock generator
fXT
Main system
clock generator
fX
Clock timer
X1
Multifunction timers
Basic interval timer (BT)
Timer/event counter
Serial interface
Clock timer
A/D converter
(successive approximation)
• INT0 noise eliminator
• Clock output circuit
•
•
•
•
•
•
VDD
X2
1/2 to 1/4096
Frequency divider
1/2
WM.3
SCC
1/16
Selector
Oscillator
disable
signal
Frequency
divider
SCC3
Selector
1/4
Internal bus
SCC0
PCC
PCC0
Φ
 •CPU
 •INT0 noise
 eliminator
 •Clock

 output
 circuit
PCC1
4
HALT F/F
HALTNote
STOPNote
PCC2
S
PCC3
R
PCC2, PCC3
clear signal
STOP F/F
Q
Q
Wait release signal from BT
S
RESET signal
R
Standby release signal from
interrupt control circuit
Note Instruction execution
Remarks 1.
2.
3.
4.
5.
6.
18
fX : Main system clock frequency
fXT : Subsystem clock frequency
Φ = CPU clock
PCC: Processor clock control register
SCC: System clock control register
One clock cycle (tCY) of the CPU clock (Φ) is equal to one machine cycle of an instruction. See
Chapter 10 for details of tCY.
µPD75036
5.3 CLOCK OUTPUT CIRCUIT
The clock output circuit outputs a clock pulse signal on the P22/PCL pin for remote control or for supplying clock
pulses to a peripheral LSI device.
Fig. 5-2
Configuration of the Clock Output Circuit
From the clock
generator
Φ
f X/2
Output
buffer
3
Selector
f X/24
f X/2
PCL/P22
6
PORT2.2
CLOM3 CLOM2 CLOM1 CLOM0 CLOM
P22 output
latch
Bit 2 of PMGB
Port 2 input/
output mode
specification bit
4
Internal bus
Remark The clock output circuit is designed so that pulses with short widths do not appear in enabling or disabling
clock output.
19
µPD75036
5.4 BASIC INTERVAL TIMER
The basic interval timer provides the following functions:
• Interval timer operation that generates a reference time interrupt
• Application of watchdog timer for detecting program crashes
• Selection of a wait time for releasing the standby mode, and counting
• Reading the count value
Fig. 5-3
Configuration of the Basic Interval Timer
From the clock
generator
Clear signal
Clear signal
fX/25
Set
signal
7
fX/2
Basic interval timer
(8-bit frequency divider circuit)
MPX
9
BT interrupt
request flag
fX/2
12
BT
fX/2
3
BTM3
SET1Note
BTM2
BTM1
Wait release
signal for standby
release
BTM0
BTM
8
4
Internal bus
Note Instruction execution
20
IRQBT
Vectored
interrupt
request
signal
µPD75036
5.5 CLOCK TIMER
The µPD75036 contains one channel for a clock timer. The clock timer provides the following functions:
• The clock timer sets the test flag (IRQW) every 0.5 seconds.
The standby mode can be released with IRQW.
• Either the main system clock or subsystem clock can produce 0.5-second intervals.
• The fast-forward mode produces an interval 128 times faster (3.91 ms), which is useful for program debugging
and testing.
• An arbitrary frequency (2.048, 4.096, or 32.768 kHz) can be output to the P23/BUZ pin, so that it can be used
for sounding the buzzer and system clock frequency trimming.
• The frequency divider can be cleared, so the clock can start from zero seconds.
Fig. 5-4
Block Diagram of the Clock Timer
fW
27
fX

From
128
the  (32.768 kHz)
clock 
gener-
fXT
ator
 (32.768 kHz)
(256 Hz: 3.91 ms)
fW
fW
(32.768 kHz)
214
Selector
INTW
IRQW
set signal
Selector
Frequency divider
2 Hz
0.5 sec
4 kHz 2 kHz
Clear signal
Selector
Output buffer
P23/BUZ
WM
WM7
PORT2.3
WM6
WM5
WM4
WM3
8
WM2
WM1
WM0
P23 output
latch
Bit 2 of PMGB
Port 2 input/
output mode
Bit test instruction
Internal bus
The values in parentheses indicates are for fX = 4.194304 MHz and fXT = 32.768 kHz
21
µPD75036
5.6
TIMER/EVENT COUNTER
The µ PD75036 contains one channel of timer/event counter. The timer/event counter provides the following
functions:
• Programmable interval timer operation
• Output of a square wave at a given frequency to the PTO0 pin
• Event counter operation
• Frequency divider operation that divides TI0 pin input by N and outputs the result to the PTO0 pin
• Supply of serial shift clock signal to a serial interface circuit
• Function of reading the state of counting
22
Fig. 5-5
Block Diagram of the Timer/Event Counter
Internal bus
8
Note
SET1
TM0
8
8
TOE0
TMOD0
TM07 TM06 TM05 TM04 TM03 TM02 TM01 TM00
TO enable
flag
Modulo register (8)
PORT2.0
P20
output
latch
signal
Bit 2 of PGMB
Port 2
input/
output
mode
To serial
interface
8
PORT1.3
Match
Comparator (8)
8
TOUT
F/F
P20/PTO0
Reset
Input buffer
Output
buffer
T0
P13/
TI0
INTT0
From the
clock
generator





Count register (8)
CP
MPX
Clear signal
IRQT0
set signal
Timer operation start signal
(See Fig. 5-1.)
RESET
IRQT0 clear
signal
Note Instruction execution
µPD75036
23
µPD75036
5.7
SERIAL INTERFACE
The µPD75036 has three modes.
• Three-wire serial I/O mode (The first bit is switchable between MSB and LSB.)
• Two-wire serial I/O mode (The first bit is MSB.)
• SBI mode (The first bit is MSB.)
The three-wire serial I/O mode enables connections to be made with the 75X series, 78K series, and many other
types of I/O devices.
The two-wire serial I/O mode and SBI mode enable communication with two or more devices.
24
Fig. 5-6 Block Diagram of the Serial Interface
Internal bus
8/4
CSIM
Bit
test
Bit manipulation
8
8
Bit test
8
SBIC
Slave address register (SVA) (8)
Match signal
Address comparator
RELT
CMDT
(8)
P03/SI/SB1
SET CLR SO latch
D
Q
BSYE
(8)
ACKE
Shift register (SIO)
ACKT
Selector
P02/SO/SB0
Busy/
acknowledge
output circuit
Selector
Bus release/
command/
acknowledge
detection circuit
RELD
CMDD
ACKD
INTCSI
P01/SCK
Serial clock
counter
P01
output latch
Serial clock
control circuit
INTCSI
control circuit
IRQCSI
set signal
Serial clock
selector
External SCK
25
µPD75036
fX/23
fX/24
fX/26
TOUT F/F
(from timer/event counter)
µPD75036
5.8
A/D CONVERTER
The µ PD75036 contains an 8-bit resolution analog/digital (A/D) converter that has eight analog input channels
(AN0 - AN7).
