CET CEU6355

CED6355/CEU6355
P-Channel Enhancement Mode Field Effect Transistor
PRELIMINARY
FEATURES
-60V, -26A, RDS(ON) = 42mΩ
@VGS = -10V.
RDS(ON) = 65mΩ
@VGS = -4.5V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
D
Lead free product is acquired.
TO-251 & TO-252 package.
G
D
G
S
CEU SERIES
TO-252(D-PAK)
ABSOLUTE MAXIMUM RATINGS
Parameter
G
D
S
CED SERIES
TO-251(I-PAK)
Tc = 25 C unless otherwise noted
Symbol
Limit
-60
Units
V
VGS
±20
V
ID
-26
A
IDM
-104
A
50
W
Drain-Source Voltage
VDS
Gate-Source Voltage
Drain Current-Continuous
Drain Current-Pulsed
S
a
Maximum Power Dissipation @ TC = 25 C
PD
- Derate above 25 C
Operating and Store Temperature Range
0.4
W/ C
TJ,Tstg
-55 to 150
C
Thermal Characteristics
Symbol
Limit
Units
Thermal Resistance, Junction-to-Case
Parameter
RθJC
2.5
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
50
C/W
This is preliminary information on a new product in development now .
Details are subject to change without notice .
1
Rev 1. 2006.Aug
http://www.cetsemi.com
CED6355/CEU6355
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = -250µA
-60
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = -60V, VGS = 0V
-1
µA
IGSSF
VGS = 20V, VDS = 0V
100
nA
IGSSR
VGS = -20V, VDS = 0V
-100
nA
Off Characteristics
V
On Characteristics b
Gate Threshold Voltage
Static Drain-Source
On-Resistance
VGS(th)
RDS(on)
VGS = VDS, ID = -250µA
-3
V
VGS = -10V, ID = -26A
-1
35
42
mΩ
VGS = -4.5V, ID = -21A
50
65
mΩ
VDS = -10V, ID = -26A
22
S
2020
pF
180
pF
95
pF
Dynamic Characteristics c
Forward Transconductance
gFS
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VDS = -30V, VGS = 0V,
f = 1.0 MHz
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
15
VDD = -30V, ID = -20A,
VGS = -10V, RGEN = 3Ω
30
ns
4
8
ns
47
94
ns
Turn-Off Fall Time
tf
11
22
ns
Total Gate Charge
Qg
32.2
42.8
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = -30V, ID = -20A,
VGS = -10V
5.7
nC
5.4
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = -26A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
2
-26
A
-1.3
V
6
CED6355/CEU6355
25
35
-ID, Drain Current (A)
-ID, Drain Current (A)
-VGS=10,8,6,4V
20
15
10
-VGS=3V
5
28
21
14
25 C
7
TJ=125 C
-55 C
0
0
0
1
2
3
4
5
6
0
1000
Coss
500
Crss
5
10
15
20
25
30
6
2.2
1.9
ID=-26A
VGS=-10V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
-VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
-IS, Source-drain current (A)
VTH, Normalized
Gate-Source Threshold Voltage
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
C, Capacitance (pF)
1500
ID=-250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
5
Figure 2. Transfer Characteristics
2000
1.2
4
Figure 1. Output Characteristics
Ciss
1.3
3
-VGS, Gate-to-Source Voltage (V)
2500
0
2
-VDS, Drain-to-Source Voltage (V)
3000
0
1
10
10
10
10
-25
0
25
50
75
100
125
150
3
VGS=0V
2
1
0
0.3
0.6
0.9
1.2
1.5
1.8
TJ, Junction Temperature( C)
-VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
10 V =-30V
DS
ID=-20A
10
-ID, Drain Current (A)
-VGS, Gate to Source Voltage (V)
CED6355/CEU6355
8
6
4
2
10
10
10
10
0
0
10
20
30
40
3
2
100µs
1ms
10ms
DC
1
6
0
-1
10
-1
10
0
10
1
10
Qg, Total Gate Charge (nC)
-VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
RL
V IN
D
td(off)
tf
90%
90%
VOUT
VOUT
VGS
RGEN
toff
tr
td(on)
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
r(t),Normalized Effective
Transient Thermal Impedance
Figure 9. Switching Test Circuit
10
0
D=0.5
0.2
10
-1
PDM
0.1
t1
0.05
t2
0.02
0.01
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
Single Pulse
10
-2
10
-5
10
-4
10
-3
10
-2
10
-1
Square Wave Pulse Duration (msec)
Figure 11. Normalized Thermal Transient Impedance Curve
4
10
0
10
1
2