iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 1/25 FEATURES APPLICATIONS ♦ Excellent matching and technical reliability thanks to system-on-chip design with integrated photodiodes ♦ Gray code scanning (11 digital tracks pitched at 400 µm) ♦ Sine/cosine analog track with electronic calibration ♦ Diff. sine/cosine outputs with 1024 CPR (amplitude: 500 mV) ♦ Position value of up to 16 bits through 6-bit interpolation ♦ Quadrature signals with 1024, 2048, 4096, 8192, 16384 CPR ♦ Index signal in phase with B low ♦ 14-bit parallel position data output ♦ Serial data readout in 1 µs cycles at 16 MHz clock frequency ♦ SPI interface for configuration and position data output ♦ 3.3 V-compatible SPI and I/O ports ♦ LED current control for a constant receive power (50 mA highside driver, sin2 +cos2 or sum) ♦ Permanent parity monitoring of the internal RAM bits ♦ Alarm for configuration and illumination errors (end of life) ♦ Temperature range from -40°C to 110°C ♦ Small outline, 30-pin optoBGA package for SMT ♦ Illumination: iC-SN85 BLCC SN1C (850 nm encoder LED) ♦ Code discs: LNG1S 42-1024 (1024 PPR, ∅ 42 mm/18 mm), LNG2S 25-512 (512 PPR, ∅ 24.8 mm/2 mm) ♦ Optical position sensors ♦ Linear scales ♦ Absolute, incremental, and parallel encoders ♦ Motor feedback systems PACKAGES 30-Pin optoBGA 7.6 mm x 7.1 mm x 1.7 mm BLOCK DIAGRAM Copyright © 2011 iC-Haus http://www.ichaus.com iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 2/25 DESCRIPTION iC-LNG is an optoelectronic encoder IC for absolute linear and angle measuring systems, such as glass scales and encoders. Photodiodes, amplifiers, and comparators, the entire signal conditioning unit, and interfaces for position data output have been monolithically integrated into the device. An integrated LED current control with a driver stage allows a transmitting LED to be directly connected (e.g. iC-SN85). The optical receive power is kept constant by the control unit, regardless of temperature and aging effects. The receive power setpoint can be programmed. Should the LED current control exit its operating range, this is indicated at the error message output (end-of-life alarm at pin ERR). The photocurrent offset and photocurrent amplitude of the analog sine/cosine signals can be calibrated. These calibrated voltage signals are lead out to pins PSIN, NSIN, PCOS, and NCOS and are used by the integrated 6-bit interpolator. iC-LNG synchronizes the interpolator and singleturn data to form a contiguous Gray-coded position data word. A shift register or SPI interface are available for position data output. iC-LNG also outputs incremental A/B/Z signals, the resolution of which can be programmed. After startup iC-LNG is configured using the SPI interface. To make connection to a 3.3 V microcontroller easier, all digital I/O ports, including the SPI, can be run on 3.3 V. Test currents can be applied to test pins TPS, TNS, TPC, and TNC to simulate photocurrents. Allocation to various tracks can be selected as required, enabling a full function test of the IC with the exception of the sensors. iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 3/25 CONTENTS PACKAGES 4 ABSOLUTE MAXIMUM RATINGS 6 THERMAL DATA 6 ELECTRICAL CHARACTERISTICS 7 OPERATING CONDITIONS: SPI Interface 11 CONFIGURATION PARAMETERS 12 OPERATING MODES 14 SPI INTERFACE General protocol description ACTIVATE . . . . . . . . . . . Sensor data transmission . . Sensor data status . . . . . . 