DATA SHEET MOS INTEGRATED CIRCUIT µPD75108F,75112F,75116F 4-BIT SINGLE-CHIP MICROCOMPUTER DESCRIPTION The µPD75116F offers high-speed operation (tCY = 1.91 µ s) at a low supply voltage (VDD = 2.7 V) which is not possible with the µPD75116. It has the same functions as, and is pin compatible with, the µPD75116, allowing low voltage sets to be developed by making efficient use of previously developed and used software resources. Note, however, that the operating voltage range is different from that of the µPD75116. A version of the µPD75116F with on-chip PROM, the µPD75P116*, is also available for evaluation during system development. * There are some differences in electrical specifications between the µPD75116F and the µPD75P116. Functions are described in detail in the following User’s Manual, which should be read when carrying out design work. µPD75116 User’s Manual : IEM-922 FEATURES • µPD75116 low voltage high-speed operation product • Instruction execution time Ta = –40 to +50 °C VDD = 2.7 to 5.0 V 1.91 µs , 15.3 µs (operation at 4.19 MHz) 2 µs, 4 µs, 32 µs (operation at 2 MHz) 1.91 µs , 15.3 µs (operation at 4.19 MHz) VDD = 2.8 to 5.0 V VDD = 4.5 to 5.0 V Ta = –40 to +60 °C 2 µs, 4 µs, 32 µs (operation at 2 MHz) 0.95 µs, 1.91 µs, 15.3 µs (operation at 4.19 MHz) • 43 systematically arranged instructions • 8-bit data transfer, compare, operation and increment/decrement instructions • GETI instruction allowing any 2-byte or 3-byte instruction to be implemented in 1 byte • Wide range of input/output ports : 58 ports • 3 on-chip 8-bit timer channels : synchronous/asynchronous (start/stop) • 8-bit serial interface on chip • Programmable threshold port : 4-bit resolution × 4 channels "Unless there are any particular functional differences, the µPD75116F is described in this document as a representative product." The information in this document is subject to change without notice. Document No. IC-2810B (O.D.No. IC-8224B) Date Published April 1994P Printed in Japan The mark ★ shows major revised points. © NEC Corporation 1991 µPD75108F,75112F,75116F ORDERING INFORMATION Ordering Code Package Quality Grade µPD75108FGF-×××-3BE µPD75112FGF-×××-3BE µPD75116FGF-×××-3BE 64-pin plastic QFP (14 × 12 mm) 64-pin plastic QFP (14 × 12 mm) 64-pin plastic QFP (14 × 20 mm) Standard Standard Standard Remarks ×××: ROM code number Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications. APPLICATIONS Cordless telephone subsets, portable radio equipment, pager, etc. 2 µPD75108F,75112F,75116F OVERVIEW OF FUNCTIONS Item Contents Basic instructions 43 Instruction cycle 0.95 µs, 1.91 µs, 15.3 µs (VDD = 4.5 to 5.0 V, 4.19 MHz operation) 2 µs, 4 µs, 32 µs (VDD = 2.7 to 5.0 V, 2 MHz operation) 3-stage switching capability Minimum instruction execution time 0.95 µs (operating at 4.5 to 5.0 V) 1.91 µs (operating at 2.7 V ) 8064 × 8 bits (µPD75108F) On-chip memory ROM 12160 × 8 bits (µPD75112F) 16256 × 8 bits (µPD75116F) RAM 512 × 4 bits General register 4-bits × 8 × 4 banks (memory mapping) Accumulator 3 accumulators for different manipulated data lengths • 1-bit accumulator (CY), 4–bit acculumalor (A), 8-bit accumulator (XA) Input/output port Total 58 • CMOS input pins : 10 • CMOS input/output pins (LED direct drive capability) : 32 • Middle-high voltage N-ch open-drain input/output pins : 12 (LED direct drive capability, a pull-up resistor can be incorporated bit-wise.) • Comparator input pins (4-bit precision) : 4 Timer/counter • 8-bit timer/event counter × 2 • 8-bit basic interval timer (watchdog timer applicable) 8-bit serial interface • 2 transfer modes • Serial transmission/reception modes • Serial reception mode • LSB top/MSB top switchable Vector interrupt External : 3 Internal : 4 Test input External : 2 Standby • STOP/HALT mode Instruction set • • • • Others • Bit manipulation memory (bit sequential buffer) on chip Package • 64-pin plastic QFP (14 × 20 mm) Various bit manipulation instructions (set, reset, test, Boolean operation) 8-bit data transfer, comparison, operation, increment/decrement instructions 1-byte relative branch instruction GETI instruction that can implement arbitrary 2-byte/3-byte instructions with 1 byte 3 µPD75108F,75112F,75116F CONTENTS 1. PIN CONFIGURATION (TOP VIEW) ..................................................................................................... 6 2. BLOCK DIAGRAM .................................................................................................................................. 7 3. PIN FUNCTIONS .................................................................................................................................... 8 3.1 3.2 3.3 3.4 PORT PINS ..................................................................................................................................................... OTHER PINS ................................................................................................................................................... PIN INPUT/OUTPUT CIRCUITS ................................................................................................................... RECOMMENDED CONNECTION OF UNUSED PINS ................................................................................. 8 9 10 11 3.5 PRECAUTIONS CONCERNING P00/INT4 PIN AND RESET PIN ............................................................... 12 4. MEMORY CONFIGURATION ................................................................................................................ 13 5. PERIPHERAL HARDWARE FUNCTIONS .............................................................................................. 18 5.1 DIGITAL INPUT/OUTPUT PORTS ................................................................................................................ 18 5.2 5.3 5.4 5.5 CLOCK GENERATOR ..................................................................................................................................... CLOCK OUTPUT CIRCUIT ............................................................................................................................. BASIC INTERVAL TIMER .............................................................................................................................. TIMER/EVENT COUNTER ............................................................................................................................. 19 20 21 21 5.6 5.7 5.8 SERIAL INTERFACE ....................................................................................................................................... PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT) ............................................................ BIT SEQUENTIAL BUFFER ........................................................................................................................... 23 25 26 6. INTERRUPT FUNCTION ........................................................................................................................ 27 7. STANDBY FUNCTION ........................................................................................................................... 29 8. RESET FUNCTION ................................................................................................................................. 30 9. INSTRUCTION SET ................................................................................................................................ 32 10. APPLICATION EXAMPLE ...................................................................................................................... 41 10.1 CORDLESS TELEPHONE (SUBSET) ............................................................................................................ 10.2 DISPLAY PAGER ............................................................................................................................................ 41 42 11. MASK OPTION SELECTION .................................................................................................................. 43 12. ELECTRICAL SPECIFICATIONS ............................................................................................................ 44 12.1 WHEN Ta = –40 to +50 °C, VDD = 2.7 to 5.0 V ........................................................................................... 12.2 WHEN Ta = –40 to +60 °C, VDD = 2.8 to 5.0 V ........................................................................................... 4 45 55 µPD75108F,75112F,75116F 13. CHARACTERISTIC CURVES (REFERENCE) ......................................................................................... 65 14. PACKAGE INFORMATION ..................................................................................................................................... 71 15. RECOMMENDED SOLDERING CONDITIONS ..................................................................................... 73 APPENDIX A. FUNCTIONAL DIFFERENCES AMONG µPD751×× SERIES PRODUCTS ....................... 74 APPENDIX B. DEVELOPMENT TOOLS ...................................................................................................... 76 APPENDIX C. RELATED DOCUMENTS ..................................................................................................... 