STMICROELECTRONICS 1N5822

1N582x
®
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCTS CHARACTERISTICS
IF(AV)
3A
VRRM
40 V
Tj
150°C
VF (max)
0.475 V
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
NEGLIGIBLE SWITCHING LOSSES
EXTREMELY FAST SWITCHING
LOW FORWARD VOLTAGE DROP
DO-201AD
DESCRIPTION
Axial Power Schottky rectifier suited for Switch
Mode Power Supplies and high frequency DC to
DC converters. Packaged in DO-201AD these
devices are intended for use in low voltage, high
frequency inverters, free wheeling, polarity
protection and small battery chargers.
ABSOLUTE RATINGS (limiting values)
Symbol
VRRM
Repetitive peak reverse voltage
IF(RMS)
RMS forward current
IF(AV)
Value
Parameter
Average forward current
1N5820 1N5821 1N5822
20
30
40
10
TL = 110°C
δ = 0.5
IFSM
Surge non repetitive forward current
Tstg
Storage temperature range
Tj
dV/dt
* :
tp = 10 ms
Sinusoidal
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
3
V
A
3
TL = 100°C
δ = 0.5
Unit
A
3
A
80
A
- 65 to + 150
°C
150
°C
10000
V/µs
dPtot
1
<
thermal runaway condition for a diode on its own heatsink
dTj
Rth(j−a)
July 1999 - Ed: 2A
1/5
1N582x
THERMAL RESISTANCES
Symbol
Parameter
Value
Unit
Rth (j-a)
Junction to ambient
Lead length = 10 mm
80
°C/W
Rth (j-l)
Junction to lead
Lead length = 10 mm
25
°C/W
1N5820 1N5821 1N5822
Unit
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Parameter
IR *
VF *
Tests Conditions
Reverse leakage
current
Tj = 25°C
Forward voltage drop
Tj = 25°C
Tj = 25°C
2
2
2
mA
20
20
20
mA
IF = 3 A
0.475
0.5
0.525
V
IF = 9.4 A
0.85
0.9
0.95
V
VR = VRRM
Tj = 100°C
Pulse test : * tp = 380 µs, δ < 2%
To evaluate the conduction losses use the following equations :
P = 0.33 x IF(AV) + 0.035 IF2(RMS ) for 1N5820 / 1N5821
P = 0.33 x IF(AV) + 0.060 IF2(RMS ) for 1N5822
Fig. 1: Average forward power dissipation versus
average forward current (1N5820/1N5821).
1.8
PF(av)(W)
δ = 0.1
1.6
δ = 0.2
δ = 0.5
δ = 0.05
1.4
δ=1
1.2
1.0
0.8
0.6
T
0.4
0.2
0.0
0.0
2/5
IF(av) (A)
0.5
1.0
1.5
2.0
2.5
δ=tp/T
3.0
3.5
tp
4.0
Fig. 2: Average forward power dissipation versus
average forward current (1N5822).
PF(av)(W)
2.0
1.8
δ = 0.05
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.0
0.5
1.0
δ = 0.1
δ = 0.2
δ = 0.5
δ=1
T
δ=tp/T
IF(av) (A)
1.5
2.0
2.5
3.0
tp
3.5
1N582x
Fig. 2-1: Average forward current versus ambient
temperature (δ=0.5) (1N5820/1N5821).
Fig. 2-2: Average forward current versus ambient
temperature (δ=0.5) (1N5822).
IF(av)(A)
IF(av)(A)
3.5
3.5
Rth(j-a)=Rth(j-l)=25°C/W
Rth(j-a)=Rth(j-l)=25°C/W
3.0
3.0
2.5
2.5
2.0
2.0
Rth(j-a)=80°C/W
1.0
1.0
T
δ=tp/T
0
Tamb(°C)
tp
25
50
75
0.0
100
125
150
Fig. 3-1: Non repetitive surge peak forward
current versus overload duration (maximum
values) (1N5820/1N5821).
IM(A)
16
14
12
Ta=25°C
10
8
Ta=75°C
6
Ta=100°C
4
IM
2
t
t(s)
δ=0.5
0
1E-3
1E-2
1E-1
1E+0
Fig. 4: Relative variation of thermal impedance
junction to ambient versus pulse duration (epoxy
printed circuit board, e(Cu)=35mm, recommended
pad layout).
1.0
T
0.5
0.5
0.0
Rth(j-a)=80°C/W
1.5
1.5
Zth(j-a)/Rth(j-a)
δ=tp/T
0
Tamb(°C)
tp
25
50
75
100
125
150
Fig. 3-2: Non repetitive surge peak forward
current versus overload duration (maximum
values) (1N5822).
IM(A)
12
11
10
9
8
7
6
5
4
3
IM
2
1
0
1E-3
Ta=25°C
Ta=75°C
Ta=100°C
t
t(s)
δ=0.5
1E-2
1E-1
1E+0
Fig. 5: Junction capacitance versus reverse
voltage applied (typical values).
600
C(pF)
F=1MHz
Tj=25°C
1N5820
0.8
1N5821
0.6
1N5822
100
δ = 0.5
0.4
T
δ = 0.2
0.2
δ = 0.1
tp(s)
Single pulse
0.0
1E-1
1E+0
1E+1
δ=tp/T
1E+2
tp
1E+3
VR(V)
10
1
2
5
10
20
40
3/5
1N582x
Fig. 6-1: Reverse leakage current versus reverse
voltage applied (typical values) (1N5820/1N5821).
IR(mA)
1E+2
Fig. 6-2: Reverse leakage current versus reverse
voltage applied (typical values) (1N5822).
IR(mA)
5E+1
1N5821
1E+0
1E+1
1N5820
Tj=125°C
1E+1
1E+0
Tj=100°C
Tj=100°C
1E-1
1E-1
Tj=25°C
1E-2
1E-3
Tj=125°C
1E-2
Tj=25°C
VR(V)
0
5
10
15
20
25
30
Fig. 7-1: Forward voltage drop versus forward
current (typical values) (1N5820/1N5821).
50.00
IFM(A)
1E-3
VR(V)
0
5
25
30
35
40
10.00
Tj=125°C
Tj=100°C
1.00
1.00
Tj=100°C
Tj=25°C
Tj=25°C
0.10
0.10
VFM(V)
0.01
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.01
0.0
Fig. 8: Non repetitive surge peak forward current
versus number of cycles.
IFSM(A)
100
F=50Hz
Tj initial=25°C
80
60
40
20
Number of cycles
4/5
20
IFM(A)
Tj=125°C
1
15
Fig. 7-2: Forward voltage drop versus forward
current (typical values) (1N5822).
50.00
10.00
0
10
10
100
1000
VFM(V)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1N582x
PACKAGE MECHANICAL DATA
DO-201AD plastic
B
A
E
note 1
B
E
ØD
ØC
note 1
ØD
note 2
DIMENSIONS
REF.
Millimeters
Min.
A
B
∅C
∅D
E
Max.
Min.
9.50
25.40
NOTES
Inches
Max.
0.374
1 - The lead diameter ∅ D is not controlled over zone E
0.209
0.051
0.049
2 - The minimum axial length within which the device may be
placed with its leads bent at right angles is 0.59"(15 mm)
1.000
5.30
1.30
1.25
Ordering type
Marking
Package
Weight
Base qty
Delivery mode
1N582x
Part number
cathode ring
DO-201AD
1.12g
600
Ammopack
1N582xRL
Part number
cathode ring
DO-201AD
1.12g
1900
Tape & reel
Epoxy meets UL94,V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
5/5