The A /D converter employs the successive-approximation method.
Fig. 5-7 Configuration of the A/D Converter
Internal bus
8
0
ADM6 ADM5 ADM4
SOC
EOC
0
0
ADM
8
AN0/P110
Control circuit
AN1/P111
Sample and hold circuit
AN2/P112
+
AN3/P113
Multiplexer
SA register (8)
–
AN4
Comparator
AN5
AN6
8
AN7
Tap decoder
AVREF+
R/2
AVREF--
26
R
R
Series resistor string
R
R/2
µPD75036
5.9 MULTIFUNCTION TIMER (MFT)
The µPD75036 contains one multifunction timer (MFT). The MFT has four operation modes. Each mode provides
the following functions:
• 8-bit timer mode
• Operates as a programmable interval timer.
• Outputs a square wave of an arbitrary frequency on the PPO pin.
• PWM output mode
• Outputs a 6-bit, 7-bit, or 8-bit precision PWM signal on the PPO pin.
• 16-bit free-running timer mode
• Operates as an interval timer that generates an interrupt at specified time intervals.
• Usable as a one-shot timer.
• Integral A/D converter modes
• Outputs a control signal for a 16-bit integral A/D converter.
• Allows a resolution to be selected from 13 bits, 14 bits, 15 bits, and 16 bits.
27
28
Fig. 5-8 Block Diagram of the Multifunction Timer
Internal bus
8
8
Clear signal
Output latch
P21 P100 P101 P102
Selector
MAT/
P103
Edge
selector
Input/output
mode register
Count register (MFTL)
MAZ/P102
Modulo latch
Integral A/D
control circuit
MAI/P101
8
MAR/P100
fX/2
fX/23
fX/25
fX/27
Comparator
PPO/P21
Match
MFT
F/F
MPX
8
fX/29
Overflow
fX/211
Selector
Count register (MFTH)
Tap
selector
INTMFT
IRQMFT
set signal
Interrupt
selector
RESET
Selector
IRQMFT
clear signal
MFTM7 MFTM6 MFTM5 MFTM4 MFTM3 MFTM2 MFTM1 MFTM0 MFTM
1/4
Internal bus
µPD75036
8
MFTC3 MFTC2 MFTC1 MFTC0 MFTC
µPD75036
6. INTERRUPT FUNCTION
The µPD75036 has nine vectored interrupt sources and provides multiple interrupts by software control. It also
has two types of edge detected testable input pins.
The interrupt control circuitry of the µPD75036 has the following features:
• Vectored interrupts are controlled by the hardware. Whether to accept an interrupt is controlled by an interrupt
flag (IE×××) and interrupt master enable flag (IME).
• An interrupt start address can be freely set.
• An interrupt request flag (IRQ×××) can be tested. (Whether an interrupt has occurred can be checked by software.)
• A standby mode can be released. (What interrupt source to release can be selected using an interrupt enable
flag.)
29
30
Fig. 6-1 Block Diagram of Interrupt Control Circuit
Internal bus
2
2
2
IM2
IM1
IM0
IME
IST0
Interrupt enable flag (IE×××)
INT
BT
INT4/
P00
INT0/
P10
INT1/
P11
Note
Both-edge
detection
circuit
Edge
detection
circuit
Edge
detection
circuit
IRQ1
INTT0
IRQT0
INTW
Rising edge
detection
circuit
KR0/P60
Falling edge
detection
circuit
KR7/P73
IRQ0
IRQCSI
INTMFT
Selector
VRQn
IRQ4
INTCSI
INT2/
P12
Decoder
IRQBT
Priority control circuit
Vector table
address
generator
IRQMFT
IRQW
IRQ2
Note Noise eliminator
µPD75036
IM2
Standby release signal
µPD75036
7. STANDBY FUNCTION
To reduce the power consumption of the system waiting for a program input, the µPD75036 has two standby modes
STOP and HALT modes.
Table 7-1 Standby Modes and Operation Status
HALT mode
STOP mode
STOP instruction
HALT instruction
System clock at setting
This mode can be set only when the main
system clock is used.
This mode can be set when either the
main system clock or subsystem clock is
used.
Clock generator
Only the main system clock is stopped.
Only CPU clock Φ is stopped (with oscillation continued).
Basic interval
timer
Operation is stopped.
Operation is possible only when the main
system clock is oscillated. (Sets IRQBT at
reference time intervals)
Serial interface
Operation is possible only when external
Operation is possible only when external
SCK input is selected for the serial clock or
the main system clock is oscillated.
Operation status
Instruction for setting
SCK input is selected for the serial clock.
Timer/event
counter
Operation is possible only when TI0 pin input
is selected for the count clock.
Operation is possible only when TI0 pin
input is selected for the count count clock or
the main system clock is oscillated.
Clock timer
Operation is possible when fXT is selected for
the count clock.
Operation is possible.
A/D converter
Operation is stopped.
Operation is possible.Note
Multifunction timer
Operation is stopped.
Operation is possible.Note
External interrupt
INT1, INT2, and INT4 are enabled. INT0 is disabled.
CPU
Operation is stopped.
Release signal
Interrupt request signals sent out from
hardware, which are enabled by interrupt
enable flags, or RESET input
Interrupt request signals sent out from
hardware, which are enabled by interrupt
enable flags, or RESET input
Note Operation is possible only when the main system clock operates.
8. RESET FUNCTION
The µPD75036 is reset by RESET signal input.
31
µPD75036
9. INSTRUCTION SET
(1) Operand identifier and its descriptive method
The operands are described in the operand column of each instruction according to the descriptive method
for the operand format of the appropriate instructions (refer to RA75X Assembler Package User's Manual,
Language (EEU-1363) for details). For descriptions in which alternatives exist, one element should be
selected. Capital letters and plus and minus signs are keywords; therefore, they should be described as
they are.
For immediate data, the appropriate numerical values or labels should be described.