77 5 µPD75108,75112F,75116F 1. PIN CONFIGURATION (TOP VIEW) P130 P143 P142 P141 NC P140 VDD P33 P32 P31 P30 P43 P42 64-Pin Plastic QFP (14 × 20 mm) 64 63 62 61 60 59 58 57 56 55 54 53 52 1 51 P131 P40 2 50 P132 P53 3 49 P133 P52 4 48 P120 P51 5 47 P50 6 46 P121 P122 RESET 7 45 P123 X2 8 X1 P63 9 P62 11 P61 12 P60 13 P73 14 P72 15 P71 P70 µPD75116FGF-×××-3BE µPD75112FGF-×××-3BE µPD75116FGF-×××-3BE P41 10 44 P00/INT4 43 P01/SCK 42 P02/SO 41 P03/SI 40 P20/PTO0 39 P21/PTO1 38 P22/PCL 37 P23 16 36 T11 17 35 T10 P83 18 34 P82 19 33 PTH00 PTH01 PTH02 PTH03 P10/INT0 P11/INT1 P12/INT2 P13/INT3 VSS P90 P91 P92 P93 P81 P80 20 21 22 23 24 25 26 27 28 29 30 31 32 ★ Pin Name P00-P03 : Port 0 SCK : Serial Clock P10-P13 P20-P23 : Port 1 : Port 2 SO SI : Serial Output : Serial Input P30-P33 : Port 3 PTO0, PTO1 : Programmable Timer Output P40-P43 P50-P53 : Port 4 : Port 5 PCL PTH00-PTH03 : Programmable Clock : Programmable Treshold Input P60-P63 : Port 6 INT0, INT1, INT4 : External Vectored Interrupt Input P70-P73 P80-P83 : Port 7 : Port 8 INT2, INT3 TI0, TI1 P90-P93 : Port 9 P120-P123 : Port 12 P130-P133 : Port 13 P140-P143 : Port 14 6 : External Test Input : Timer Input X1, X2 : Clock Oscillation RESET NC : Reset : No Connection VDD : Positive Power Supply VSS : Ground 2. INTBT BIT SEQ. BUFFER (16) SP(8) PROGRAM* COUNTER ALU TIMER/EVENT COUNTER #0 TI0 PTO0/P20 TIMER/EVENT COUNTER #1 INTT1 SI/P03 SO/P02 SCK/P01 4 P00-P03 PORT 1 4 P10-P13 PORT 2 4 P20-P23 PORT 3 4 P30-P33 PORT 4 4 P40-P43 PORT 5 4 P50-P53 PORT 6 4 P60-P63 PORT 7 4 P70-P73 PORT 8 4 P80-P83 PORT 9 4 P90-P93 PORT 12 4 P120-P123 PORT 13 4 P130-P133 PORT 14 4 P140-P143 BANK INTT0 TI1 PTO1/P21 PORT 0 CY BLOCK DIAGRAM BASIC INTERVAL TIMER ROM PROGRAM GENERAL REG. MEMORY 8064 × 8 BITS (µPD75108F) SERIAL INTERFACE 12160 × 8 BITS INTSIO (µPD75112F) 16256 × 8 BITS DECODE AND CONTROL RAM DATA MEMORY 512 × 4 BITS (µPD75116F) INT0/P10 INTERRUPT CONTROL fXX / 2 PTH00-PTH03 4 PROGRAMMABLE THRESHOLD PORT #0 CLOCK OUTPUT CONTROL PCL/P22 CLOCK DIVIDER N CLOCK GENERATOR X1 STAND BY CONTROL CPU CLOCK Φ X2 VDD * VSS RESET The µPD75108F program counter is composed of 13 bits and the µPD75112F/75116F program counter is composed of 14 bits 7 µPD75108F,75112F,75116F INT1/P11 INT2/P12 INT3/P13 INT4/P00 µPD75108F,75112F,75116F 3. PIN FUNCTIONS 3.1 PORT PINS Pin Name P00 P01 Input/Output Input Input/output DualFunction Pin Function 8-bit I/O INT4 P03 Input/output Input SCK F Input SO E SI B × INT0 P10 INT1 P11 Input P12 INT2 P13 INT3 P20 *3 PTO0 4-bit input port (PORT 1). Input B 4-bit input/output port (PORT 2). Input E PTO1 P21 *3 Input/output P22 *3 PCL P23 *3 — × P30 to P33 *3 Input/output — Programmable 4-bit input/output port (PORT 3). Input/output can be specified bit-wise. Input E P40 to P43 *3 Input/output — 4-bit input/output port (PORT 4). Input E P50 to P53 *3 Input/output — 4-bit input/output port (PORT 5). Input E P60 to P63 *3 Input/output — Programmable 4-bit input/output port (PORT 6). Input/output can be specified bit-wise. Input E P70 to P73 *3 Input/output — 4-bit input/output port (PORT 7). Input E P80 to P83 *3 Input/output — 4-bit input/output port (PORT 8). Input E P90 to P93 *3 Input/output — 4-bit input/output port (PORT 9). Input E — N-ch open-drain 4-bit input/output port (PORT 12). On-chip pull-up resistor can be specified bit-wise (mask option). Open-drain: +10 V withstand voltage Input *2 M — N-ch open-drain 4-bit input/output port (PORT 13). On-chip pull-up resistor can be specified bit-wise (mask option). Open-drain: +10 V withstand voltage Input *2 M — N-ch open-drain 4-bit input/output port (PORT 14). On-chip pull-up resistor can be specified bit-wise (mask option). Open-drain: +10 V withstand voltage Input *2 M P120 to P123 *3 P130 to P133 *3 P140 to P143 *3 * 1. 2. 3. 8 I/OCircuit Type *1 B 4-bit input port (PORT 0). P02 After Reset Input/output Input/output Input/output ● : Schmitt trigger input Open-drain … high impedance On-chip pull-up resistor … high level Direct LED drive capability — µPD75108F,75112F,75116F 3.2 OTHER PINS Pin Name Input/Output DualFunction Pin PTH00 to PTH03 Input — Variable threshold voltage 4-bit analog input port. N Input — External event pulse input to timer/event counter. Or edge detection vectored interrupt input or 1-bit input is also possible. B TI0 TI1 After Reset I/O Circuit Type *1 P20 PTO0 Input/output Timer/event counter output Input E P21 PTO1 SCK Input/output P01 Serial clock input/output Input F SO Input/output P02 Serial data output Input E SI Input P03 Serial data input Input B INT4 Input P00 Edge detection vector interrupt input (detection of both rising and falling edges) Input B Edge detection vector interrupt input (detection edge selectable) Input B Edge detection testable input (rising edge detection) Input B Clock output Input E P10 INT0 Input P11 INT1 P12 INT2 Input P13 INT3 PCL Input/output X1, X2 * 1. 2. Function P22 — System clock oscillation crystal/ceramic connection pin. When an external clock is used, the clock is input to X1 and the inverted clock is input to X2. RESET Input — System reset input (low-level active). NC*2 — — No Connection VDD — Positive power supply VSS — GND potential B ● : Schmitt trigger input When sharing a print board with µPD75P116, NC pin should be connected to VDD. 9 µPD75108F,75112F,75116F 3.3 PIN INPUT/OUTPUT CIRCUITS The input/output circuits of each pin of the µPD75116F are shown in abbreviated form. Fig. 3-1 Pin Input/Output Circuit List Type F Type A VDD data IN/OUT Type D P-ch output disable IN Type B N-ch This is an input/output circuit made up of a Type D push-pull output and Type B Schmitt-triggered input. CMOS standard input buffer Type B VDD Type M Pull-Up Resistor (Mask Option) N-ch (+6 V Withstand Voltage) data IN output disable Middle-High Voltage Input Buffer (+6 V Withstand Voltage) Schmitt-trigger input with hysteresis characteristic Type D IN/OUT Type N Comparator VDD data P-ch + OUT – output disable N-ch VREF (Threshold Voltage) Push-pull output that can be made highimpedance output (P-ch and N-ch OFF) Type E data IN/OUT Type D output disable Type A This is an input/output circuit made up of a Type D push-pull output and Type A input buffer. 10 µPD75108F,75112F,75116F 3.4 RECOMMENDED CONNECTION OF UNUSED PINS Pin Recommended Connection PTH00 to PTH03 TI0 Connect to VSS or VDD. TI1 P00 Connect to VSS. P01 to P03 Connect to VSS or VDD. P10 to P13 Connect to VSS. P20 to P23 P30 to P33 P40 to P43 P50 to P53 Input : Connect to VSS or VDD. P60 to P63 P70 to P73 Output : Leave open. P80 to P83 P90 to P93 P120 to P123 P130 to P133 P140 to P143 NC * Leave open * If a printed board is used with the µPD75P116, NC pin should be connected to VDD directly. 11 µPD75108F,75112F,75116F 3.5 PRECAUTIONS CONCERNING P00/INT4 PIN AND RESET PIN In addition to the functions shown in 3.1 and 3.2, the P00/INT4 pin and RESET pin are also used to set the test mode for testing internal µPD75116F operation (for IC testing). The test mode is set when a voltage greater than VDD is applied to either of these pins. Consequently, if noise exceeding V DD is applied during normal operation, the test mode may be entered, making it impossible for normal operation to continue. If, for example, inter-wiring noise is applied to the P00/INT4 or RESET pin due to the length of the wiring from these pins, and the pin voltage exceeds VDD, misoperation may result. Wiring should therefore be carried out so that interwiring noise is suppressed as far as possible. If it is completely impossible to suppress noise, noise prevention measures should be taken using an external component as shown below. ● Diode with small VF (0.3 V or less) connected between P00/INT4 or RESET and VDD ● Capacitor connected between P00/INT4 or RESET and VDD VDD Diode with small VF 12 VDD VDD VDD P00/INT4, RESET P00/INT4, RESET µPD75108F,75112F,75116F 4. MEMORY CONFIGURATION • Program memory (ROM) : 8064 × 8 bits (0000H to 1F7FH) : µPD75108F 12160 × 8 bits (0000H to 2F7FH) : µPD75112F 16256 × 8 bits (0000H to 3F7FH) : µPD75116F • 0000H to 0001H : Vector table in which a program start address after reset is written. • 0002H to 000BH : Vector table in which program start addresses after interruption are written. • 0020H to 007FH : Table area referred by GETI instruction • Data memory • Data area : 512 × 4 bits (000H to 1FFH) • Peripheral hardware area : 128 × 4 bits (F80H to FFFH) 13 µPD75108F,75112F,75116F Fig. 4-1 Program Memory Map (µ PD75108F) Address 7 0000H 6 MBE RBE 0 5 0 Internal Reset Start Address (High-Order 5 Bits) Internal Reset Start Address (Low-Order 8 Bits) 0002H 0004H 0006H 0008H 000AH MBE RBE MBE RBE MBE RBE MBE RBE MBE RBE 0 0 0 0 0 INTBT/INT4 Start Address (High-Order 5 Bits) INTBT/INT4 Start Address (Low-Order 8 Bits) INT0/INT1 Start Address (High-Order 5 Bits) INT0/INT1 Start Address (Low-Order 8 Bits) INTSIO Start Address (High-Order 5 Bits) INTSIO Start Address (Low-Order 8 Bits) INTT0 Start Address (High-Order 5 Bits) INTT0 Start Address (Low-Order 8 Bits) INTT1 Start Address (High-Order 5 Bits) INTT1 Start Address (Low-Order 8 Bits) CALLF ! faddr Instruction Entry Address BRCB ! caddr Instruction Branch Address CALL ! addr Instruction Subroutine Entry Address BR ! addr Instruction Branch Address BR $ addr Instruction Relative Branch Address –15 to –1, +2 to +16 0020H GETI Instruction Reference Table 007FH 0080H Branch Destination Address and Subroutine Entry Address by GETI Instruction 07FFH 0800H 0FFFH 1000H BRCB !caddr Instruction Branch Address 1F7FH Remarks 14 Apart from the above instructions, branching is possible to an address at which only the PC low-order 8 bits have been changed by the BR PCDE or BR PCXA instruction. µPD75108F,75112F,75116F Fig. 4-2 Program Memory Map (µ PD75112F) Address 7 0000H 6 MBE RBE 0 Internal Reset Start Address (High-Order 6 Bits) Internal Reset Start Address (Low-Order 8 Bits) 0002H 0004H 0006H 0008H 000AH MBE MBE MBE MBE MBE RBE RBE RBE RBE RBE INTBT/INT4 Start Address (High-Order 6 Bits) INTBT/INT4 Start Address (Low-Order 8 Bits) INT0/INT1 Start Address (High-Order 6 Bits) INT0/INT1 Start Address (Low-Order 8 Bits) INTSIO Start Address (High-Order 6 Bits) INTSIO Start Address (Low-Order 8 Bits) INTT0 Start Address (High-Order 6 Bits) INTT0 Start Address (Low-Order 8 Bits) INTT1 Start Address (High-Order 6 Bits) INTT1 Start Address (Low-Order 8 Bits) CALLF ! faddr Instruction Entry Address BRCB ! caddr Instruction Branch Address CALL ! addr Instruction Subroutine Entry Address BR ! addr Instruction Branch Address BR $ addr Instruction Relative Branch Address –15 to –1, +2 to +16 0020H GETI Instruction Reference Table 007FH 0080H 07FFH 0800H Branch Destination Address and Subroutine Entry Address by GETI Instruction 0FFFH 1000H BRCB !caddr Instruction Branch Address 1FFFH 2000H BRCB !caddr Instruction Branch Address 2F7FH Remarks Apart from the above instructions, branching is possible to an address at which only the PC low-order 8 bits have been changed by the BR PCDE or BR PCXA instruction. 