15 15 15 16 16 . . . . . . . . . . . . . . . . . . . . 17 Read REGISTER (cont.) . . . . . . . . . . . . 17 Write to REGISTER (cont.) . . . . . . . . . . 17 SIGNAL CONDITIONING 19 SYNCHRONIZATION 20 PARALLEL ENCODER MODE 20 SHIFT REGISTER OUTPUT 21 INCREMENTAL OUTPUT 22 LED CURRENT CONTROL 23 10 OPERATING CONDITIONS: Shift Register . . . . REGISTER status/data . . . . . . . . . . . . . . . . . . . . . . . . Error Monitoring . . . . . . . . . . . . . . . . 23 ALARM OUTPUT 23 TEST FUNCTIONS 24 iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 4/25 PACKAGES PIN CONFIGURATION oBGA LNB2C (7.6 mm x 7.1 mm) 1 2 3 4 5 6 A B C D E PIN FUNCTIONS No. Name Function A1 SCK SPI Clock Input A2 VDD + 3 V to +5.5 V I/O Ports Supply Voltage A3 GND I/O Ports Ground A4 LED LED Current Control (Highside Output) A5 VDDA + 4 V to +5.5 V Supply Voltage A6 GNDA Ground B1 CS SPI Chip Select B2 MISO SPI Data Output B3 MOSI SPI Data Input B4 PCOS Analog Voltage Output PCOS B5 NSIN Analog Voltage Output NSIN B6 PSIN Analog Voltage Output PSIN PIN FUNCTIONS No. Name Function C1 INCZ Incremental Output Z / Parallel Output Bit 11 C2 TNS Test Input NSIN / Parallel Output Bit 12 C3 TNC Test Input NCOS / Parallel Output Bit 13 C4 TPS Test Input PSIN / Parallel Output Bit 1 C5 TPC Test Input PCOS / Parallel Output Bit 0 C6 NCOS Analog Voltage Output NCOS D1 DOUT Shift Register Data Output / Parallel Output Bit 8 D2 DIN Shift Register Data Input / Parallel Output Bit 9 D3 NSL Shift Register Load / Parallel Output Bit 10 D4 INCB Incremental Output B / Parallel Output Bit 3 D5 INCA Incremental Output A / Parallel Output Bit 2 D6 ERR Alarm Message Output, high active E1 n.c. E2 PO6 Parallel Output Bit 6 E3 CLK Shift Register Clock Input / Parallel Output Bit 7 E4 n.c. E5 PO5 Parallel Output Bit 5 E6 POK Power Ok Indication / Parallel Output Bit 4 n.c. pin not connected preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 5/25 PAD LAYOUT PAD FUNCTIONS No. Name Function 1 2 3 4 5 6 7 2600 DA1 DA2 GND VDD SCK MOSI MISO CS TNC 8 TNS DA3 9 INCZ 80 DA4 10 NSL 11 DIN DA5 75 12 DOUT 230 450 200 DPSIN 13 CLK DPCOS 55 DNCOS 80 14 PO6 15 PO5 16 POK DNSIN 5480 30 320 DA6 17 INCB DA7 18 INCA DA8 19 ERR 20 TPS 21 TPC DA9 110 DA10 110 DA11 22 23 24 25 26 NCOS PCOS NSIN PSIN LED 270 27 VDDA 28 GNDA I/O Ports Ground + 3 V to +5.5 V I/O Ports Supply Voltage SPI Clock Input SPI Data Input SPI Data Output SPI Chip Select Test Input NCOS / Parallel Output Bit 13 Test Input NSIN / Parallel Output Bit 12 Incremental Output Z / Parallel Output Bit 11 Shift Register Load / Parallel Output Bit 10 Shift Register Data Input / Parallel Output Bit 9 Shift Register Data Output / Parallel Output Bit 8 Shift Register Clock Input / Parallel Output Bit 7 Parallel Output Bit 6 Parallel Output Bit 5 Power Ok Indication / Parallel Output Bit 4 Incremental Output B / Parallel Output Bit 3 Incremental Output A / Parallel Output Bit 2 Alarm Message Output, high active Test Input PSIN / Parallel Output Bit 1 Test Input PCOS / Parallel Output Bit 0 Analog Voltage Output NCOS Analog Voltage Output PCOS Analog Voltage Output NSIN Analog Voltage Output PSIN LED Current Control (Highside Output) + 4 V to +5.5 V Supply Voltage Ground iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 6/25 ABSOLUTE MAXIMUM RATINGS Maximum ratings do not constitute permissible operating conditions; functionality is not guaranteed. Exceeding the maximum ratings can damage the device. Item No. Symbol Parameter Conditions Unit Min. Max. G001 VDDA Voltage at VDDA -0.3 6 V G002 VDD Voltage at VDD -0.3 VDDA+0.3 V G003 V(GND) Voltage at GND -0.3 0.3 V G004 V() Voltage at LED, PCOS, NCOS, PSIN, NSIN, TPC, TNC, TPS, TNS -0.3 VDDA+0.3 V G005 V() Voltage at INCA, INCB, INCZ, ERR, CLK, DOUT, DIN, NSL, CS, MOSI, MISO, SCK, PO6, PO5, POK, TPC, TNC, TPS, TNS -0.3 VDD+0.3 V G006 I(VDDA) Current in VDDA -100 100 mA G007 I(VDD) Current in VDD -50 50 mA G008 I(GND) Current in GND -20 20 mA G009 I(LED) Current in LED -100 20 mA G010 I() Current in INCA, INCB, INCZ, ERR, CLK, DOUT, DIN, NSL, CS, MOSI, MISO, SCK, PO6, PO5, POK -60 60 mA G011 I() Current in PCOS, NCOS, PSIN, NSIN, TPC, TNC, TPS, TNS -35 35 mA G012 Vd() ESD Susceptibility at all pins 2 kV G013 Tj Chip-Temperature -40 125 °C G014 Ts Storage Temperature Range HBM, 100 pF discharged through 1.5 kΩ see package specification THERMAL DATA Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V Item No. T01 Symbol Parameter Conditions Unit Min. Ta Operating Ambient Temperature Range see package specification All voltages are referenced to ground unless otherwise stated. All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative. Typ. Max. iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 7/25 ELECTRICAL CHARACTERISTICS Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified. Item No. Symbol Parameter Conditions Unit Min. Typ. Max. 4.0 5.0 5.5 Total Device 001 VDDA Permissible Supply Voltage 002 VDD Permissible I/O Supply Voltage VDD ≤ VDDA 003 VDDA, VDD Permissible Residual Ripple at 150 kHz 10 004 I() Supply Current in VDDA and VDD (total sum) without currents I(LED) and I(ERR), Tj = 27°C 15 005 Vcz()hi Clamp Voltage hi at VDD, GND, VDDA, GNDA, MISO, DOUT, INCA, INCB, INCZ, PO5, PO6, POK, TNS, TPS, TNC, TPC, NCOS, NSIN, PCOS, PSIN, ERR, LED I() = 4 mA 006 Vc()hi Clamp Voltage hi at Vc()hi = V() − V(VDD), CLK, DIN, NSL, INCA, INCB, I() = 4 mA INCZ, ERR, MISO, DOUT, POK, P05, P06, TPS, TNS, TPC, TNC 007 Vc()hi Clamp Voltage hi at CS, MOSI, SCK 008 009 Vc()lo Vs()hi 010 Isc()hi 011 Vs()lo 012 Isc()lo 3.0 5.5 V V mV 40 mA 11 V 0.3 1.2 V Vc()hi = V() − V(VDD), I() = 4 mA 1.2 2.2 V Clamp Voltage lo at all pins I() = -4 mA -1.2 -0.3 V Saturation Voltage hi at PO6, PO5, POK, CLK, DOUT, DIN, NSL, MISO, TPC, TNC, TPS, TNS Short-Circuit Current hi at PO6, PO5, POK, CLK, DOUT, DIN, NSL, MISO, TPC, TNC, TPS, TNS Vs()hi = VDD - V() VDD = 3 to 4 V, I() = 2.5 mA VDD = 4 to 5.5 V, I() = 3.5 mA 400 mV -4 mA Saturation Voltage lo at