Identifier
Description
reg
reg1
X, A, B, C, D, E, H, L
X, B, C, D, E, H, L
rp
rp1
rp2
XA, BC, DE, HL
BC, DE, HL
BC, DE
rpa
rpa1
HL, DE, DL
DE, DL
n4
n8
4-bit immediate data or label
8-bit immediate data or label
memNote
bit
8-bit immediate data or label
2-bit immediate data or label
fmem
pmem
FB0H - FBFH, FF0H - FFFH immediate data or label
FC0H - FFFH immediate data or label
addr
caddr
faddr
0000H - 3F7FH immediate data or label
12-bit immediate data or label
11-bit immediate data or label
taddr
20H - 7FH immediate data (however, bit 0 = 0) or label
PORTn
PORT0 - PORT11
IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW, IEMFT
MB0, MB1, MB2, MB3, MB15
IE×××
MBn
Note Only even address can be specified for mem when processing 8-bit data.
(2) Symbol definitions in operation description
32
A
: A register; 4-bit accumulator
B
: B register
C
: C register
D
: D register
E
: E register
H
: H register
L
: L register
µPD75036
X
: X register
XA
: Pair register (XA); 8-bit accumulator
BC
: Pair register (BC)
DE
: Pair register (DE)
HL
: Pair register (HL)
PC
: Program counter
SP
: Stack pointer
CY
: Carry flag; Bit accumulator
PSW
: Program status word
MBE
: Memory bank enable flag
PORTn : Port n (n = 0 to 11)
IME
: Interrupt master enable flag
IE×××
: Interrupt enable flag
MBS
: Memory bank selection register
PCC
: Processor clock control register
.
: Address bit delimiter
(××)
: Contents addressed by ××
××H
: Hexadecimal data
(3) Explanation of the symbols in the addressing area field
*1
MB = MBE•MBS
(MBS = 0, 1, 2, 3, or 15)
*2
MB = 0
*3
MBE = 0: MB = 0 (00H-7FH)
MB = 15 (80H-FFH)
MBE = 1: MB = MBS (MBS = 0, 1, 2, 3, or 15)
*4
MB = 15, fmem = FB0H-FBFH or
FF0H-FFFH
*5
MB = 15, pmem = FC0H-FFFH
*6
addr = 0000H-3F7FH
*7
addr = (Current PC) - 15 to (Current PC) - 1 or
(Current PC) + 2 to (Current PC) + 16
*8
caddr = 0000H-0FFFH (PC13,12 = 00B) or
1000H-1FFFH (PC13,12 = 01B) or
2000H-2FFFH (PC13,12 = 10B) or
3000H-3F7FH (PC13,12 = 11B)
*9
faddr = 0000H-07FFH
*10
taddr = 0020H-007FH
Data memory
addressing
Program
memory
addressing
Remarks 1. MB indicates an accessible memory bank.
2. For *2, MB is always 0 irrespective of MBE and MBS.
3. For *4 and *5, MB is always 15 irrespective of MBE and MBS.
4. *6 to *10 indicate each addressable area.
33
µPD75036
(4) Description of machine cycle column
S indicates the number of machine cycles necessary for skipping any skip instruction. The value of S changes
as follows:
• When no skip is performed···················································································································
S=0
• When a 1-byte or 2-byte instruction is skipped ···················································································
S=1
• When a 3-byte instruction (BR !addr, CALL !addr instruction) is skipped ·········································
S=2
Caution The GETI instruction is skipped in one machine cycle.
One machine cycle is equivalent to one CPU clock Φ cycle (tCY). Therefore, the length of the machine cycle can
be selected from three different lengths by the PCC setting.
34
µPD75036
Group
Transfer
Mnemonic
Operand
MachinBytes ing
cycle
Operation
Addressing area
Skip
condition
A, #n4
1
1
A ← n4
reg1, #n4
2
2
reg1 ← n4
XA, #n8
2
2
XA ← n8
String A
HL, #n8
2
2
HL ← n8
String B
rp2, #n8
2
2
rp2 ← n8
A, @HL
1
1
A ← (HL)
*1
A, @rpa1
1
1
A ← (rpa1)
*2
XA, @HL
2
2
XA ← (HL)
*1
@HL, A
1
1
(HL) ← A
*1
@HL, XA
2
2
(HL) ← XA
*1
A, mem
2
2
A ← (mem)
*3
XA, mem
2
2
XA ← (mem)
*3
mem, A
2
2
(mem) ← A
*3
mem, XA
2
2
(mem) ← XA
*3
A, reg1
2
2
A ← reg1
XA, rp
2
2
XA ← rp
reg1, A
2
2
reg1 ← A
rp1, XA
2
2
rp1 ← XA
A, @HL
1
1
A ↔ (HL)
*1
A, @rpa1
1
1
A ↔ (rpa1)
*2
XA, @HL
2
2
XA ↔ (HL)
*1
A, mem
2
2
A ↔ (mem)
*3
XA, mem
2
2
XA ↔ (mem)
*3
A, reg1
1
1
A ↔ reg1
XA, rp
2
2
XA ↔ rp
XA, @PCDE
1
3
XA ← (PC13-8 + DE)ROM
XA, @PCXA
1
3
XA ← (PC13-8 + XA)ROM
A, #n4
1
1+S
A ← A + n4
A, @HL
1
1+S
A ← A + (HL)
*1
ADDC
A, @HL
1
1
A, CY ← A + (HL) + CY
*1
SUBS
A, @HL
1
1+S
A ← A – (HL)
*1
SUBC
A, @HL
1
1
A, CY ← A – (HL) – CY
*1
AND
A, #n4
2
2
A, @HL
1
1
A, #n4
2
2
A, @HL
1
1
A, #n4
2
2
A, @HL
1
1
MOV
XCH
Table
reference
MOVT
Arithmetic
ADDS
OR
XOR
∧ n4
A ← A ∧ (HL)
A ← A ∨ n4
A ← A ∨ (HL)
A ← A ∨ n4
A ← A ∨ (HL)