15 µPD75108F,75112F,75116F Fig. 4-3 Program Memory Map (µ PD75116F) Address 7 0000H 6 MBE RBE 0 Internal Reset Start Address (High-Order 6 Bits) Internal Reset Start Address (Low-Order 8 Bits) 0002H 0004H 0006H 0008H 000AH MBE MBE MBE MBE MBE RBE RBE RBE RBE RBE INTBT/INT4 Start Address (High-Order 6 Bits) INTBT/INT4 Start Address (Low-Order 8 Bits) INT0/INT1 Start Address (High-Order 6 Bits) INT0/INT1 Start Address (Low-Order 8 Bits) INTSIO Start Address (High-Order 6 Bits) INTSIO Start Address (Low-Order 8 Bits) INTT0 Start Address (High-Order 6 Bits) INTT0 Start Address (Low-Order 8 Bits) INTT1 Start Address (High-Order 6 Bits) INTT1 Start Address (Low-Order 8 Bits) CALLF ! faddr Instruction Entry Address BRCB ! caddr Instruction Branch Address CALL ! addr Instruction Subroutine Entry Address BR ! addr Instruction Branch Address BR $ addr Instruction Relative Branch Address –15 to –1, +2 to +16 0020H GETI Instruction Reference Table 007FH 0080H 07FFH 0800H 0FFFH 1000H 1FFFH 2000H 2FFFH 3000H Branch Destination Address and Subroutine Entry Address by GETI Instruction BRCB !caddr Instruction Branch Address BRCB !caddr Instruction Branch Address BRCB !caddr Instruction Branch Address 3F7FH Remarks Apart from the above instructions, branching is possible to an address at which only the PC low-order 8 bits have been changed by the BR PCDE or BR PCXA instruction. 16 µPD75108F,75112F,75116F Fig. 4-4 Data Memory Map Data Memory General Register Area Memory Bank 000H (32 × 4) 01FH Bank 0 Data Area Static RAM (512 × 4) Stack Area 256 × 4 0FFH 100H 256 × 4 Bank 1 1FFH Not On-Chip F80H 128 × 4 Peripheral Hardware Area Bank 15 FFFH 17 µPD75108F,75112F,75116F 5. PERIPHERAL HARDWARE FUNCTIONS 5.1 DIGITAL INPUT/OUTPUT PORTS There are the following three digital input/output ports. • CMOS input (PORT0, PORT1) : 8 • CMOS input/output (PORT2 to PORT9) : 32 • N-ch open-drain input/output (PORT12 to PORT14) : 12 Total : 52 Table 5-1 List of Input/Output Pin Manipulation Commands Port Name Function PORT 0 4-bit input Operation/Features Regardless of the operating mode of the shared pin, reading or test is always possible. Remarks These pins are shared with SI, SO, SCK, INT0 to INT4. PORT 1 PORT 3 Can be set in the input or output bit-wise. PORT 6 PORT 2 PORT 4 4-bit input/output * PORT 5 PORT 7 Can be set in the input or output mode as a 4bit unit. Ports 4 and 5, 6 and 7, and 8 and 9 are paired and data input/output is possible as an 8-bit unit. Port 2, PT00, PT01, and PCL share the same pins. PORT 8 PORT 9 PORT12 4-bit input/output * PORT13 (N-ch open-drain +10 V withstand voltage) PORT14 * 18 Can drive a LED directly. Can be set to input or output mode as a 4-bit unit. Ports 12 and 13 are paired and data input/ output is possible as an 8-bit unit. On-chip pull-up resistor specifiable bit-wise by mask option. µPD75108,75112F,75116F 5.2 CLOCK GENERATOR (1) Clock generator configuration This is the circuit which generates various kinds of clock supplied to the CPU and peripheral hardware to control the CPU operating mode. This circuit can also change the instruction execution time. • 0.95 µs/1.91 µs/15.3 µs (4.19 MHz operation) Fig. 5-1 Clock Generator Block Diagram • Basic Interval Timer (BT) • Clock Output Circuit • Timer/Event Counter • Serial Interface X1 1/8 to 1/4096 System Clock Oscillation Circuit fXX or fX Frequency Divider 1/2 1/16 X2 Frequency Divider Selector Oscillation Stop 1/4 Φ • CPU • Clock Output Circuit PCC Internal Bus PCC0 PCC1 4 HALT * HALT F/F PCC2 S PCC3 STOP * R PCC2, PCC3 Clear Q STOP F/F Q Wait Release Signal from BT S RESET Signal R Remarks Standby Release Signal from Interrupt Control Circuit 1. 2. fXX = Crystal/ceramic oscillator frequency fX = External clock frequency 3. Φ = CPU Clock 4. * indicates instruction execution 5. PCC : Processor clock control register 6. One Φ clock cycle (t CY) is one machine cycle. See "AC CHARACTERISTICS" in 12. "ELECTRICAL SPECIFICATIONS" for tCY. 19 µPD75108F,75112F,75116F 5.3 CLOCK OUTPUT CIRCUIT The clock output circuit is a circuit which outputs a clock pulse from P22/PCL and is used to supply clock pulses to remote control outputs or peripheral LSI’s. • Clock output (PCL) : Φ , 524 kHz, 262 kHz (4.19 MHz operation) Fig. 5-2 Configuration of Clock Output Circuit From Clock Generator Φ Output Buffer fXX/2 3 Selector P22/PCL fXX/2 4 PORT2.2 CLOM3 0 CLOM1 CLOM0 CLOM P22 Output Latch 4 Internal Bus 20 Bit 2 of PMGB Bit Specified in Port 2 Input/Output Mode µPD75108,75112F,75116F 5.4 BASIC INTERVAL TIMER The basic interval timer includes the following functions. • It operates as an interval timer which generates reference time interrupts. • It can be applied as a watchdog timer which detects when a program is out of control. • Selects and counts wait times when the standby mode is released. • It reads count contents. Fig. 5-3 Basic Interval Timer Configuration From Clock Generator fXX/2 fXX/2 Clear 5 7 fXX/2 Set Basic Interval Timer (8-Bit Frequency Divider) MPX fXX/2 Clear 9 BT 12 BT Interrupt Request Flag IRQBT Vector Interrupt Request Signal 3 BTM3 *SET1 BTM2 BTM1 BTM0 Wait Release Signal during Standby Release BTM 8 4 Internal Bus Remarks * indicates instruction execution. 5.5 TIMER/EVENT COUNTER The µPD75116F incorporates two internal timer/event counter channels. Timer/event counter channel 0 and channel 1 differ only in selectable count pulse (CP) and clock supply function to serial interface and are the same in other configurations and functions. The functions of the timer/event counter are as follows. • Operates as a programmable interval timer. • Outputs square waves in the desired frequency to the PTOn pin. • Operates as an event counter. • Use of TIn pin as an external interrupt input pin. • Divides the TIn pin input into N divisions and outputs it to the PTOn pin (frequency divider operation). • Supplies a serial shift clock to the serial interface circuit. (channel 0 only) • Count status read function. 21 22 Fig. 5-4 Timer/Event Counter Block Diagram (n = 0, 1) Internal Bus SET1 8 *1 8 8 TMn TMODn Modulo Register (8) TMn7 TMn6 TMn5 TMn4 TMn3 TMn2 TMn1 TMn0 TOFn 8 TIn TOn PORT2.n Bit 2 of PGMB Port 2 P2n Input/ Output Output Latch Mode To Serial Interface*3 Match TOUT F/F Comparator (8) 8 Input Buffer TOEn TO Enable Flag P2n/PTOn TO Selector Output Buffer Tn TIn *2 From Clock Generator Edge Detector Count Register (8) MPX CP INTTn (IRQTn Set Signal) Clear TMn1 Timer Operation Start RESET 3. The serial interface signal is output only from timer/event counter channel 0. IRQTn Clear Signal µPD75108F,75112F,75116F * 1. SET1 : Instruction execution. 2. For details, see Fig. 5-1. TMn0 µPD75108,75112F,75116F 5.6 SERIAL INTERFACE The µPD75116F incorporates the clocked 8-bit serial interface. There are the following two modes of serial interface. • 3-wire serial I/O mode (MSB-first/LSB-first switchable) • Operation stop mode In the 3-wire serial I/O mode, the µPD75116F can be connected with the 75X series, 78K series and various kinds of I/O devices. 23 24 Fig. 5-5 Serial Interface Block Diagram Internal Bus 8 8 8 SIO0 P03/SI SET1 * SIO7 SIO SIOM Shift Registor (8) SIOM7 SIOM6 SIOM5 SIOM4 SIOM3 SIOM2 SIOM1 SIOM0 P02/SO Serial Clock Counter (3) INTSIO IRQSIO Set Signal Overflow Clear IRQSIO Clear Signal Serial Start P01/SCK Q Φ S fxx/2 4 fxx/2 10 MPX TOF0 (from Timer Channel 0) * SET1 : instruction execution µPD75108F,75112F,75116F R µPD75108,75112F,75116F 5.7 PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT) The µPD75116F is provided with 4-bit analog input pins (PTH00 to PTH03) for which the threshold voltage can be changed. These pins have a configuration as shown in Fig. 5-6. 