PO6, PO5, POK, CLK, DOUT, DIN, NSL, MISO, TPC, TNC, TPS, TNS Short-Circuit Current lo at PO6, PO5, POK, CLK, DOUT, DIN, NSL, MISO, TPC, TNC, TPS, TNS VDD = 3 to 4 V, l() = 2.5 mA VDD = 4 to 5.5 V, l() = 3.5 mA 400 mV 100 mA -100 4 Photodiodes 101 Se(λ) Spectral Application Range Se(λ) = 0.1 x S(λ)max 102 S(λ)max Spectral Sensitivity λ = 690 nm 400 0.45 1000 A/W nm 103 Asc() Radiant Sensitive Area DPSIN, DNSIN, DPCOS, DNCOS 0.45 x 0.2 mm² 0.09 mm² 104 Ad() Radiant Sensitive Area Digital DA1 to DA11 0.2 x 0.32 mm² 0.064 mm² Photocurrent Amplifier 201 Iph() Permissible Photocurrent Range 202 Z() Equivalent Transimpedance Gain Z() = Vout() / Iph() 1.8 0 203 ∆Z()pn Transimpedance Gain Matching of an Amplifier Pair P-channel versus corresponding N-channel -0.2 204 fhc() Upper Cut-off Frequency (-3dB) without LED current control 120 205 VR() Ratio Reference Voltage Digital VR() = Tracks (Vcomp) to Sum of Analog Tracks 206 207 Vhys() Digital Tracks Hysteresis GR() Coarse Gain Range Vcomp VPSI + VNSI + VPCI + VNCI 300 200 nA 4.2 MΩ 0.2 % 500 kHz 40 mV 0.25 15 GR = 0x00 GR = 0x01 GR = 0x02 GR = 0x03 3.0 25 1 1.33 1.6 2 iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 8/25 ELECTRICAL CHARACTERISTICS Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified. Item No. Symbol Parameter Conditions Unit Min. Typ. Max. 0.8 1 V 208 Vref Reference Voltage of Photocurrent Amplifiers 0.6 209 ∆Vd()sc Analog Track Dark Signal Voltage ∆Vd()sc = V() - Vref versus Vref -20 20 mV 210 ∆Vd()dig Digital Track Dark Signal Voltage ∆Vd()dig = V() - Vref versus Vref -35 35 mV 0.5 LSB Signal Conditioning 301 GSmin, GCmin Adjustable Gain Min GS, GC = 0x00 1 302 GSmax, GCmax Adjustable Gain Max GS, GC = 0x3F 2 303 ∆Gdiff Differential Gain Calibration Accuracy 6 bit calibration 304 Omin Offset Calibration Min OSP, OSN, OCP, OCN = 0x00 43 45 47 %VDDA 305 Omax Offset Calibration Max OSP, OSN, OCP, OCN = 0x7F 53 55 57 %VDDA 306 ∆Odiff Differential Offset Calibration Accuracy 7 bit calibration 0.02 0.08 0.12 %VDDA 50 53 %VDDA 0.5 0.6 V 1 mA 200 Ω -100 0 mA -50 -1 mA 1 1 V V 1.5 ms -0.5 Analog Voltage Outputs PSIN, NSIN, PCOS, NCOS 401 Vdc() DC Output Voltage Offset adjusted to VDDAH 402 Vpk() Permissible Signal Amplitude DC level = VDDA/2 403 I()mx Permissible Output Current 404 Ri() Output Impedance 47 -1 I() = -1 to 1 mA 75 LED Current Control, Error Message ERR 501 Imx() Permissible LED Current 502 503 Iop() LED Current Control Range ERRS (internal) = 0, V(LED) > Vs(LED) Vs() Saturation Voltage at LED Vs() = V(VDDA) - V(LED), Tj = -40°C to 100°C, I() = -50 mA Tj = 100°C to 125°C, I() = -45 mA 504 tr() Current Rise Time LED at LED I(LED): 0 % → 90 % 0.8 505 tset() Current Settling Time of Control Loop at LED amplitude at PSIN, NSIN, PCOS and NCOS from 50 % to 100 % of setpoint 300 506 Vs()hi Saturation Voltage hi at ERR Vs()hi = VDD - V(ERR) VDD = 3 V to 4 V, I() = 2.5 mA VDD = 4 V to 5.5 V, I() = 3.5 mA 507 508 Isc()hi Short-Circuit Current hi in ERR Vs()lo Saturation Voltage lo at ERR 509 Isc()lo Short-Circuit Current lo in ERR -100 VDD = 3 V to 4 V, l() = 2.5 mA VDD = 4 V to 5.5 V, l() = 3.5 mA 4 µs 400 mV -4 mA 400 mV 100 mA DEG Interpolator 701 