String A
carry
carry
borrow
A←A
*1
*1
*1
35
µPD75036
Group
Accumulator
manipulation
Increment/
decrement
Comparison
Carry
flag
manipulation
Memory
bit
manipulation
Mnemonic
MachinBytes ing
cycle
Operation
Addressing area
Skip
condition
RORC
A
1
1
CY ← A0, A3 ← CY, An–1 ← An
NOT
A
2
2
A←A
INCS
reg
1
1+S
reg ← reg + 1
@HL
2
2+S
(HL) ← (HL) + 1
*1
(HL) = 0
mem
2
2+S
(mem) ← (mem) + 1
*3
(mem) = 0
DECS
reg
1
1+S
reg ← reg – 1
reg = FH
SKE
reg, #n4
2
2+S
Skip if reg = n4
reg = n4
@HL, #n4
2
2+S
Skip if (HL) = n4
*1
(HL) = n4
A, @HL
1
1+S
Skip if A = (HL)
*1
A = (HL)
A, reg
2
2+S
Skip if A = reg
SET1
CY
1
1
CY ← 1
CLR1
CY
1
1
CY ← 0
SKT
CY
1
1+S
NOT1
CY
1
1
CY ← CY
SET1
mem.bit
2
2
(mem.bit) ← 1
*3
fmem.bit
2
2
(fmem.bit) ← 1
*4
pmem. @L
2
2
(pmem7-2 + L3-2.bit(L1-0)) ← 1
*5
@H+mem.bit
2
2
(H + mem3-0.bit) ← 1
*1
mem.bit
2
2
(mem.bit) ← 0
*3
fmem.bit
2
2
(fmem.bit) ← 0
*4
pmem. @L
2
2
(pmem7-2 + L3-2.bit(L1-0)) ← 0
*5
@H+mem.bit
2
2
(H + mem3-0.bit) ← 0
*1
mem.bit
2
2+S
Skip if (mem.bit) = 1
*3
(mem.bit) = 1
fmem.bit
2
2+S
Skip if (fmem.bit) = 1
*4
(fmem.bit) = 1
pmem. @L
2
2+S
Skip if (pmem7-2 + L 3-2.bit(L1-0)) = 1
*5
(pmem.@L) = 1
@H+mem.bit
2
2+S
Skip if (H + mem3-0.bit) = 1
*1
(@H + mem.bit) = 1
mem.bit
2
2+S
Skip if (mem.bit) = 0
*3
(mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 0
*4
(fmem.bit) = 0
pmem. @L
2
2+S
Skip if (pmem7-2 + L 3-2.bit(L1-0)) = 0
*5
(pmem.@L) = 0
@H+mem.bit
2
2+S
Skip if (H + mem3-0.bit) = 0
*1
(@H + mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 1 and clear
*4
(fmem.bit) = 1
pmem. @L
2
2+S
Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1 and clear
*5
(pmem.@L) = 1
@H+mem.bit
2
2+S
Skip if (H + mem 3-0.bit) = 1 and clear
*1
(@H + mem.bit) = 1
CY, fmem.bit
2
2
CY, pmem. @L
2
2
CY, @H+mem.bit
2
2
CY, fmem.bit
2
2
CY, pmem. @L
2
2
CY, @H+mem.bit
2
2
CLR1
SKT
SKF
SKTCLR
AND1
OR1
36
Operand
reg = 0
A = reg
CY = 1
Skip if CY = 1
∧ (fmem.bit)
CY ← CY ∧ (pmem7-2 + L 3-2.bit(L1-0 ))
CY ← CY ∧ (H + mem3-0.bit)
CY ← CY ∨ (fmem.bit)
CY ← CY ∨ (pmem7-2 + L 3-2.bit(L1-0 ))
CY ← CY ∨ (H + mem3-0.bit)
CY ← CY
*4
*5
*1
*4
*5
*1
µPD75036
Group
Mnemonic
MachinBytes ing
cycle
Addressing area
Operation
∨ (fmem.bit)
CY ← CY ∨ (pmem7-2 + L3-2.bit(L1-0))
CY ← CY ∨ (H + mem3-0.bit)
CY ← CY
CY, fmem.bit
2
2
CY, pmem.@L
2
2
CY, @H+mem.bit
2
2
addr
–
–
PC13-0 ← addr
(Appropriate instructions are
selected from BR !addr, BRCB
!caddr, and BR $addr by the
assembler.)
*6
!addr
3
3
PC13-0 ← addr
*6
$addr
1
2
PC13-0 ← addr
*7
BRCB
!caddr
2
2
PC13-0 ← PC13, 12 + caddr11-0
*8
CALL
!addr
3
3
(SP – 4)(SP – 1)(SP – 2) ← PC11-0
(SP – 3) ← MBE, 0, PC13, PC12
PC13-0 ← addr, SP ← SP – 4
*6
CALLF
!faddr
2
2
(SP – 4)(SP – 1)(SP – 2) ← PC11-0
*9
Memory
bit
manipulation
XOR1
Branch
BR
Subroutine
stack
control
Operand
Skip
condition
*4
*5
*1
(SP–3) ← MBE, 0, PC13, PC12
PC13-0 ← 000, faddr, SP ← SP – 4
1
3
RETS
1
3+S
RETI
1
3
MBE, 0, PC13, PC12 ← (SP + 1)
PC11-0 ← (SP)(SP + 3)(SP + 2)
PSW ← (SP + 4)(SP + 5), SP ← SP + 6
rp
1
1
(SP – 1)(SP – 2) ← rp, SP ← SP – 2
BS
2
2
(SP – 1) ← MBS, (SP – 2) ← 0, SP ← SP – 2
rp
1
1
rp ← (SP + 1)(SP), SP ← SP + 2
BS
2
2
MBS ← (SP + 1), SP ← SP + 2
2
2
IME ← 1
2
2
IE××× ← 1
2
2
IME ← 0
IE×××
2
2
IExxx ← 0
A, PORTn
2
2
A ← PORTn
XA, PORTn
2
2
XA ← PORTn+1,PORTn (n = 4, 6)
PORTn, A
2
2
PORTn ← A
PORTn, XA
2
2
PORTn+1 ,PORTn ← XA (n = 4, 6)
HALT
2
2
Set HALT Mode
(PCC.2 ← 1)
STOP
2
2
Set STOP Mode
(PCC.3 ← 1)
NOP
1
1
No Operation
PUSH
POP
Interrupt
control
EI
IE×××
DI
Input/
output
INNote
OUTNote
CPU
control
MBE, 0, PC13, PC12 ← (SP + 1)
PC11-0 ← (SP)(SP + 3)(SP + 2)
SP ← SP + 4
RET
MBE, 0, PC13, PC12 ← (SP + 1)
PC11-0 ← (SP)(SP + 3)(SP + 2)
SP ← SP + 4, then skip unconditionally
Unconditional
(n = 0 - 11)
(n = 2 - 10)
37
µPD75036
Group
Special
Mnemonic
Operand
MachinBytes ing
cycle
Operation
SEL
MBn
2
2
MBS ← n (n = 0, 1, 2, 3, or 15)
GETI
taddr
1
3
•
For the TBR instruction
PC 13-0 ← (taddr)5-0 + (taddr + 1)
---------------------------------------------•
For the TCALL instruction
(SP – 4)(SP – 1)(SP – 2) ← PC11-0
(SP – 3) ← MBE, 0, PC13, PC12
PC 13-0 ← (taddr)5-0 + (taddr + 1)
SP ← SP – 4
---------------------------------------------•
For other than the TBR and
TCALL instruction
(taddr) (taddr + 1) is executed.