0.5 15.5 The threshold voltage (VREF) can be selected in 16 ways (VDD × ——— — VDD × ———) and analog signals can be 16 16 directly input. This port can also be used as a digital signal input port by selecting VDD × 7.5/16 as VREF. Fig. 5-6 Programmable Threshold Port Block Diagram Input Buffer PTH00 + + PTH01 - + PTH02 - Internal Bus Programmable Threshold Port Input Latch (4) - + PTH03 - Operation Stopped PTH0 VDD PTHM7 1 2R PTHM6 R PTHM5 R MPX VREF PTHM4 8 PTHM3 PTHM2 1 2R 4 PTHM1 PTHM0 PTHM 25 µPD75108F,75112F,75116F 5.8 BIT SEQUENTIAL BUFFER ······ 16 BITS Bit manipulation of the bit sequential buffer is the bit manipulation special data memory. Since, in particular, the bit manipulation can easily be performed by changing sequentially address and bit specification, it is convenient when processing data comprising a large number of bits bit-wise. Fig. 5-7 Bit Sequential Buffer Format Address Bit FC3H 3 Symbol L Register L = F 2 1 FC2H 0 3 BSB3 2 1 FC1H 0 3 BSB2 L=CL=B 2 1 FC0H 0 3 BSB1 L=8L=7 2 L=4 L=3 INCS L 26 0 BSB0 DECS L Remarks 1 In pmem. @L addressing, the specified bit moves according to the L register. L=0 µPD75108F,75112F,75116F 6. INTERRUPT FUNCTION The µPD75116F has 7 interrupt sources. Multiple interrupts with priority is are also possible. Two test sources are also provided. The test sources are edge detection testable inputs. Table 6-1 Interrupt Sources Interrupt Source INTBT (standard time interval signal from basic interval timer) INT4 (both rising edge and falling edge detection) INT0 (rising edge and falling edge detection selection) INT1 INTSIO (serial data transfer end signal) Interrupt Order*1 Vector Interrupt Request Signal (Vector Table Address) 1 VRQ1 (0002H) 2 VRQ2 (0004H) Internal 3 VRQ3 (0006H) Internal/External Internal External External External INTT0 (match signal from timer/event counter# 0 or TI0 input edge detection) Internal/external 4 VRQ4 (0008H) INTT1 (match signal from timer/event counter# 1 or TI1 input edge detection) Internal/external 5 VRQ5 (000AH) INT2*2 (rising edge detection) External INT3*2 (rising edge detection) * Testable input signal (Set IRQ2 and IRQ3) 1. The interrupt order is the priority order when multiple interrupt requests are generated simultaneously. 2. INT2 and INT3 are of test sources . These are affected by interrupt enable flags in the same way as interrupt sources, but do not generate vector interrupts. The µPD75116F interrupt control circuit has the following functions: • Hardware control vector interrupt function that can control interrupt acceptance by interrupt enable flag (IE×××) and interrupt master enable flag (IME). • Arbitrary setting of interrupt start address. • Multiple interruption function by which priority can be specified using the interrupt priority selection register (IPS). • Interrupt request flag (IRQ×××) test function (interrupt generation confirmation by software possible). • Standby mode release (selection of interrupt that releases the standby mode by interrupt enable flag possible). 27 28 Fig. 6-1 Interrupt Control Circuit Block Diagram Internal Bus 2 2 IM1 IM0 INT BT INT4 /P00 INT0 /P10 INT1 /P11 INT3 /P13 Edge Detection Circuit Edge Detection Circuit Interrupt Enable Flag (IE XXX ) IPS IST Decoder IRQBT IRQ4 IRQ0 IRQ1 INTSIO IRQSIO INTT0 IRQT0 INTT1 IRQT1 Edge Detection Circuit Edge Detection Circuit (IME) 2 Priority Control Circuit Vector Table Address Generator IRQ2 IRQ3 Interrupt Request Flag Standby Release Signal µPD75108F,75112F,75116F INT2 /P12 Edge Detection Circuit 4 9 µPD75108F,75112F,75116F 7. STANDBY FUNCTION To reduce the power consumption during program wait, the µPD75116F has two standby modes (STOP mode and HALT mode). Table 7-1 Standby Mode Setting and Operation Status STOP Mode Operation Status Setting instruction HALT Mode STOP instruction HALT instruction Clock generator circuit System clock oscillation stopped Only CPU clock Φ stopped Basic interval timer Operation stopped Operable (IRQBT set at reference time intervals) Serial interface Operation possible only when the external SCK input and TO0 output (when timer/event counter 0 is external TI0 input) are selected as a serial clock Operation possible if a clock other than Φ is specified as a serial clock Timer/event counter Operable only when TIn pin input specified as count clock Operation possible Clock output circuit Operation stopped Except CPU clock Φ, output possible. External interrupt Operation of INT0 to INT4 possible CPU Operation stopped Release signal Operation stopped Interrupt request signal from operable hardware enabled by interrupt enable flag, or RESET input 29 µPD75108F,75112F,75116F 8. RESET FUNCTION The reset operation timing is shown in Fig. 8-1. Fig. 8-1 Reset Operation by RESET Input Wait (Approx. 31.3 ms: 4.19 MHz) RESET Input Operating Mode or Standby Mode HALT Mode Internal Reset Operation The state of hardware after reset operation is as shown in Table 8-1. 30 Operating Mode µPD75108F,75112F,75116F Table 8-1 Status of Each Hardware after Resetting RESET Input in Standby Mode Hardware µPD75108F Low-order 5 bits of program memory address 0000H are set in PC12 to PC8 and the contents of address 0001H are set in PC7 to PC0. µPD75112F µPD75116F Low-order 6 bits of program memory address 0000H are set in PC13 to PC8 and the contents of address 0001H are set in PC7 to PC0. Program counter (PC) Undefined Skip flag (SK0 to SK2) 0 0 Interrupt status flag (IST0, IST1) 0 0 Sets program memory address 0000H bit 6 and bit 7 to RBE and MBE, respectively. Same as left Bank enable flag (MBE, RBE) Undefined Stack pointer (SP) Undefined Held* Undefined General register (X, A, H, L, D, E, B, C) Held Undefined Bank selection register (MBS, RBS) 0, 0 0, 0 Undefined Undefined 0 0 Data memory (RAM) Basic interval timer Counter (BT) Mode register (BTM) 0 0 FFH FFH 0 0 TOEn, TOFn 0, 0 0, 0 Shift register (SIO) Held Undefined Mode register (SIOM) 0 0 Processor clock control register (PCC) 0 0 0 0 Reset (0) Reset (0) Interrupt enable flag (IE×××) 0 0 Priority selection register (IPS) 0 0 Counter (Tn) Timer/event counter (n = 0, 1) Serial interface Clock generator, clock output circuit Modulo register (TMODn) Mode register (TMn) Clock output mode register (CLOM) Interrupt request flag (IRQ×××) Interrupt Digital port INT0, 1 mode registers (IM0, IM1) 0, 0 0, 0 Output buffer OFF OFF Output latch Clear (0) Clear (0) 0 0 PTH00 to 03 input latch Undefined Undefined Mode register (PTHM) 0 0 0 0 I/O mode register (PMGA, B, C) Analog port Bit sequential buffer (BSB0 to BSB3) * Same as left Held Carry flag (CY) PSW RESET Input during Operation Data of data memory addresses 0F8H to 0FDH becomes undefined by RESET input. 31 µPD75108F,75112F,75116F 9. INSTRUCTION SET (1) Operand identifier and description The operand is described in the operand field of each instruction in accordance with the description for the operand identifier of the instruction. (For details, refer to RA75X Assembler Package User’s Manual Language Volume (EEU-730).) When there are multiple elements in the description, one of the elements is selected. Upper case letters and symbols (+,–) are keywords and are described unchanged. Various register or flag symbols can be used as a label instead of mem, fmem, pmem, bit, etc. (For details, refer to µPD75116 User’s Manual (IEM-922).) However, there are restrictions on the labels for which fmem and pmem can be used. Identifier reg reg1 X, A, B, C, D, E, H, L X, B, C, D, E, H, L rp rp1 rp2 rp' rp'1 XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL' rpa HL, HL+, HL-, DE, DL rpa1 DE, DL n4 n8 4-bit immediate data or label 8-bit immediate data or label mem 8-bit immediate data or label* bit 2-bit immediate data or label fmem FB0H to FBFH, FF0H to FFFH immediate data or label pmem FC0H to FFFH immediate data or label addr * 32 Description µPD75108F 0000H to 1F7FH immediate data or label µPD75112F 0000H to 2F7FH immediate data or label µPD75116F 0000H to 3F7FH immediate data or lebel caddr 12-bit immediate data or label faddr 11-bit immediate data or label taddr 20H to 7FH immediate data (however, bit0 = 0) or label PORTn IE××× RBn MBn PORT 0 to PORT 9, PORT12 to PORT14 IEBT, IESIO, IET0, IET1, IE0 to IE4 RB0 to RB3 MB0, MB1, MB15 In the case of the 8-bit data processing, an even address only can be described for mem. µPD75108F,75112F,75116F (2) Operation description legend A : A register; 4-bit accumulator B : B register C D E H : : : : C register D register E register H register L X XA BC : : : : L register X register Register pair (XA); 8-bit accumulator Register pair (BC) DE HL XA' BC' : : : : Register pair (DE) Register pair (HL) Extension register pair (XA') Extension register pair (BC') DE' HL' PC SP : : : : Extension register pair (DE') Extension register pair (HL') Program counter Stack pointer CY PSW MBE RBE : : : : Carry flag; bit accumulator Program status word Memory bank enable flag Register bank enable flag PORTn IME IPS IE××× : : : : Portn (n = 0 to 9, 12 to 14) Interrupt master enable flag Interrupt priority selection register Interrupt enable flag RBS MBS PCC . : : : : Register bank selection register Memory bank selection register Processor clock control register Address, bit delimiter (××) ××H : Contents addressed by ×× : Hexadecimal data 33 µPD75108F,75112F,75116F (3) Description of addressing area field symbols *1 MB = MBE • MBS (MBS = 0, 1, 15) *2 MB = 0 *3 MBE = 0 : MB = 0 (00H to 7FH) MB = 15 (80H to FFH) MBE = 1 : MB = MBS (MBS = 0, 1, 15) *4 MB = 15, fmem = FB0H to FBFH, FF0H to FFFH *5 MB = 15, pmem = FC0H to FFFH *6 µPD75108F : addr = 0000H to 1F7FH µPD75112F : addr = 0000H to 2F7FH µPD75116F : addr = 0000H to 3F7FH *7 addr = (Current PC) –15 to (Current PC) + 16 *8 µPD75108F : caddr = = µPD75112F : caddr = = = µPD75116F : caddr = = = = 0000H 1000H 0000H 1000H 2000H 0000H 1000H 2000H 3000H *9 faddr = 0000H to 07FFH *10 taddr = 0020H to 007FH Remarks to to to to to to to to to 0FFFH 1F7FH 0FFFH 1FFFH 2F7FH 0FFFH 1FFFH 2FFFH 3F7FH (PC12 = 0) or (PC12 = 1) (PC13, PC12 = (PC13, PC12 = (PC13, PC12 = (PC13, PC12 = (PC13, PC12 = (PC13, PC12 = (PC13, PC12 = Data memory addressing 00B) 01B) 10B) 00B) 01B) 10B) 11B) or or Program memory addressing or or or 1. 2. MB indicates the accessible memory bank. For *2, MB = 0 without regard to MBE and MBS. 3. 