AAabs Absolute Angle Accuracy referenced to one SIN/COS period -5 5 702 AArel Relative Angle Accuracy referenced to one AB period, see Figure 1 -10 10 % 703 AAhys Angle Hysteresis referenced to one SIN/COS period 1 7 DEG 704 tw()hi Duty Cycle referenced to AB period T, see Figure 1 50 % 705 tAB Phase A versus B see Figure 1 25 % Incremental Outputs INCA, INCB, INCZ 801 Vs()hi Saturation Voltage hi 802 803 Isc()hi Short-Circuit Current hi Vs()lo Saturation Voltage lo 804 Isc()lo Short-Circuit Current lo 805 tr() Rise Time 806 tf() Fall Time Vs()hi = VDD - V() VDD = 3 V to 4 V, I() = 2.5 mA VDD = 4 V to 5.5 V, I() = 3.5 mA -100 400 mV -4 mA 400 mV 100 mA CL = 30 pF, V(): 10% → 90% VDD 30 ns CL = 30 pF, V(): 90% → 10% VDD 30 ns VDD = 3 V to 4 V, l() = 2.5 mA VDD = 4 V to 5.5 V, l() = 3.5 mA 4 iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 9/25 ELECTRICAL CHARACTERISTICS Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified. Item No. Symbol Parameter Conditions Unit Min. Typ. Max. SPI Interface SCK, CS, MISO, MOSI 901 fin() Permissible Input Frequency at SCK 10 MHz 902 Vt()hi Threshold Voltage hi at SCK, CS, MOSI 2 V 903 Vt()lo Threshold Voltage lo at SCK, CS, MOSI 904 905 Vt()hys Hysteresis at SCK, CS, MOSI Vt() = Vt()hi - Vt()lo Ipu() Pull-Up Current at SCK, MOSI V() = 0 V to VDD - 1 V VDD = 3 V to 4 V VDD = 4 V to 5.5 V 0.8 906 Vpu() Pull-Up Voltage at SCK, MOSI Vpu() = VDD - V(), VDD = 3 V to 4 V, I() = -3 µA VDD = 4 V to 5.5 V, I() = -5 µA 907 Ipd() Pull-Down Current at CS V() = 1 V . . . VDD VDD = 3 V to 4 V VDD = 4 V to 5.5 V V 40 100 -65 -120 -25 -60 5 8 25 60 mV -5 -10 µA µA 400 mV 80 150 µA µA 400 mV 908 Vpd() Pull-Down Voltage at CS VDD = 3 V to 4 V, I() = 3 µA VDD = 4 V to 5.5 V, I() = 5 µA 909 tCO Propagation Delay: MISO hi after Falling Edge CS see Figure 2 30 ns 910 tSO Propagation Delay: MISO Stable see Figure 2 after Clock Edge SCK 30 ns Shift Register CLK, NSL, DOUT, DIN A01 fin() Permissible Input Frequency at CLK 16 A02 tNO Propagation Delay: DOUT after Falling Edge NSL see Figure 3 20 ns A03 tCO Propagation Delay: DOUT stable see Figure 3 after Clock Edge CLK 20 ns A04 Vt()hi Threshold Voltage hi at CLK, NSL, DIN A05 Vt()lo Threshold Voltage lo at CLK, NSL, DIN A06 A07 Vt()hys Hysteresis at CLK, NSL, DIN Vt() = Vt()hi - Vt()lo Ipu() Pull-Up-Current at CLK, NSL V() = 0 V to VDD - 1 V VDD = 3 V to 4 V VDD = 4 V to 5.5 V 2 0.8 A08 Vpu() Pull-Up-Voltage at CLK, NSL Vpu() = VDD-V(), VDD = 3 V to 4 V, I() = -3 µA VDD = 4 V to 5.5 V, I() = -5 µA A09 Ipd() Pull-Down Current at DIN V() = 1 V to VDD VDD = 3 V to 4 V VDD = 4 V 5.5 V A10 Vpd() Pull-Down-Voltage at DIN 100 -65 -120 -25 -60 VDD = 3 V to 4 V, I() = 3 µA VDD = 4 V to 5.5 V, I() = 5 µA Parallel Output Bit 0 to Bit 13 (Parameter EPG = 0x1) B01 Vs()hi Saturation Voltage hi Vs()hi = VDD - V() VDD = 3 V to 4 V, I() = 2.5 mA, VDD = 4 V to 5.5 V, I() = 3.5 mA -100 V V 40 5 8 MHz 25 60 mV -5 -10 µA µA 400 mV 80 150 µA µA 400 mV 400 mV -4 mA 400 mV B02 B03 Isc()hi Short-Circuit Current hi Vs()lo Saturation Voltage lo B04 Isc()lo Short-Circuit Current lo 100 mA B05 tr() Rise Time CL = 30 pF, V(): 10% → 90% VDD 30 ns B06 tf() Fall