Addressing area
Skip
condition
*10
-----------------
----------------Depends
on the
reference
instruction
Caution When executing the IN/OUT instruction, MBE must be set to 0 or MBE and MBS must be set to
1 and 15, respectively.
38
µPD75036
10. ELECTRICAL CHARACTERISTICS
★
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)
Parameter
Symbol
Conditions
Rated value
Unit
–0.3 to +7.0
V
Supply voltage
VDD
Input voltage
VI1
Ports other than ports 4, 5, and 10
–0.3 to VDD + 0.3
V
VI2
Ports 4, 5, Built-in pull-up resistor
and 10
Open drain
–0.3 to VDD + 0.3
V
–0.3 to +11
V
–0.3 to VDD + 0.3
V
1 pin
–10
mA
All pins
–30
mA
Peak value
30
mA
rms
15
mA
1 pin of ports other than ports 0,
3, 4 and 5
Peak value
20
mA
5
mA
Total of all pins of ports 3 to 9
and 11
Peak value
170
mA
rms
120
mA
Total of all pins of ports 0, 2,
and 10
Peak value
30
mA
rms
20
mA
Output voltage
VO
High-level output
current
IOH
Low-level output
current
IOLNote
1 pin of parts 0, 3, 4, and 5
rms
Operating temperature
Topt
–40 to +85
˚C
Storage temperature
Tstg
–65 to +150
˚C
Note Calculate rms with [rms] = [peak value] × √duty.
39
µPD75036
CHARACTERISTICS OF THE MAIN SYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)
Resonator
Recommended
constant
Ceramic
resonator
X1
X2 VDD
C2
C1
VDD
Crystal
resonator
X1
C1
X2 VDD
C2
VDD
External
clock
X1
X2
Parameter
Conditions
Min.
Max.
Unit
5.0
MHz
4
ms
5.0Note 3
MHz
10
ms
30
ms
1.0
5.0
MHz
100
500
ns
Typ.
1.0
Oscillator
frequency
(f X) Note 1
Oscillation
settling time
Note 2
1.0
Oscillator
frequency
(fX) Note 1
Oscillation
settling time
4.19
VDD = 4.5 to 6.0 V
Note 2
X1 input
frequency
(fX) Note 1
X1 input
µ PD74HCU04 high/low
level width
(tXH, tXL)
Notes 1. The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item
of AC characteristics for the instruction execution time.
2. The oscillation settling time means the time required for the oscillation to settle after VDD is applied or
after the STOP mode is released.
3. When 4.19 MHz < fX ≤ 5.0 MHz, do not select PCC = 0011 as the instruction execution time. When PCC
= 0011, one machine cycle falls short of 0.95 µs, the minimum value for the standard.
Caution When the main system clock oscillator is used, conform to the following guidelines when wiring
at the portions of surrounded by dotted lines in the figures above to eliminate the influence of
the wiring capacity.
• The wiring must be as short as possible.
• Other signal lines must not run in these areas.
• Any line carrying a high fluctuating current must be kept away as far as possible.
• The grounding point of the capacitor of the oscillator must have the same potential as that of
VDD. It must not be grounded to ground patterns carrying a large current.
• No signal must be taken from the oscillator.
40
µPD75036
CHARACTERISTICS OF THE SUBSYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)
Recommended
constant
Resonator
Crystal
resonator
XT1 XT2 VDD
R
C3
C4
VDD
External
clock
XT1
Notes 1.
2.
Parameter
Conditions
Oscillator
frequency
(fXT) Note 1
Oscillation
settling time
Min.
Typ.
Max.
Unit
32
32.768
35
kHz
1.0
2
s
10
s
VDD = 4.5 to 6.0 V
Note 2
XT2
XT1 input
frequency
(fXT ) Note 1
32
100
kHz
XT1 input
high/low
level width
(tXTH, tXTL )
5
15
µs
The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item
of AC characteristics for the instruction execution time.
The oscillation settling time means the time required for the oscillation to settle after VDD reaches Min.
of the oscillation voltage range.
Caution When the subsystem clock oscillator is used, conform to the following guidelines when wiring
at the portions of surrounded by dotted lines in the figures above to eliminate the influence of
the wiring capacity.
• The wiring must be as short as possible.
• Other signal lines must not run in these areas.
• Any line carrying a high fluctuating current must be kept away as far as possible.
• The grounding point of the capacitor of the oscillator must have the same potential as that of
VDD. It must not be grounded to ground patterns carrying a large current.
• No signal must be taken from the oscillator.
When the subsystem clock is used, pay special attention to its wiring; the subsystem clock
oscillator has low amplification to minimize current consumption and is more likely to malfunction due to noise than the main system clock oscillator.
CAPACITANCE (Ta = 25 °C, VDD = 0 V)
Parameter
Symbol
Input capacitance
CI
Output capacitance
CO
I/O capacitance
CIO
Conditions
f = 1 MHz
0 V for pins other than pins to be
measured
Min.
Typ.
Max.
Unit
15
pF
15
pF
15
pF
41
µPD75036
DC CHARACTERISTICS (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)
Parameter
High-level input
voltage
Low-level input
voltage
High-level output
voltage
Low-level output
voltage
High-level input
leakage current
Symbol
Min.
Max.
Unit
0.7VDD
VDD
V
Ports 0, 1, 6, and 7 and RESET
0.8VDD
VDD
V
Ports 4, 5, Built-in pull-up resistor
and 10
Open drain
0.7VDD
VDD
V
0.7VDD
10
V
VDD – 0.5
VDD
V
Conditions
VIH1
Ports 2, 3, 8, 9, and 11
VIH2
VIH3
Typ.