4. For *4 and *5, MB = 15 without regard to MBE and MBS. *6 to *10 indicate the addressable area. (4) Explanation of machine cycle field S shows the number of machine cycles required when skip is performed by an instruction with skip. The value of S changes as follows: • No skip ....................................................................................................................................................................... S = 0 • When instruction to be skipped is 1-byte or 2-byte instruction ......................................................................... S = 1 • When instruction to be skipped is 3-byte instruction (BR !addr, CALL !addr instructions) ........................... S = 2 Note One machine cycle is required to skip a GETI instruction. One machine cycle is equivalent to one cycle (= tCY) of the CPU clockΦ. Three times can be selected by PCC setting. 34 µPD75108F,75112F,75116F Instruction Group Mnemonic MOV Transfer XCH Operands Bytes Machine Cycles Operation Addressing Area Skip Condition A, #n4 1 1 A ← n4 reg1, #n4 2 2 reg1 ← n4 XA, #n8 2 2 XA ← n8 Stack A HL, #n8 2 2 HL ← n8 Stack B rp2, #n8 2 2 rp2 ← n8 A, @HL 1 1 A ← (HL) *1 A, @HL+ 1 2+S A ← (HL), then L ← L + 1 *1 L=0 A, @HL- 1 2+S A ← (HL), then L ← L – 1 *1 L = FH A, @rpa1 1 1 A ← (rpa1) *2 XA, @HL 2 2 XA ← (HL) *1 @HL, A 1 1 (HL) ← A *1 @HL, XA 2 2 (HL) ← XA *1 A, mem 2 2 A ← (mem) *3 XA, mem 2 2 XA ← (mem) *3 mem, A 2 2 (mem) ← A *3 mem, XA 2 2 (mem) ← XA *3 A, reg 2 2 A ← reg XA, rp' 2 2 XA ← rp' reg1, A 2 2 reg1 ← A rp'1, XA 2 2 rp'1 ← XA A, @HL 1 1 A ↔ (HL) *1 A, @HL+ 1 2+S A ↔ (HL), then L ← L + 1 *1 L=0 A, @HL- 1 2+S A ↔ (HL), then L ← L – 1 *1 L = FH A, @rpa1 1 1 A ↔ (rpa1) *2 XA, @HL 2 2 XA ↔ (HL) *1 A, mem 2 2 A ↔ (mem) *3 XA, mem 2 2 XA ↔ (mem) *3 A,reg1 1 1 A ↔ reg1 XA, rp' 2 2 XA ↔ rp' XA, @PCDE 1 3 Stack A • µPD75108F XA ← (PC12-8 + DE)ROM • µPD75112F, 75116F XA ← (PC13-8 + DE)ROM Table Reference MOVT XA, @PCXA 1 3 • µPD75108F XA ← (PC12-8 + XA)ROM • µPD75112F, 75116F XA ← (PC13-8 + XA)ROM 35 µPD75108F,75112F,75116F Instruction Group Mnemonic Operands CY, fmem.bit CY, pmem.@L Bit transfer MOV1 CY, @H+mem.bit fmem.bit, CY pmem.@L, CY @H+mem.bit, CY ADDS ADDC SUBS Operations SUBC AND OR Bytes Machine Cycles 2 2 2 2 2 2 Addressing Area 2 CY ← (fmem.bit) *4 2 CY ← (pmem7 – 2 + L3 – 2.bit(L1–0)) *5 2 CY ← (H + mem3 – 0.bit) *1 2 (fmem.bit) ← CY *4 2 (pmem7 – 2 + L3 – 2.bit(L1–0)) ← CY *5 2 (H + mem3 – 0.bit) ← CY *1 Skip Condition A, #n4 1 1+S A ← A + n4 XA, #n8 2 2+S XA ← XA + n8 A, @HL 1 1+S A ← A + (HL) XA, rp' 2 2+S XA ← XA + rp' carry rp'1, XA 2 2+S rp'1 ← rp'1 + XA carry A, @HL 1 1 A, CY ← A + (HL) + CY *1 carry carry carry *1 XA, rp' 2 2 XA, CY ← XA + rp' + CY rp'1, XA 2 2 rp'1, CY ← rp'1 + XA + CY A, @HL 1 1+S A ← A – (HL) XA, rp' 2 2+S XA ← XA – rp' borrow rp'1, XA 2 2+S rp'1 ← rp'1 – XA borrow A, @HL 1 1 A, CY ← A – (HL) – CY XA, rp' 2 2 XA, CY ← XA – rp' – CY rp'1, XA 2 2 rp'1, CY ← rp'1 – XA – CY A, #n4 2 2 A ← A ∧ n4 A, @HL 1 1 A ← A ∧ (HL) XA, rp' 2 2 XA ← XA ∧ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∧ XA A, #n4 2 2 A ← A ∨ n4 A, @HL 1 1 A ← A ∨ (HL) XA, rp' 2 2 XA ← XA ∨ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∨ XA A, #n4 2 2 A ← A ∨ n4 A, @HL 1 1 A ← A ∨ (HL) XA, rp' 2 2 XA ← XA ∨ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∨ XA XOR 36 Operation *1 *1 *1 *1 *1 borrow µPD75108F,75112F,75116F Instruction Group Mnemonic Operands Bytes Machine Cycles Operation Addressing Area Skip Condition A 1 1 CY ← A 0, A3 ← CY, An–1 ← An A 2 2 A←A reg 1 1+S reg ← reg + 1 reg = 0 rp1 1 1+S rp1 ← rp1 + 1 rp1 = 00H @HL 2 2+S (HL) ← (HL) + 1 *1 (HL) = 0 mem 2 2+S (mem) ← (mem) + 1 *3 (mem) = 0 reg 1 1+S reg ← reg – 1 reg = FH rp' 2 2+S rp' ←rp' – 1 rp' = FFH reg, #n4 2 2+S Skip if reg = n4 reg = n4 @HL, #n4 2 2+S Skip if (HL) = n4 *1 (HL) = n4 A, @HL 1 1+S Skip if A = (HL) *1 A = (HL) XA, @HL 2 2+S Skip if XA = (HL) *1 XA = (HL) A, reg 2 2+S Skip if A = reg A = reg XA, rp' 2 2+S Skip if XA = rp' XA = rp' SET1 CY 1 1 CY ← 1 Carry flag CLR1 manipulation SKT CY 1 1 CY ← 0 CY 1 1+S NOT1 CY 1 1 CY ← CY mem.bit 2 2 (mem.bit) ← 1 *3 fmem.bit 2 2 (fmem.bit) ← 1 *4 pmem.@L 2 2 (pmem7–2 + L3–2.bit (L1–0)) ← 1 *5 @H + mem.bit 2 2 (H + mem3–0.bit) ← 1 *1 mem.bit 2 2 (mem.bit) ← 0 *3 fmem.bit 2 2 (fmem.bit) ← 0 *4 pmem.@L 2 2 (pmem7–2 + L3–2.bit (L1–0)) ← 0 *5 @H + mem.bit 2 2 (H + mem3–0.bit) ← 0 *1 mem.bit 2 2+S Skip if (mem.bit) = 1 *3 (mem.bit) = 1 fmem.bit 2 2+S Skip if (fmem.bit) = 1 *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7–2 + L 3–2.bit (L1–0)) = 1 *5 (pmem.@L) = 1 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 1 *1 (@H + mem.bit) = 1 mem.bit 2 2+S Skip if (mem.bit) = 0 *3 (mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 0 *4 (fmem.bit) = 0 pmem.@L 2 2+S Skip if (pmem7–2 + L 3–2.bit (L1–0)) = 0 *5 (pmem.@L) = 0 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 0 *1 (@H + mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 1 and clear *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7–2 + L 3–2.bit (L1–0)) = 1 and clear *5 (pmem.@L) = 1 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 1 and clear *1 (@H + mem.bit) = 1 Accumulator RORC manipulation NOT INCS Increment /decrement DECS Comparison SKE SET1 CLR1 Memory bit manipulation SKT CY = 1 Skip if CY = 1 SKF SKTCLR 37 µPD75108F,75112F,75116F Instruction Group Mnemonic Operands CY, fmem.bit AND1 CY, pmem.@L CY, @H + mem.bit CY, fmem.bit Memory bit manipulation OR1 CY, pmem.@L CY, @H + mem.bit CY, fmem.bit XOR1 CY, pmem.@L CY, @H + mem.bit addr Bytes Machine Cycles 2 2 2 2 2 2 2 2 2 — 3 CY ← CY ∧ (fmem.bit) *4 2 CY ← CY ∧ (pmem7–2 + L3–2.bit (L1–0)) *5 2 CY ← CY ∧ (H + mem3–0.bit) *1 2 CY ← CY ∨ (fmem.bit) *4 2 CY ← CY ∨ (pmem7–2 + L3–2.bit (L1–0)) *5 2 CY ← CY ∨ (H + mem3–0.bit) *1 2 CY ← CY ∨ (fmem.bit) *4 2 CY ← CY ∨ (pmem7–2 + L3–2.bit (L1–0)) *5 2 CY ← CY ∨ (H + mem3–0.bit) *1 — 3 Branch $addr BRCB !caddr PCDE 1 2 2 2 2 3 BR PCXA 2 Skip Addressing Condition Area 2 BR !addr Operation 3 • µPD75108F PC12–0 ← addr (The assembler selects the optimum instruction from among the BR !addr, BRCB !caddr, and BR $addr instructions.) • µPD75112F, 75116F PC13–0 ← addr (The assembler selects the optimum instruction from among the BR !addr, BRCB !caddr, and BR $addr instructions.) • µPD75108F PC12-0 ← addr • µPD75112F, 75116F PC13-0 ← addr • µPD75108F PC12-0 ← addr • µPD75112F, 75116F PC13-0 ← addr *6 *6 *7 • µPD75108F PC12-0 ← PC 12 + caddr 11-0 • µPD75112F, 75116F PC13-0 ← PC13, PC12 + caddr11-0 *8 • µPD75108F PC12-0 ← PC 12-8 + DE • µPD75112F, 75116F PC13-0 ← PC 13-8 + DE • µPD75108F PC12-0 ← PC 12-8 + XA • µPD75112F, 75116F PC13-0 ← PC 13-8 + XA • µPD75108F (SP-4) (SP-1) (SP-2) ← PC11-0 (SP-3) ← MBE, RBE, 0, PC12 Subroutine stack control 38 CALL !addr 3 3 PC12-0 ← addr, SP ← SP–4 • µPD75112F, 75116F (SP-4) (SP-1) (SP-2) ← PC11-0 (SP-3) ← MBE, RBE, PC13, PC12 PC13-0 ← addr, SP ← SP–4 *6 µPD75108F,75112F,75116F Instruction Group Mnemonic CALLF Operands Bytes Machine Cycles !faddr 2 1 RET 2 3 Subroutine stack control 1 RETS RETI 3+S • µPD75112F, 75116F (SP – 4) (SP – 1) (SP – 2) ← PC11–0 (SP – 3) ← MBE, RBE, PC13, PC12 PC13–0 ← 000, faddr, SP ← SP – 4 • µPD75112F, 75116F MBE, RBE, PC13, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) SP ← SP + 4 • µPD75108F MBE, RBE, ×, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) SP ← SP + 4, then skip unconditionally • µPD75112F, 75116F MBE, RBE, PC13, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) SP ← SP + 4, then skip unconditionally 1 1 (SP – 1) (SP – 2) ← rp, SP ← SP – 2 BS 2 2 (SP – 1) ← MBS, (SP – 2) ← RBS, SP ← SP – 2 rp 1 1 rp ← (SP + 1) (SP), SP ← SP + 2 BS 2 2 MBS ← (SP + 1), RBS ← (SP), SP ← SP + 2 2 2 IME (IPS.3) ← 1 2 2 IE××× ← 1 2 2 IME (IPS.3) ← 0 2 2 IE××× ← 0 IE××× DI IE××× Unconditional • µPD75108F MBE, RBE, ×, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) PSW ← (SP + 4) (SP + 5 ), SP ← SP + 6 rp EI *9 • µPD75108F MBE, RBE, ×, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) SP ← SP + 4 3 POP Addressing Skip Condition Area • µPD75108F (SP – 4) (SP – 1) (SP – 2) ← PC11–0 (SP – 3) ← MBE, RBE, 0, PC12 PC12–0 ← 00, faddr, SP ← SP – 4 1 PUSH Interrupt control Operation • µPD75112F, 75116F MBE, RBE, PC13, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) PSW ← (SP + 4) (SP + 5 ), SP ← SP + 6 39 µPD75108F,75112F,75116F Instruction Group Mnemonic Bytes Machine Cycles Operation A, PORTn 2 2 A← PORTn XA, PORTn 2 2 XA ← PORTn + 1, PORTn (n = 4, 6, 8, 12) PORTn, A 2 2 PORTn ← A PORTn, XA 2 2 PORTn + 1, PORTn ← XA (n = 4, 6, 8, 12) HALT 2 2 Set HALT Mode (PCC.2 ← 1) STOP 2 2 Set STOP Mode (PCC.3 ← 1) NOP 1 1 No Operation RBn 2 2 RBS ← n MBn 2 2 MBS ← n (n = 0, 1, 15) IN *1 Input/output *1 OUT CPU control Operands SELL Addressing Skip Condition Area (n = 0 to 9, 12 to 14) (n = 2 to 9, 12 to 14) (n = 0 to 3) • µPD75108F TBR Instruction PC12–0 ← (taddr)4–0 ← (taddr + 1) ---------------------------------------------------------TCALL Instruction (SP – 4) (SP – 1) (SP – 2) ← PC11–0 Special *2 GETI taddr 1 3 (SP – 3) ← MBE, RBE, 0, PC12 PC12–0 ← (taddr)4–0 ← (taddr + 1) SP ← SP – 4 ---------------------------------------------------------Other than TBR and TCALL Instruction Execution of an instruction addressed at (taddr) and (taddr + 1) • µPD75112F, 75116F TBR Instruction PC13–0 ← (taddr)5–0 ← (taddr + 1) ---------------------------------------------------------TCALL Instruction (SP – 4) (SP – 1) (SP – 2) ← PC11–0 (SP – 3) ← MBE, RBE, 0, PC13, PC12 PC13–0 ← (taddr)5–0 ← (taddr + 1) SP ← SP – 4 ---------------------------------------------------------Other than TBR and TCALL Instruction Execution of an instruction addressed at (taddr) and (taddr + 1) * 40 *10 -----------------------Conforms to referenced instruction. ----------------------Conforms to referenced instruction. 