1N582x ® LOW DROP POWER SCHOTTKY RECTIFIER MAIN PRODUCTS CHARACTERISTICS IF(AV) 3A VRRM 40 V Tj 150°C VF (max) 0.475 V FEATURES AND BENEFITS VERY SMALL CONDUCTION LOSSES NEGLIGIBLE SWITCHING LOSSES EXTREMELY FAST SWITCHING LOW FORWARD VOLTAGE DROP DO-201AD DESCRIPTION Axial Power Schottky rectifier suited for Switch Mode Power Supplies and high frequency DC to DC converters. Packaged in DO-201AD these devices are intended for use in low voltage, high frequency inverters, free wheeling, polarity protection and small battery chargers. ABSOLUTE RATINGS (limiting values) Symbol VRRM Repetitive peak reverse voltage IF(RMS) RMS forward current IF(AV) Value Parameter Average forward current 1N5820 1N5821 1N5822 20 30 40 10 TL = 110°C δ = 0.5 IFSM Surge non repetitive forward current Tstg Storage temperature range Tj dV/dt * : tp = 10 ms Sinusoidal Maximum operating junction temperature * Critical rate of rise of reverse voltage 3 V A 3 TL = 100°C δ = 0.5 Unit A 3 A 80 A - 65 to + 150 °C 150 °C 10000 V/µs dPtot 1 < thermal runaway condition for a diode on its own heatsink dTj Rth(j−a) July 1999 - Ed: 2A 1/5 1N582x THERMAL RESISTANCES Symbol Parameter Value Unit Rth (j-a) Junction to ambient Lead length = 10 mm 80 °C/W Rth (j-l) Junction to lead Lead length = 10 mm 25 °C/W 1N5820 1N5821 1N5822 Unit STATIC ELECTRICAL CHARACTERISTICS Symbol Parameter IR * VF * Tests Conditions Reverse leakage current Tj = 25°C Forward voltage drop Tj = 25°C Tj = 25°C 2 2 2 mA 20 20 20 mA IF = 3 A 0.475 0.5 0.525 V IF = 9.4 A 0.85 0.9 0.95 V VR = VRRM Tj = 100°C Pulse test : * tp = 380 µs, δ < 2% To evaluate the conduction losses use the following equations : P = 0.33 x IF(AV) + 0.035 IF2(RMS ) for 1N5820 / 1N5821 P = 0.33 x IF(AV) + 0.060 IF2(RMS ) for 1N5822 Fig. 1: Average forward power dissipation versus average forward current (1N5820/1N5821). 1.8 PF(av)(W) δ = 0.1 1.6 δ = 0.2 δ = 0.5 δ = 0.05 1.4 δ=1 1.2 1.0 0.8 0.6 T 0.4 0.2 0.0 0.0 2/5 IF(av) (A) 0.5 1.0 1.5 2.0 2.5 δ=tp/T 3.0 3.5 tp 4.0 Fig. 2: Average forward power dissipation versus average forward current (1N5822). PF(av)(W) 2.0 1.8 δ = 0.05 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.5 1.0 δ = 0.1 δ = 0.2 δ = 0.5 δ=1 T δ=tp/T IF(av) (A) 1.5 2.0 2.5 3.0 tp 3.5 1N582x Fig. 2-1: Average forward current versus ambient temperature (δ=0.5) (1N5820/1N5821). Fig. 2-2: Average forward current versus ambient temperature (δ=0.5) (1N5822). IF(av)(A) IF(av)(A) 3.5 3.5 Rth(j-a)=Rth(j-l)=25°C/W Rth(j-a)=Rth(j-l)=25°C/W 3.0 3.0 2.5 2.5 2.0 2.0 Rth(j-a)=80°C/W 1.0 1.0 T δ=tp/T 0 Tamb(°C) tp 25 50 75 0.0 100 125 150 Fig. 3-1: Non repetitive surge peak forward current versus overload duration (maximum values) (1N5820/1N5821). IM(A) 16 14 12 Ta=25°C 10 8 Ta=75°C 6 Ta=100°C 4 IM 2 t t(s) δ=0.5 0 1E-3 1E-2 1E-1 1E+0 Fig. 4: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35mm, recommended pad layout). 1.0 T 0.5 0.5 0.0 Rth(j-a)=80°C/W 1.5 1.5 Zth(j-a)/Rth(j-a) δ=tp/T 0 Tamb(°C) tp 25 50 75 100 125 150 Fig. 3-2: Non repetitive surge peak forward current versus overload duration (maximum values) (1N5822). IM(A) 12 11 10 9 8 7 6 5 4 3 IM 2 1 0 1E-3 Ta=25°C Ta=75°C Ta=100°C t t(s) δ=0.5 1E-2 1E-1 1E+0 Fig. 5: Junction capacitance versus reverse voltage applied (typical values). 600 C(pF) F=1MHz Tj=25°C 1N5820 0.8 1N5821 0.6 1N5822 100 δ = 0.5 0.4 T δ = 0.2 0.2 δ = 0.1 tp(s) Single pulse 0.0 1E-1 1E+0 1E+1 δ=tp/T 1E+2 tp 1E+3 VR(V) 10 1 2 5 10 20 40 3/5 1N582x Fig. 6-1: Reverse leakage current versus reverse voltage applied (typical values) (1N5820/1N5821). IR(mA) 1E+2 Fig. 6-2: Reverse leakage current versus reverse voltage applied (typical values) (1N5822). IR(mA) 5E+1 1N5821 1E+0 1E+1 1N5820 Tj=125°C 1E+1 1E+0 Tj=100°C Tj=100°C 1E-1 1E-1 Tj=25°C 1E-2 1E-3 Tj=125°C 1E-2 Tj=25°C VR(V) 0 5 10 15 20 25 30 Fig. 7-1: Forward voltage drop versus forward current (typical values) (1N5820/1N5821). 50.00 IFM(A) 1E-3 VR(V) 0 5 25 30 35 40 10.00 Tj=125°C Tj=100°C 1.00 1.00 Tj=100°C Tj=25°C Tj=25°C 0.10 0.10 VFM(V) 0.01 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.01 0.0 Fig. 8: Non repetitive surge peak forward current versus number of cycles. IFSM(A) 100 F=50Hz Tj initial=25°C 80 60 40 20 Number of cycles 4/5 20 IFM(A) Tj=125°C 1 15 Fig. 7-2: Forward voltage drop versus forward current (typical values) (1N5822). 50.00 10.00 0 10 10 100 1000 VFM(V) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1N582x PACKAGE MECHANICAL DATA DO-201AD plastic B A E note 1 B E ØD ØC note 1 ØD note 2 DIMENSIONS REF. Millimeters Min. A B ∅C ∅D E Max. Min. 9.50 25.40 NOTES Inches Max. 0.374 1 - The lead diameter ∅ D is not controlled over zone E 0.209 0.051 0.049 2 - The minimum axial length within which the device may be placed with its leads bent at right angles is 0.59"(15 mm) 1.000 5.30 1.30 1.25 Ordering type Marking Package Weight Base qty Delivery mode 1N582x Part number cathode ring DO-201AD 1.12g 600 Ammopack 1N582xRL Part number cathode ring DO-201AD 1.12g 1900 Tape & reel Epoxy meets UL94,V0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 1999 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 5/5