VIH4
X1, X2, XT1, and XT2
VIL1
Ports 2 to 5 and 8 to 11
0
0.3VDD
V
VIL2
Ports 0, 1, 6, and 7 and RESET
0
0.2VDD
V
VIL3
X1, X2, XT1, and XT2
0
0.4
V
VOH
VDD = 4.5 to 6.0 V, IOH = –1 mA
VDD – 1.0
V
IOH = –100 µA
VDD – 0.5
V
VOL
ILIH1
Ports 3, 4, VDD = 4.5 to 6.0 V, IOL = 15 mA
and 5
0.5
2.0
V
VDD = 4.5 to 6.0 V, IOL = 1.6 mA
0.4
V
IOL = 400 µA
0.5
V
0.2VDD
V
SB0 and
SB1
Open drain
Pull-up resistor: 1 kΩ or more
VI = VDD
Other than X1, X2, XT1, and XT2
3
µA
X1, X2, XT1, and XT2
20
µA
ILIH2
ILIH3
VI = 10 V
Ports 4, 5, and 10 (open drain)
20
µA
Low-level input
leakage current
ILIL1
VI = 0 V
Other than X1, X2, XT1, and XT2
–3
µA
X1, X2, XT1, and XT2
–20
µA
High-level output
leakage current
ILOH1
VO = VDD
3
µA
ILOH2
VO = 10 V Ports 4, 5, and 10 (open drain)
20
µA
Low-level output
leakage current
ILOL
VO = 0 V
–3
µA
Built-in pull-up
resistor
RU1
Ports 0, 1, 2, 3, 6, 7,
and 8 (excl. P00)
VI = 0 V
VDD = 5.0 V ±10 %
15
80
kΩ
VDD = 3.0 V ±10 %
30
300
kΩ
Ports 4, 5, and 10
VO = VDD – 2.0 V
VDD = 5.0 V ±10 %
15
70
kΩ
VDD = 3.0 V ±10 %
10
60
kΩ
Port 9
VDD = 5.0 V ±10 %
10
70
kΩ
VI = VDD
VDD = 3.0 V ±10 %
10
60
kΩ
ILIL2
RU2
Built-in pull-down
resistor
42
RD
Other than ports 4, 5, and 10
40
40
40
µPD75036
Parameter
Power supply
currentNote 1
Symbol
IDD1
IDD2
IDD3
IDD4
IDD5
Typ.
Max.
VDD = 5 V ±10
%Note 3
4.19
crystal resonance
C1 = C2
= 22 pF
3.2
10
mA
VDD = 3 V ±10
%Note 4
0.25
0.75
mA
HALT mode
VDD = 5 V ±10 %
500
1500
µA
Unit
VDD = 3 V ±10 %
150
450
µA
32.768 kHzNote 5
crystal
HALT mode
resonance
VDD = 3 V ±10 %
15
45
µA
VDD = 3 V ±10 %
5
15
µA
XT1 = 0 V
STOP mode
VDD = 5 V ±10 %
0.5
20
µA
0.1
10
µA
0.1
5
µA
VDD =
3 V ±10 %
Notes 1.
Min.
Conditions
MHzNote 2
Ta = 25 ˚C
This current excludes the current which flows through the built-in pull-up resistors.
2.
This value applies also when the subsystem clock oscillates.
3.
Value when the processor clock control register (PCC) is set to 0011 and the µPD75036 is operated
in the high-speed mode
4.
Value when the PCC is set to 0000 and the µPD75036 is operated in the low-speed mode
5.
This value applies when the system clock control register (SCC) is set to 1001 to stop the main system
clock pulse and to start the subsystem clock pulse.
43
µPD75036
AC CHARACTERISTICS (Ta = -40 to +85 °C, VDD = 2.0 to 6.0 V)
Parameter
Symbol
CPU clock cycle time
(minimum instruction
execution time = 1
machine cycle)Note 1
tCY
TI0 input frequency
fTI
VDD = 4.5 to 6.0 V
Operated by
subsystem clock
pulse
Max.
Unit
0.95
64
µs
3.8
64
µs
125
µs
0
1
MHz
0
275
kHz
122
0.48
µs
1.8
µs
Note 2
µs
INT1, INT2, and INT4
10
µs
KR0 to KR7
10
µs
10
µs
tTIH,
tTIL
VDD = 4.5 to 6.0 V
Interrupt input high/low
level width
tINTH,
tINTL
INT0
tRSL
Notes 1. The cycle time of the CPU clock (Φ)
tCY vs VDD
depends on the connected resonator
(Main system clock in operation)
70
frequency, the system clock control reg-
64
60
ister (SCC), and the processor clock
control register (PCC).
The figure on the right side shows the
6
cycle time tCY characteristics for the supply
5
voltage VDD during main system clock
2. This value becomes 2tCY or 128/fX according to the setting of the interrupt
Operation guaranteed
range
4
Cycle time tCY [ µs]
operation.
mode register (IM0).
Typ.
114
VDD = 4.5 to 6.0 V
TI0 input high/low level
width
RESET low level width
Min.
Conditions
Operated by main
system clock
pulse
3
2
1
0.5
0
1
2
3
4
5
Power supply voltage VDD [V]
44
6
µPD75036
Serial transfer operation
Two-wire and three-wire serial I/O modes (SCK ... Internal clock output):
Parameter
SCK cycle time
Symbol
tKCY1
Conditions
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
Min.
Typ.
Max.
Unit
1600
ns
3800
ns
tKCY1/2 – 50
ns
SCK high/low level
width
tKL1
tKH1
tKCY1/2 – 150
ns
SI setup time
tSIK1
150
ns
tKSI1
400
ns
(referred to SCK↑)
SI hold time
(referred to SCK↑)
Delay time from
tKSO1
SCK↓ to SO output
RL = 1 kΩ,
CL = 100 pFNote
VDD = 4.5 to 6.0 V
0
250
ns
0
1000
ns
Max.
Unit
Two-wire and three-wire serial I/O modes (SCK ... External clock input):
Parameter
SCK cycle time
Symbol
tKCY2
Conditions
VDD = 4.5 to 6.0 V
Min.
Typ.
800
ns
3200
ns
400
ns
SCK high/low level
width
tKL2
tKH2
1600
ns
SI setup time
tSIK2
100
ns
tKSI2
400
ns
VDD = 4.5 to 6.0 V
(referred to SCK↑)
SI hold time
(referred to SCK↑)
Delay time from
SCK↓ to SO output
tKSO2
RL = 1 kΩ,
CL = 100 pFNote
VDD = 4.5 to 6.0 V
0
300
ns
0
1000
ns
Note RL and CL are the resistance and capacitance of the SO output line load respectively.
45
µPD75036
SBI mode (SCK ... Internal clock output (master)):
Parameter
Conditions
Symbol
Min.
Typ.
Max.