1. When executing the IN/OUT instruction, <MBE = 0> or <MBE = 1, MBS = 15> must be set. 2. The TBR or TCALL instruction is a GETI instruction table definition assembler pseudo-instruction. IDC µPD6130 µPD6131 µPD2840 µPD2841 Compression MSK Modem Extension MPX Transmitter/ Receiver Prescaler Speaker VCO Speaker Amp PLL TCXO MPX 10. APPLICATION EXAMPLE Amp 10.1 CORDLESS TELEPHONE (SUBSET) Power Amp Prescaler LED Display VCO µPD75116F PLL Key Matrix SIO Radio Wave Detection Extra-Area Detection LCD Controller/ Driver µPD7228 LED Display Console ID ROM Detection Filter Mixer 2SC4226 1SS281 3SK177 Amp 2SC2757 2SC4182 Legend 41 IDC : Immediate Deviation Controller, ID ROM : ID (Identification) Code ROM, LCD : Liquid Crystal Display, LED : Light Emitting Diode, MPX : Multiplexer, MSK : Minimum Shift Keying, PLL : Phase Locked Loop, SIO : Serial Data Input/Output, TCXO : Temperature Compensation Crystal Oscillator, VCO : Voltage Control Oscillator µPD75108F,75112F,75116F µPD6252 µPD75108F,75112F,75116F 10.2 DISPLAY PAGER µ PD75116F Filter INT RAM µ PD446 Code ROM Switch Piezoelectric Buzzer High-Current Output TO LED Display Comparator Input Battery Check SIO LCD Controller/Driver µ PD7228/7229 42 LCD Display µPD75108F,75112F,75116F 11. MASK OPTION SELECTION The µPD75116F has the following mask option to select whether or not a pull-up resistor is incorporated. Pin Mask Option P120 to P123 P130 to P133 Pull-up resistor can be incorporated bit-wise. P140 to P143 43 µPD75108F,75112F,75116F 12. ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C) PARAMETER Supply voltage SYMBOL TEST CONDITIONS RATING UNIT –0.3 to +5.5 V –0.3 to VDD +0.3 V –0.3 to VDD +0.3 V –0.3 to +11 V –0.3 to VDD +0.3 V One pin –15 mA All pins –30 mA Peak value 30 mA Effective value 15 mA 100 mA 60 mA 100 mA 60 mA VDD VI1 Except ports 12, 13 and 14 Input voltage Internal pull-up resistor VI2*1 Ports 12 to 14 Open–drain Output voltage VO Output current high IOH One pin Output current low IOL*2 Total of ports 0, 2 to 4, 12 to 14 Peak value Effective value Peak value Total of ports 5 to 9 Effective value * Operating temperature Topt –40 to +60 °C Storage temperature Tstg –65 to +150 °C 1. When a voltage exceeding 10V is applied to ports 12, 13 and 14, the power supply impedance (pull-up resistor) should be 50KΩ or more. 2. Effective value should be calculated: [Effective value] = [Peak value] × √duty Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. The absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded. 44 µPD75108F,75112F,75116F 12.1 WHEN Ta = –40 to +50 °C, VDD = 2.7 to 5.0 V OPERATING VOLTAGE (Ta = –40 to +50 °C) PARAMETER * TEST CONDITIONS MIN. MAX. UNIT CPU*1 *2 5.0 V Programmable threshold port (comparator input) 4.5 5.0 V Other hardware*1 2.7 5.0 V 1. Except system clock oscillation circuit, programmable threshold port. 2. The operable supply voltage range depends on the cycle time. See "AC CHARACTERISTICS". OSCILLATION CIRCUIT CHARACTERISTICS (Ta = –40 to +50 °C, VDD = 2.7 to 5.0 V) RESONATOR RECOMMENDED CONSTANT X1 X2 PARAMETER Oscillator frequency (f XX)*1 VDD = Oscillation voltage range Oscillation stabilization time*2 After VDD reaches MIN. of oscillation voltage range Ceramic resonator C1 C2 X1 Oscillator frequency (f XX)*1 X2 Crystal resonator C1 X1 C2 X2 External clock µPD74HCU04 * TEST CONDITIONS Oscillation stabilization time*2 MIN. TYP. 2.0 2.0 VDD = 4.5 to 5.0 V 4.19 MAX. UNIT 5.0*3 MHz 4 ms 5.0*3 MHz 10 ms 30 ms X1 input frequency (f X)*1 2.0 5.0*3 MHz X1 input high-/low-level width (t XH, tXL) 100 250 ns 1. Oscillator frequency and X1 input frequency indicate oscillation circuit characteristics only. See AC CHARACTERISTICS for instruction execution time. 2. The oscillation stabilization time is the time required for oscillation to stabilize after VDD reaches MIN. of oscillation voltage range or the STOP mode is released. 3. When the oscillator frequency is 4.19 MHz < fXX ≤ 5.0 MHz, PCC = 0011 should not be selected as the instruction execution time. If PCC = 0011 is selected, one machine cycle is less than 0.95 µs and the rated MIN. value of 0.95 µs is not observed. Note When the clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc. • The wiring should be kept as short as possible. • No other signal lines should be crossed. • Keep away from lines carrying a high fluctuating current. • The oscillator capacitor grounding point should always be at the same potential as VSS. Do not connect to a ground pattern carrying a high current. • A signal should be not taken from the oscillator. 45 ★ µPD75108F,75112F,75116F RECOMMENDED OSCILLATION CIRCUIT CONSTANT RECOMMENDED CERAMIC RESONATOR (Ta = –40 to +50 °C) EXTERNAL CAPACITANCE [pF] MANUFACTURER Murata Mfg. Kyocera PRODUCT NAME OSCILLATION VOLTAGE RANGE [V] C1 C2 MIN. MAX. CSA 2.00MG 30 30 2.7 5.0 CSA 4.19MG 30 30 3.0 5.0 CSA 4.19MGU 30 30 2.7 5.0 CST 4.19T –– –– 3.0 5.0 KBR–2.0MS 100 100 3.0 5.0 KBR–4.0MS 33 33 3.0 5.0 KBR–4.19MS 33 33 3.0 5.0 KBR–4.9152M 33 33 3.0 5.0 RECOMMENDED CRYSTAL RESONATOR (Ta = –20 to +50 °C) EXTERNAL CAPACITANCE [pF] MANUFACTURER Kinseki 46 PRODUCT NAME HC-49/U OSCILLATION VOLTAGE RANGE [V] C1 C2 MIN. MAX. 22 22 2.7 5.0 µPD75108F,75112F,75116F DC CHARACTERISTICS (Ta = –40 to +50 °C, VDD = 2.7 to 5.0 V) PARAMETER SYMBOL TEST CONDITIONS MAX. UNIT Other than below 0.7 V DD VDD V VIH2 Ports 0,1,TI0, 1, RESET 0.8 V DD VDD V Internal pull-up resistor 0.7 V DD VDD V VIH3 Ports 12 and 14 Open–drain 0.7 V DD 12 V VDD – 0.5 VDD V VIH4 X1, X2 VIL1 Other than below 0 0.3 VDD V VIL2 Ports 0,1,TI0, 1, RESET 0 0.2 VDD V VIL3 X1, X2 0 0.4 V VDD = 4.5 to 5.0 V, IOH = –1 mA Output voltage high TYP. VIH1 Input voltage high Input voltage low MIN. VDD – 1.0 V VDD – 0.5 V VOH IOH = –100 µA Ports 0, 2 to 9, IOL = 15 mA 0.35 2.0 V Ports 12 to 14, IOL = 10 mA 0.35 2.0 V VDD = 4.5 to 5.0 V, IOL = 1.6 mA 0.4 V IOL = 400 µA 0.5 V Other than below 3 µA X1, X2 20 µA Ports 12 to 14 (open-drain) 20 µA Except X1, X2 –3 µA –20 µA VDD = 4.5 to 5.0 V Output voltage low VOL ILIH1 Input leakage current high VIN = VDD ILIH2 ILIH3 Input leakage current low VIV = 10 V ILIL1 VIN = 0 V X1, X2 ILIL2 ILOH1 VOUT = VDD Other than below 3 µA ILOH2 VOUT = 10 V Ports 12 to 14 (open-drain) 20 µA Output leakage current low ILOL VOUT = 0 V –3 µA Internal pull-up resistor (mask option) 70 kΩ RL Ports 12 to 14 80 kΩ 3 9 mA 0.55 1.5 mA 600 1800 µA 200 600 µA 0.1 10 µA Output leakage current high VDD = 4.5 to 5.0 V 15 40 10 VDD = 4.5 to 5.0 V*2 IDD1 Supply current*1 IDD2 IDD3 * 4.19 MHz VDD = 3 V ±10 %*3 Crystal oscillation C1 = C2 = 22 pF VDD = 4.5 to 5.0 V HALT mode VDD = 3 V ±10 % STOP mode, VDD = 3 V ±10 % 1. Excluding current flowing in the internal pull-up resistors and comparator circuit. 2. When the processor clock control register (PCC) is set to 0011 for operation in the high-speed mode. 3. When the PCC register is set to 0000 for operation in the low-speed mode. 47 µPD75108F,75112F,75116F CAPACITANCE (Ta = 25 °C, VDD = 0 V) PARAMETER Input capacitance Output capacitance Input/output capacitance SYMBOL TEST CONDITIONS MIN. TYP. CIN COUT f = 1 MHz MAX. UNIT 15 pF 15 pF 15 pF MAX. UNIT ±100 mV Unmeasured pins returned to 0 V CIO COMPARATOR CHARACTERISTICS (Ta = –40 to +50 °C, VDD = 4.5 to 5.0 V) PARAMETER SYMBOL Compare accuracy VACOMP Threshold voltage VTH 0 VDD V PTH input voltage VIPTH 0 VDD V Comparator circuit current consumption 48 TEST CONDITIONS PTHM7 set to "1" MIN. TYP. 1 mA µPD75108F,75112F,75116F AC CHARACTERISTICS (Ta = –40 to +50 °C, VDD = 2.7 to 5.0 V) PARAMETER SYMBOL CPU clock cycle time* (Minimum instruction execution time = 1 machine cycle) tCY TI0, TI1 input frequency fTI TI0, TI1 input high/ low-level width TEST CONDITIONS MIN. VDD = 4.5 to 5.0 V VDD = 4.5 to 5.0 V tTIH, TYP. MAX. UNIT 0.95 32 µs 1.91 32 µs 0 1 MHz 0 275 kHz 0.48 µs 1.8 µs Input 0.8 µs Output 0.95 µs Input 3.2 µs Output 3.8 µs Input 0.4 µs tKCY/2 – 50 ns 1.6 µs tKCY/2 – 150 ns VDD = 4.5 to 5.0 V tTIL V DD = 4.5 to 5.0 V SCK cycle time tKCY VDD = 4.5 to 5.0 V SCK high/low-level width tKH, Output tKL Input Output SI setup time (to SCK↑) tSIK 100 ns SI hold time (from SCK↑) tKSI 400 ns SO output delay time from SCK↓ tKSO INT0 to INT4 High/low-level width tINTH, tINTL 5 µs RESET low-level width tRSL 5 µs VDD = 4.5 to 5.0 V 300 ns 1000 ns 49 µPD75108F,75112F,75116F * The CPU clock Φ cycle time is determined by the oscillation frequency of the connected resonator and the setting of the processor clock control tCY vs. VDD 40 32 7 register (PCC). The graph on the right shows the characteristic for cycle time tCY supply current VDD during system clock operation. 6 5 Operating Guarantee Range 4 tCY [µ s] 3 2 1 0.5 0 1 2 3 4 VDD [V] 50 5 6 µPD75108F,75112F,75116F AC Timing Test Point (Except ports 0, 1, TI0, TI1, X1, X2, RESET) 0.7 VDD 0.7 VDD Test Points 0.3 VDD 0.3 VDD Clock Timing 1/fX tXL tXH VDD – 0.5 V 0.4 V X1 Input TI0,TI1 Input Timing 1/fTI tTIL TI0, TI1 tTIH 0.8 VDD 0.2 VDD 51 µPD75108F,75112F,75116F Serial Transfer Timing tKCY tKH tKL 0.8 VDD 0.2 VDD SCK tSIK tKSI Input Data SI 0.8 VDD 0.2 VDD tKSO SO Output Data Interrupt Input Timing tINTL tINTH 0.8 VDD INT0–INT4 0.2 VDD RESET Input Timing tRSL RESET 52 0.2 VDD µPD75108F,75112F,75116F DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40 to +50 °C) PARAMETER SYMBOL Data retention supply voltage VDDDR Data retention supply current*1 IDDDR Release signal set time tSREL Oscillation stabilization time*2 tWAIT TEST CONDITIONS MIN. TYP. 2.0 VDDDR = 2.0 V 0.1 UNIT 5.0 V 10 µA µs 0 Release by RESET 217/f XX ms *3 ms Release by interrupt request * MAX. 1. Excluding current flowing in the internal pull-up resistors and comparator circuit. 