Unit
1600
ns
3800
ns
tKCY3/2 - 50
ns
tKH3
tKCY3/2 - 150
ns
SB0/SB1 setup time
(referred to SCK↑)
tSIK3
150
ns
SB0/SB1 hold time
(referred to SCK↑)
tKSI3
tKCY3/2
ns
Delay time from SCK↓
to SB0/SB1 output
tKSO3
From SCK↑ to SB0/SB1↓
tKSB
tKCY3
ns
From SB0/SB1↓ to SCK↓
tSBK
tKCY3
ns
SB0/SB1 low level width
tSBL
tKCY3
ns
SB0/SB1 high level width
tSBH
tKCY3
ns
SCK cycle time
SCK high/low level
width
tKCY3
tKL3
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
RL = 1 kΩ,
CL = 100 pFNote
VDD = 4.5 to 6.0 V
0
250
ns
0
1000
ns
SBI mode (SCK ... External clock input (slave)):
Parameter
Symbol
Min.
Typ.
Max.
Unit
800
ns
3200
ns
400
ns
tKH4
1600
ns
SB0/SB1 setup time
(referred to SCK↑)
tSIK4
100
ns
SB0/SB1 hold time
(referred to SCK↑)
tKSI4
tKCY4/2
ns
Delay time from SCK↓
to SB0/SB1 output
tKSO4
From SCK↑ to SB0/SB1↓
tKSB
tKCY4
ns
From SB0/SB1↓ to
SCK↓
tSBK
tKCY4
ns
SB0/SB1 low level width
tSBL
tKCY4
ns
SB0/SB1 high level width
tSBH
tKCY4
ns
SCK cycle time
SCK high/low level
width
tKCY4
Conditions
tKL4
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
RL = 1 kΩ,
CL = 100 pFNote
VDD = 4.5 to 6.0 V
0
300
ns
0
1000
ns
Note RL and CL are the resistance and capacitance of the SB0/SB1 output line load respectively.
46
µPD75036
A/D converter (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V, AVSS = VSS = 0 V)
Parameter
Conditions
Symbol
Resolution
Absolute accuracyNote 1
2.5 V ≤ AVREF ≤ VDD
Min.
Typ.
8
8
-10 ≤ Ta ≤ +85˚C
Max.
Unit
8
bit
±1.5
LSB
±2.0
-40 ≤ Ta < -10˚C
Conversion timeNote 2
tCONV
168/fX
µs
Sampling timeNote 3
tSAMP
44/fX
µs
Analog input voltage
VIAN
AVREF-
AVREF+
V
Analog power supply
voltage
AVDD
2.5
VDD
V
Reference input
voltageNote4
AVREF+
2.5 V ≤ (AVREF +) – (AVREF -)
2.5
AVDD
V
Reference output
voltageNote 4
AVREF-
2.5 V ≤ (AVREF +) – (AVREF -)
0
1.0
V
Analog input impedance
AV REF current
RAN
1000
AI REF
1.0
MΩ
2.0
mA
Notes 1. Absolute accuracy excluding quantization error (±1/2 LSB)
2. Time from the execution of a conversion start instruction till the end of conversion (EOC = 1)
(40.1 µ s: fX = 4.19 MHz)
3. Time from the execution of a conversion start instruction till the end of sampling (10.5 µ s: f X =
4.19 MHz)
4. The value resulting from subtracting (AVREF–) from (AVREF+) must be greater than or equal to 2.5 V.
47
µPD75036
AC Timing Measurement Points (Excluding (X1 and XT1 Inputs)
0.8VDD
0.8VDD
Measurement
point
0.2VDD
0.2VDD
Clock Timing
1/fX
tXL
tXH
VDD – 0.5 V
X1 input
0.4 V
1/fXT
tXTL
tXTH
VDD – 0.5 V
XT1 input
0.4 V
TI0 Timing
1/fTI
tTIL
TI0
48
tTIH
µPD75036
Serial Transfer Timing
Three-wire serial I/O mode:
tKCY1
tKL1
tKH1
SCK
tSIK1
tKSI1
Input data
SI
tKSO1
Output data
SO
Two-wire serial I/O mode:
tKCY2
tKL2
tKH2
SCK
tSIK2
tKSI2
SB0 and SB1
tKSO2
49
µPD75036
Serial Transfer Timing
Bus release signal transfer:
tKCY3
tKCY4
tKL3
tKL4
tKH3
tKH4
SCK
tKSB
tSBL
tSBH
tSIK3
tSIK4
tSBK
SB0 and SB1
tKSO3
tKSO4
Command signal transfer:
tKCY3
tKCY4
tKL3
tKL4
tKH3
tKH4
SCK
tKSB
tSIK3
tSIK4
tSBK
SB0 and SB1
tKSO3
tKSO4
Interrupt Input Timing
tINTL
INT0, INT1, INT2
and INT4
KR0-KR7
RESET Input Timing
tRSL
RESET
50
tINTH
tKSI3
tKSI4
tKSI3
tKSI4
µPD75036
DATA HOLD CHARACTERISTICS BY LOW SUPPLY VOLTAGE IN DATA MEMORY STOP MODE
(Ta = -40 to +85 °C)
Parameter
Symbol
Data hold supply voltage
VDDDR
Data hold supply currentNote 1
IDDDR
Release signal setting time
tSREL
Oscillation settling timeNote 2
tWAIT
Notes 1.
2.
3.
Conditions
Min.
Typ.
Max.
Unit
6.0
V
10
µA
2.0
VDDDR = 2.0 V
0.1
µs
0
Release by RESET
217/f X
ms
Release by interrupt request
Note 3
ms
Excluding the current which flows through the built-in pull-up resistors
CPU operation stop time for preventing unstable operation at the beginning of oscillation
This value depends on the settings of the basic interval timer mode register (BTM) shown below.
Wait time
(Values at fx = 4.19 MHz in parentheses)
BTM3
BTM2
BTM1
BTM0
—
0
0
0
220/fX (approx. 250 ms)
—
0
1
1
217/fX (approx. 31.3 ms)
—
1
0
1
215/fX (approx. 7.82 ms)
—
1
1
1
213/fX (approx. 1.95 ms)
Data Hold Timing (STOP Mode Release by RESET)
Internal reset operation
HALT mode
Operation
mode
STOP mode
Data hold mode
VDD
VDDDR
tSREL
STOP instruction execution
RESET
tWAIT
Data Hold Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)
HALT mode
Operation
mode
STOP mode
Data hold mode
VDD
VDDDR
tSREL
STOP instruction execution
Standby release signal
(Interrupt request)
tWAIT
51
µPD75036
11. PACKAGE DIMENSIONS
64 PIN PLASTIC SHRINK DIP (750 mil)
64
33
1
32
A
K
H
G
J
I
L
F
D
N
M
NOTE
M
B
C
ITEM MILLIMETERS
R
INCHES
1) Each lead centerline is located within 0.17 mm (0.007 inch) of
its true position (T.P.) at maximum material condition.