2. The oscillation stabilization wait time is the time during which CPU operation is stopped to prevent unstable operation when oscillation is started. 3. Depends on the basic interval timer mode register (BTM) setting (see table below). WAIT TIME BTM3 BTM2 BTM1 BTM0 — 0 0 0 220/fXX (approx. 250 ms) — 0 1 1 217/fXX (approx. 31.3 ms) — 1 0 1 215/fXX (approx. 7.82 ms) — 1 1 1 213/fXX (approx. 1.95 ms) (Figures in parentheses are for operation at fXX = 4.19 MHz) Data Retention Timing (STOP mode release by RESET) Internal Reset Operation HALT Mode STOP Mode Operating Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution RESET tWAIT 53 µPD75108F,75112F,75116F Data Retention Timing (Standby release signal: STOP mode release by interrupt signal) HALT Mode STOP Mode Operating Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution Standby Release Signal (Interrupt Request) tWAIT 54 µPD75108F,75112F,75116F 12.2 WHEN Ta = –40 to +60 °C, VDD = 2.8 to 5.0 V OPERATING VOLTAGE (Ta = –40 to +60 °C) PARAMETER * TEST CONDITIONS MIN. MAX. UNIT CPU*1 *2 5.0 V Programmable threshold port (comparator input) 4.5 5.0 V Other hardware*1 2.8 5.0 V 1. Except system clock oscillation circuit, programmable threshold port. 2. The operable supply voltage range depends on the cycle time. See "AC CHARACTERISTICS". OSCILLATION CIRCUIT CHARACTERISTICS (Ta = –40 to +60 °C, VDD = 2.8 to 5.0 V) RESONATOR RECOMMENDED CONSTANT X1 X2 PARAMETER Oscillator frequency (f XX)*1 VDD = Oscillation voltage range Oscillation stabilization time*2 After VDD reaches MIN. of oscillation voltage range Ceramic resonator C1 C2 X1 Oscillator frequency (f XX)*1 X2 Crystal resonator C1 X1 C2 X2 External clock µPD74HCU04 * TEST CONDITIONS Oscillation stabilization time*2 MIN. TYP. 2.0 2.0 VDD = 4.5 to 5.0 V 4.19 MAX. UNIT 5.0*3 MHz 4 ms 5.0*3 MHz 10 ms 30 ms X1 input frequency (f X)*1 2.0 5.0*3 MHz X1 input high-/low-level width (t XH, tXL) 100 250 ns 1. Oscillator frequency and X1 input frequency indicate oscillation circuit characteristics only. See AC CHARACTERISTICS for instruction execution time. 2. The oscillation stabilization time is the time required for oscillation to stabilize after VDD reaches MIN. of oscillation voltage range, or the STOP mode is released. 3. When the oscillator frequency is 4.19 MHz < fXX ≤ 5.0 MHz, PCC = 0011 should not be selected as the instruction execution time. If PCC = 0011 is selected, one machine cycle is less than 0.95 µs and the rated MIN. value of 0.95 µs is not observed. Note When the clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc. • The wiring should be kept as short as possible. • No other signal lines should be crossed. • Keep away from lines carrying a high fluctuating current. • The oscillator capacitor grounding point should always be at the same potential as VSS. Do not connect to a ground pattern carrying a high current. • A signal should be not taken from the oscillator. 55 ★ µPD75108F,75112F,75116F RECOMMENDED OSCILLATION CIRCUIT CONSTANT RECOMMENDED CERAMIC RESONATOR (Ta = –40 to +60 °C) EXTERNAL CAPACITANCE [pF] MANUFACTURER Murata Mfg. Kyocera PRODUCT NAME OSCILLATION VOLTAGE RANGE [V] C1 C2 MIN. MAX. CSA 2.00MG 30 30 2.7 5.0 CSA 4.19MG 30 30 3.0 5.0 CSA 4.19MGU 30 30 2.7 5.0 CST 4.19T –– –– 3.0 5.0 KBR–2.0MS 100 100 3.0 5.0 KBR–4.0MS 33 33 3.0 5.0 KBR–4.19MS 33 33 3.0 5.0 KBR–4.9152M 33 33 3.0 5.0 RECOMMENDED CRYSTAL RESONATOR (Ta = –20 to +60 °C) EXTERNAL CAPACITANCE [pF] MANUFACTURER Kinseki 56 PRODUCT NAME HC-49/U OSCILLATION VOLTAGE RANGE [V] C1 C2 MIN. MAX. 22 22 2.7 5.0 µPD75108F,75112F,75116F DC CHARACTERISTICS (Ta = –40 to +60 °C, VDD = 2.8 to 5.0 V) PARAMETER SYMBOL TEST CONDITIONS MAX. UNIT Other than below 0.7 VDD VDD V VIH2 Ports 0,1,TI0, 1, RESET 0.8 VDD VDD V Internal pull-up resistor 0.7 VDD VDD V VIH3 Ports 12 to 14 Open–drain 0.7 VDD 10 V VDD – 0.5 VDD V VIH4 X1, X2 VIL1 Other than below 0 0.3 VDD V VIL2 Ports 0,1,TI0, 1, RESET 0 0.2 VDD V VIL3 X1, X2 0 0.4 V VDD = 4.5 to 5.0 V, IOH = –1 mA Output voltage high TYP. VIH1 Input voltage high Input voltage low MIN. VDD – 1.0 V VDD – 0.5 V VOH IOH = –100 µA Ports 0, 2 to 9, IOL = 15 mA 0.35 2.0 V Ports 12 to 14, IOL = 10 mA 0.35 2.0 V VDD = 4.5 to 5.0 V, IOL = 1.6 mA 0.4 V IOL = 400 µA 0.5 V Other than below 3 µA X1, X2 20 µA Ports 12 to 14 (open-drain) 20 µA Except X1, X2 –3 µA X1, X2 –20 µA VDD = 4.5 to 5.0 V Output voltage low VOL ILIH1 Input leakage current high VIN = VDD ILIH2 ILIH3 Input leakage current low VIV = 10 V ILIL1 VIN = 0 V ILIL2 ILOH1 VOUT = VDD Other than below 3 µA ILOH2 VOUT = 10 V Ports 12 to 14 (open-drain) 20 µA Output leakage current low ILOL VOUT = 0 V –3 µA Internal pull-up resistor (mask option) 70 kΩ RL Ports 12 to 14 80 kΩ 3 9 mA 4.19 MHz VDD = 2.8 to 3.3 V*3 Crystal oscillation C1 = C2 = 22 pF VDD = 4.5 to 5.0 V HALT mode VDD = 2.8 to 3.3 V 0.55 1.5 mA 600 1800 µA 200 600 µA STOP mode, VDD = 2.8 to 3.3 V 0.1 10 µA Output leakage current high VDD = 4.5 to 5.0 V 15 40 10 VDD = 4.5 to 5.0 V*2 IDD1 Supply current*1 IDD2 IDD3 * 1. Excluding current flowing in the internal pull-up resistors and comparator circuit. 2. When the processor clock control register (PCC) is set to 0011 for operation in the high-speed mode. 3. When the PCC register is set to 0000 for operation in the low-speed mode. 57 µPD75108F,75112F,75116F CAPACITANCE (Ta = 25 °C, VDD = 0 V) PARAMETER Input capacitance Output capacitance Input/output capacitance SYMBOL TEST CONDITIONS MIN. TYP. CIN COUT f = 1 MHz MAX. UNIT 15 pF 15 pF 15 pF MAX. UNIT ±100 mV Unmeasured pins returned to 0 V CIO COMPARATOR CHARACTERISTICS (Ta = –40 to +60 °C, VDD = 4.5 to 5.0 V) PARAMETER SYMBOL Compare accuracy VACOMP Threshold voltage VTH 0 VDD V PTH input voltage VIPTH 0 VDD V Comparator circuit current consumption 58 TEST CONDITIONS PTHM7 set to "1" MIN. TYP. 1 mA µPD75108F,75112F,75116F AC CHARACTERISTICS (Ta = –40 to +60 °C, VDD = 2.8 to 5.0 V) PARAMETER SYMBOL CPU clock cycle time* (Minimum instruction execution time = 1 machine cycle) tCY TI0, TI1 input frequency fTI TI0, TI1 input high/ low-level width TEST CONDITIONS MIN. VDD = 4.5 to 5.0 V VDD = 4.5 to 5.0 V tTIH, TYP. MAX. UNIT 0.95 32 µs 1.91 32 µs 0 1 MHz 0 275 kHz 0.48 µs 1.8 µs Input 0.8 µs Output 0.95 µs Input 3.2 µs Output 3.8 µs Input 0.4 µs tKCY/2 – 50 ns 1.6 µs tKCY/2 – 150 ns VDD = 4.5 to 5.0 V tTIL V DD = 4.5 to 5.0 V SCK cycle time tKCY VDD = 4.5 to 5.0 V SCK high/low-level width tKH, Output tKL Input Output SI setup time (to SCK↑) tSIK 100 ns SI hold time (from SCK↑) tKSI 400 ns SO output delay time from SCK↓ tKSO INT0 to INT4 High/low-level width tINTH, tINTL 5 µs RESET low-level width tRSL 5 µs VDD = 4.5 to 5.0 V 300 ns 1000 ns 59 µPD75108F,75112F,75116F * The CPU clock Φ cycle time is determined by the oscillation frequency of the connected resonator and the setting of the processor clock control register (PCC). The graph on the right shows the tCY vs. VDD 40 32 7 6 characteristic for cycle time tCY supply current VDD during system clock operation. 5 Operating Guarantee Range 4 tCY [µ s] 3 2 1 0.5 0 1 2 3 4 VDD [V] 60 5 6 µPD75108F,75112F,75116F AC Timing Test Point (Except ports 0, 1, TI0, TI1, X1, X2, RESET) 0.7 VDD Test Points 0.3 VDD 0.7 VDD 0.3 VDD Clock Timing 1/fX tXL tXH VDD – 0.5 V 0.4 V X1 Input TI0, TI1 Input Timing 1/fTI tTIL TI0, TI1 tTIH 0.8 VDD 0.2 VDD 61 µPD75108F,75112F,75116F Serial Transfer Timing tKCY tKH tKL 0.8 VDD 0.2 VDD SCK tSIK tKSI Input Data SI 0.8 VDD 0.2 VDD tKSO SO Output Data Interrupt Input Timing tINTL tINTH 0.8 VDD INT0–INT4 0.2 VDD RESET Input Timing tRSL RESET 62 0.2 VDD µPD75108F,75112F,75116F DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40 to +60 °C) PARAMETER SYMBOL Data retention supply voltage VDDDR Data retention supply current*1 IDDDR Release signal set time tSREL Oscillation stabilization time*2 tWAIT TEST CONDITIONS MIN. TYP. 2.0 VDDDR = 2.0 V 0.1 UNIT 5.0 V 10 µA µs 0 Release by RESET 217/f XX ms *3 ms Release by interrupt request * MAX. 1. Excluding current flowing in the internal pull-up resistors and comparator circuit. 2. The oscillation stabilization wait time is the time during which CPU operation is stopped to prevent unstable operation when oscillation is started. 3. Depends on the basic interval timer mode register (BTM) setting (see table below). WAIT TIME BTM3 BTM2 BTM1 BTM0 — 0 0 0 220/fXX (approx. 250 ms) — 0 1 1 217/fXX (approx. 31.3 ms) — 1 0 1 215/fXX (approx. 7.82 ms) — 1 1 1 213/fXX (approx. 