A
58.68 MAX.
2.311 MAX.
B
1.78 MAX.
0.070 MAX.
2) Item "K" to center of leads when formed parallel.
C
1.778 (T.P.)
0.070 (T.P.)
D
0.50±0.10
0.020 +0.004
–0.005
F
0.9 MIN.
0.035 MIN.
G
3.2±0.3
0.126±0.012
H
0.51 MIN.
0.020 MIN.
I
4.31 MAX.
0.170 MAX.
J
5.08 MAX.
0.200 MAX.
K
19.05 (T.P.)
0.750 (T.P.)
L
17.0
0.669
M
0.25 +0.10
–0.05
0.010+0.004
–0.003
N
0.17
0.007
R
0~15°
0~15°
P64C-70-750A,C-1
52
µPD75036
64 PIN PLASTIC QFP (
14)
A
B
33
32
48
49
F
Q
5°±5°
S
D
C
detail of lead end
64
1
G
17
16
H
I M
J
M
P
K
N
L
P64GC-80-AB8-3
NOTE
Each lead centerline is located within 0.15
mm (0.006 inch) of its true position (T.P.) at
maximum material condition.
ITEM
MILLIMETERS
INCHES
A
17.6 ± 0.4
0.693 ± 0.016
B
14.0 ± 0.2
0.551+0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.6 ± 0.4
0.693 ± 0.016
F
1.0
0.039
G
1.0
0.039
H
0.35 ± 0.10
0.014 +0.004
–0.005
I
0.15
0.006
J
0.8 (T.P.)
0.031 (T.P.)
K
1.8 ± 0.2
0.071 ± 0.008
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.10
0.004
P
2.55
0.100
Q
0.1 ± 0.1
0.004 ± 0.004
S
2.85 MAX.
0.112 MAX.
53
µPD75036
APPENDIX A
DEVELOPMENT TOOLS
The following development tools are provided for developing systems including the µPD75036:
IE-75000-RNote 1
In-circuit emulator for the 75X series
Hardware
IE-75001-R
Software
★
IE-75000-R-EMNote 2
Emulation board for the IE-75000-R and IE-75001-R
EP-75028CW-R
Emulation probe for the µPD75036CW
Emulation probe for the µPD75036GC. A 64-pin conversion socket, the EV-9200GC-64, is
EV-9200GC-64 attached to the probe.
EP-75028GC-R
PG-1500
PROM programmer
PA-75P036CW
PROM programmer adapter for the µPD75P036CW. Connected to the PG-1500.
PA-75P036GC
PROM programmer adapter for the µPD75P036GC. Connected to the PG-1500.
IE control program
Host machine
• PC-9800 series (MS-DOSTM Ver. 3.30 to Ver. 5.00ANote 3)
• IBM PC/AT TM series (PC DOSTM Ver. 3.10)
PG-1500 controller
RA75X relocatable
assembler
Notes 1. Maintenance service only
2. Not contained in the IE-75001-R
3. These software cannot use the task swap function, which is available in MS-DOS Ver. 5.00 and Ver.
5.00A.
54
µPD75036
★
APPENDIX B RELATED DOCUMENTS
Documents related to the device
Document No.
Document Name
User’s manual
IEU-1294
Application note
IEM-1294
75X series selection guide
IF-1027
Documents related to development tools
Document No.
Software
Hardware
Document Name
IE-75000-R User’s Manual
EEU-1297
IE-75001-R User’s Manual
EEU-1416
IE-75000-R-EM User’s Manual
EEU-1294
EP-75028CW-R User’s Manual
EEU-1314
EP-75028GC-R User’s Manual
EEU-1306
PG-1500 User’s Manual
EEU-1335
RA75X Assembler Package User’s Manual
Operation
EEU-1346
Language
EEU-1363
PG-1500 Controller User’s Manual
EEU-1291
Other documents
Document Name
Document No.
PACKAGE MANUAL
IEI-1213
SMD SURFACE MOUNT TECHNOLOGY MANUAL
IEI-1207
QUALITY GRADES ON NEC SEMICONDUCTOR DEVICES
IEI-1209
NEC SEMICONDUCTOR DEVICE RELIABILITY/QUALITY CONTROL SYSTEM
IEI-1203
ELECTROSTATIC DISCHARGE (ESD) TEST
IEI-1201
GUIDE TO QUALITY ASSURANCE FOR SEMICONDUCTOR DEVICES
MEI-1202
Caution The above documents may be revised without notice. Use the latest versions when you
design an application system.
55
µPD75036
[MEMO]
56
µPD75036
Cautions on CMOS Devices
1
Countermeasures against static electricity for all MOSs
Caution When handling MOS devices, take care so that they are not electrostatically charged.
Strong static electricity may cause dielectric breakdown in gates. When transporting or storing
MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC
uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not
allow MOS devices to stand on plastic plates or do not touch pins.
Also handle boards on which MOS devices are mounted in the same way.
2
CMOS-specific handling of unused input pins
Caution Hold CMOS devices at a fixed input level.
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediatelevel input may be caused by noise. This allows current to flow in the CMOS device, resulting
in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused
pins may function as output pins at unexpected times, each unused pin should be separately
connected to the VDD or GND pin through a resistor.
If handling of unused pins is documented, follow the instructions in the document.
3
Statuses of all MOS devices at initialization
Caution The initial status of a MOS device is unpredictable when power is turned on.
Since characteristics of a MOS device are determined by the amount of ions implanted in
molecules, the initial status cannot be determined in the manufacture process. NEC has no
responsibility for the output statuses of pins, input and output settings, and the contents of
registers at power on. However, NEC assures operation after reset and items for mode setting
if they are defined.
When you turn on a device having a reset function, be sure to reset the device first.
57
µPD75036
[MEMO]
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which
may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties b y or arising from use of a device described herein or any
other liability arising from use of such device. No license, either express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables,
nuclear reactor control systems and life support systems. If customers intend to use NEC devices for
above applications or they intend to use "Standard" quality grade NEC devices for the applications not
intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime system, etc.
M4 92.6
MS-DOS is a trademark of Microsoft Corporation.
PC DOS and PC/AT are trademarks of IBM Corporation.
68