1.95 ms) (Figures in parentheses are for operation at fXX = 4.19 MHz) Data Retention Timing (STOP mode release by RESET) Internal Reset Operation HALT Mode STOP Mode Operating Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution RESET tWAIT 63 µPD75108F,75112F,75116F Data Retention Timing (Standby release signal: STOP mode release by interrupt signal) HALT Mode STOP Mode Operating Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution Standby Release Signal (Interrupt Request) tWAIT 64 µPD75108F,75112F,75116F 13. CHARACTERISTIC CURVES (REFERENCE) IDD vs. VDD (Crystal Oscillator : 4.19 MHz) (Ta = 25 °C) High-Speed Mode Medium-Speed Mode 1000 Low-Speed Mode Supply Current IDD [µA] HALT Mode X1 100 X2 Crystal 4.19 MHz 22pF 22pF 10 0 1 2 3 4 5 6 Supply Voltage VDD [V] 65 µPD75108F,75112F,75116F IDD vs. fXX Characteristic Examples (Crystal Oscillation) (VDD = 5.0 V, Ta = 25 °C) 3.0 Values in parentheses indicate PCC set values. X1 Supply Current IDD [mA] 2.5 X2 C1 High-Speed Mode [0011] C2 2.0 Medium-Speed Mode [0010] 1.5 Low-Speed Mode [0000] 1.0 HALT Mode [0100] 0.5 0 0 1 2 3 4 5 fXX [MHz] IDD vs. fXX Characteristic Examples (Ceramic Oscillation) (VDD = 5.0 V, Ta = 25 °C) 3.0 Values in parentheses indicate PCC set values. High-Speed Mode [0011] X1 X2 Supply Current IDD [mA] 2.5 C1 C2 2.0 Medium-Speed Mode [0010] 1.5 Low-Speed Mode [0000] 1.0 HALT Mode [0100] 0.5 0 0 1 2 3 4 fXX [MHz] 66 5 µPD75108F,75112F,75116F IDD vs. fX Characteristic Examples (External Clock) (VDD = 5.0 V, Ta = 25 °C) 3.0 Values in parentheses indicate PCC set values. X1 Supply Current IDD [mA] 2.5 X2 µPD74HCU04 High-Speed Mode [0011] 2.0 Medium-Speed Mode [0010] 1.5 Low-Speed Mode [0000] 1.0 0.5 HALT Mode [0100] 0 0 1 2 3 4 5 fX [MHz] 67 µPD75108F,75112F,75116F fTI vs. VDD Characteristic TIn Input Frequency fTI [kHz] (Ta = –40 to +50 °C) 1000 500 Operating Guarantee Range 100 50 0 0 1 2 3 4 5 6 7 VDD [V] fTI vs. VDD Characteristic TIn Input Frequency fTI [kHz] (Ta = –40 to +60 °C) 1000 500 Operating Guarantee Range 100 50 0 0 1 2 3 4 VDD [V] 68 5 6 7 µPD75108F,75112F,75116F VOL vs. IOL (Ports 0, 2 to 9) Characteristic Examples VDD = 5 V 30 Ports 0, 2 to 9 Output Current Low IOL [mA] VDD = 4 V VDD = 3 V 20 10 0 0 1 2 3 4 VOL [V] VOL vs. IOL (Ports 12 to 14) Characteristic Examples VDD = 5 V 30 Ports 12 to 14 Output Current Low IOL [mA] VDD = 4 V 20 VDD = 3 V 10 0 0 1 2 3 4 VOL [V] 69 µPD75108F,75112F,75116F VOH vs. IOH (Ports 0, 2 to 9) Characteristic Examples VDD = 5 V -15 Ports 0, 2 to 9 Output Current High IOH [mA] VDD = 4 V -10 VDD = 3 V -5 0 0 1 2 3 VDD – VOH [V] Remarks 70 Characteristic curves not marked "Guarantee Range" indicate reference values. 4 µPD75108F,75112F,75116F 14. PACKAGE INFORMATION 64 PINPlastic PLASTIC QFP (14×20) 64-Pin QFP (14 × 20) A B 33 32 64 1 20 19 detail of lead end F Q 5°±5° D C S 51 52 G H I M J M P K N L P64GF-100-3B8,3BE,3BR-1 NOTE Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 23.6 ± 0.4 0.929 ± 0.016 B 20.0 ± 0.2 0.795+0.009 –0.008 C 14.0 ± 0.2 0.551+0.009 –0.008 D 17.6 ± 0.4 0.693 ± 0.016 F 1.0 0.039 G 1.0 0.039 H 0.40 ± 0.10 0.016 +0.004 –0.005 I 0.20 0.008 J 1.0 (T.P.) 0.039 (T.P.) K 1.8 ± 0.2 0.071–0.009 L 0.8 ± 0.2 0.031+0.009 –0.008 M 0.15+0.10 –0.05 0.006+0.004 –0.003 N 0.12 0.005 P 2.7 Q 0.1 ± 0.1 S 3.0 MAX. +0.008 0.106 0.004 ± 0.004 0.119 MAX. 71 µPD75108F,75112F,75116F 64-Pin Ceramic QFP for ES (Reference Diagram) 14.2 64 52 51 19 20 33 32 18.0 1 0.4 0.15 2.25 1.0 20 12.0 Caution 1. Note that the metal cap is connected to pin 26, and is at the VSS (GND) level. 2. Note that the leads on the underside are formed at an angle. 3. Cutting of the lead tips is not process-controlled, and therefore there is no stan- Bottom View dard lead length. 72 µPD75108F,75112F,75116F 15. RECOMMENDED SOLDERING CONDITIONS The µPD75116F should be soldered and mounted under the conditions recommended in the table below. For details of recommended conditions, refer to the information document "Semiconductor Device Mount Technology Manual" (IEI-1207). For soldering methods and conditions other than those recommended below, contact our salesman. Table 15-1 Surface Mount Type Soldering Conditions µPD75108FGF-×××-3BE : 64-Pin Plastic QFP (14 × 20 mm) µPD75112FGF-×××-3BE : 64-Pin Plastic QFP (14 × 20 mm) µPD75116FGF-×××-3BE : 64-Pin Plastic QFP (14 × 20 mm) Soldering Method Soldering Conditions Recommended Condition Symbol Infrared reflow Package peak temperature : 230 °C, Duration : 30 sec. max. (at 210 °C or avove), Number of times : once IR30-00-1 VPS Package peak temperature : 215 °C, Duration : 40 sec. max. (at 200 °C or above), Number of times : once VP15-00-1 Wave soldering Solder bath temperature : 260 °C max., Duration : 10 sec. max., Number of times : once, Preheating temperature : 120 °C max. (package surface temperature) WS60-00-1 Pin part heating Pin part temperature : 300 °C max., Duration : 3 sec. max. (per device side) Pin part heating Note Use of more than one soldering method should be avoided (except in the case of pin part heating). Notice A version of this product with improved recommended soldering conditions is available. For details (improvements such as infrared reflow peak temperature extension (235 °C), number of times: twice, relaxation of time limit, etc.), contact NEC sales personnel. 73 µPD75108F,75112F,75116F ★ APPENDIX A. FUNCTIONAL DIFFERENCES AMONG µPD751×× SERIES PRODUCTS Product Name Item ROM (byte) RAM (× 4 bits) µPD75104/106/108/112/116 µPD75104A/108A µPD75108F/112F/116F 4K/6K/8K/12K/16K (Mask ROM) 4K/8K (Mask ROM) 8K/12K/16K (Mask ROM) 320/320/512/512/512 320/512 512 Instruction set 75X High-End Total 58 CMOS input 10 10 (Pull-up resistor mask option : 4) 10 CMOS input/output 32 (LED direct drive capability) 32 (Pull-up resistor mask option : 24, 32 (LED direct drive capability) LED direct drive capability) I/O N-ch open-drain port input/output 12 (LED direct drive capability) +12 V Withstand voltage Pull-up resistor +10 V Can be incorporated by mask option 4 (4-bit precision) Analog input Power-on reset circuit On-chip (Mask option) None Power-on flag Operating voltage Operating temperature range Minimum instruction execution time Package *2 * 2.7 to 6.0 V 2.7 to 5.0 V (Ta = –40 to +50 °C) 2.8 to 5.0 V –40 to +85 °C –40 to +60 °C 0.95 µs (operating at 4.5 to 6.0 V) 3.8 µs (operating at 2.7 V) 0.95 µs (operating at 4.5 to 5.0 V) 1.91 µs (operating at 2.7V) • 64-pin plastic shrink DIP • 64-pin plastic QFP(GF-3BE) • 64-pin plastic QFP (G-1B) : µPD75104/106/108 only • 64-pin plastic QFP(GF-3BE) 1. 75X High-End can also be used by means of the 16K-byte mode/24K-byte mode switching function. 2. The following five types of plastic QFP are available. • G-1B ........ 14 × 20 × 2.05 mm, 1.0 mm pitch • GC-AB8 ... 14 × 14 × 2.55 mm, 0.8 mm pitch • GF-3BE .... 14 × 20 × 2.7 mm, 1.0 mm pitch • G-22 ........ 14 × 14 × 1.5 mm, 0.8 mm pitch • GK-7ET ... 12 × 12 × 1.45 mm, 0.65 mm pitch 3. Under development. 74 • 64-pin plastic QFP(GC-AB8) • 64-pin plastic QFP (G-22) : µPD75108A only µPD75108F,75112F,75116F µPD75116H/117H µPD75P108B µPD75P116 µPD75P117H 16K/24K (Mask ROM) 8K (One-time PROM) 24K (One-time PROM) 768 512 768 75X High-End/Extended High-End 75X High-End 75X Extended High-End*1 58 10 32 (LED direct drive capability : 8) 32 (LED direct drive capability) 32 (LED direct drive capability : 8) 12 12 (LED direct drive capability) 12 +6 V +12 V +6 V Can be incorporated by mask option None 4 (4-bit precision) None 1.8 to 5.0 V –40 to +60 °C 0.95 µs (operating at 2.7 V) 1.91 µs (operating at 1.8 V) None 5 V ±10 % 2.7 to 6.0 V –40 to +85 °C 0.95 µs (operating at 4.5 to 6.0 V) 3.8 µs (operating at 2.7 V) • 64-pin plastic QFP (GC-AB8) • 64-pin plastic shrink DIP • 64-pin plastic QFP (GK-7ET) • 64-pin plastic QFP (GF-3BE) • 64-pin ceramic shrink DIP with window 0.95 µs (operating at 4.75 to 5.5 V) 1.8 to 5.0 V –40 to +60 °C 0.95 µs (operating at 2.7 V) 1.91 µs (operating at 1.8 V) • 64-pin plastic shrink DIP • 64-pin plastic QFP (GC-AB8) • 64-pin plastic QFP (GF-3BE) • 64-pin plastic QFP (GK-7ET)*3 75 µPD75108F,75112F,75116F ★ APPENDIX B. DEVELOPMENT TOOLS The following development tools are available for system development using the µPD75116F. Hardware IE-75000-R*1 IE-75001-R 75X series in-circuit emulator IE-75000-R-EM*2 Emulation board for the IE-75000-R or IE-75001-R EP-75108GF-R Emulation probe for the µPD75116FGF. A 64-pin conversion socket (EV-9200G-64) is also provided. EV-9200G-64 PG-1500 PROM programmer PA-75P116GF PROM programmer adapter for the µPD75P116GF, connected to the PG-1500. IE Control Program Software PG-1500 Controller RA75X Relocatable Host machines • PC-9800 series (MS-DOS™ Ver. 3.30 to Ver. 5.00A*3) • IBM PC/AT™ (PC-DOS™ Ver.3.1) Assembler * 1. Maintenance product 2. Not incorporated in the IE-75001-R. 3. A task swapping function is provided in Ver. 5.00/5.00A, but this function cannot be used with this software. Remarks 76 Please refer to the 75X Series Selection Guide (IF-151) for third party development tools. µPD75108F,75112F,75116F ★ APPENDIX C. RELATED DOCUMENTS Device Related Documents Document Name Document Number User’s Manual IEM–1260 Instruction Application Table Application Note Not Available (I) Introductory Volume IEM–1139 (II) Remote Control Reception Volume IEM–1281 (III) Barcode Reader Volume IEM–1265 (IV) MSK Transmission/Reception IC Control Volume IEM–1278 75X Series Selection Guide IF–1027 Development Tools Documents Document Name Document Number IE-75000-R/IE-75001-R User’s Manual EEU–1455 IE-75000-R-EM User’s Manual EEU–1294 EP-75108GF-R User’s Manual EEU–1318 PG-1500 User’s Manual EEU–1335 Hardware Operation Volume EEU–1346 Language Volume EEU–1343 RA75X Assembler Package User’s Manual Software PG-1500 Controller User’s Manual EEU–1291 Other Documents Document Name Document Number Package Manual IEI–1213 Surface Mount Technology Manual IEI–1207 Quality grade on NEC Semiconductor Devices IEI–1209 NEC Semiconductor Device Reliability & Quality Control Not Available Electrostatic Discharge (ESD) Test Not Available Semiconductor Devices Quality Guide Guarantee Guide Microcomputer Related Products Guide Other Manufacturers Volume Note MEI–1202 Not Available The information in these related documents is subject to change without notice. For design purpose, etc., be sure to use the latest ones. 77 µPD75108F,75112F,75116F [MEMO] No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc. Special : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc. M4 92.6 MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.