Time CL = 30 pF, V(): 90% → 10% VDD 30 ns VDD = 3 V to 4 V, I() = 2.5 mA, VDD = 4 V to 5.5 V, I() = 3.5 mA 4 preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 10/25 ELECTRICAL CHARACTERISTICS Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified. Item No. Symbol Parameter Conditions Unit Min. Typ. Max. Power-On-Reset POK C01 VDDAon Turn-on Threshold VDDA, Power-On-Reset VDDA increasing, POK: lo → hi 3.6 3.8 4.0 V C02 VDDAoff Turn-off Threshold VDDA, Power-Down-Reset VDDA decreasing, POK: hi → lo 3.3 3.5 3.7 V C03 VDDAhys Hysteresis VDDA VDDAhys = VDDAon - VDDAoff 0.2 0.3 V tAB twhi AArel AArel T Figure 1: Definition of the relative angle accuracy OPERATING CONDITIONS: SPI Interface Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified. Item No. Symbol Parameter Conditions Unit Min. Max. I001 TSCK Permissible Clock Period I002 tCS Setup Time: CS hi before SCK hi → lo I003 tCO Propagation Delay: MISO hi after CS hi → lo I004 tIS Setup Time: MOSI stable before SCK lo → hi 50 ns I005 tSI Hold Time: MOSI stable after SCK lo → hi 50 ns I006 tSO Propagation Delay: MOSI stable after Clock Edge SCK I007 tCC Hold Time: Between CS hi → lo and CS lo → hi CS tCS tIS 1/fin(SCK) 50 ns (Elec. Char. No. 909) tSI (Elec. Char. No. 910) 500 TSCK tCC SCK MOSI tSO MISO Figure 2: SPI interface timing tCO ns iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 11/25 OPERATING CONDITIONS: Shift Register Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified. Item No. Symbol Parameter Conditions Unit Min. Max. I101 TCLK Permissible Clock Period I102 tNC Setup Time: NSL lo before CLK lo → hi 1/fin(CLK) I103 tNO Propagation Delay: DOUT stable after NSL hi → lo (Elec. Char. No. A02) I104 tCO Propagation Delay: DOUT stable after Clock Edge CLK (Elec. Char. No. A03) I105 tIC Setup Time: DIN stable before CLK lo → hi 30 ns I106 tCI Hold Time: DIN stable after CLK lo → hi 30 ns I107 tNN Wait Time: between NSL lo → hi and NSL hi → lo 60 ns 30 ns NSL tNC tNN CLK TCLK DOUT tNO tCO tIC tCI DIN Figure 3: Shift register timing tNO preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 12/25 CONFIGURATION PARAMETERS Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 14 EPG: Operating mode selection Parallel encoder mode . . . . . . . . . . . . . . . . . . . . . Page 20 EPG: Operating mode selection SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 15 OPCODE: Instructions RACTIVE: Activate register communication PACTIVE: Activate sensor data communication SVALID: Sensor data valid STATUS: SPI status information Shift register output . . . . . . . . . . . . . . . . . . . . . . . Page 21 SRC: Shift register length STA: SIN/COS resolution DIR: Code inversion Signal conditioning . . . . . . . . . . . . . . . . . . . . . . . . Page 19 GR: Gain range (all tracks) GS: SIN gain OSP: PSIN offset OSN: NSIN offset GC: COS gain OCP: PCOS offset OCN: NCOS offset Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 20 NSYNC: Synchronization Incremental output . . . . . . . . . . . . . . . . . . . . . . . . Page 22 INC: Incremental output LED current control . . . . . . . . . . . . . . . . . . . . . . . .Page 23 LCSET: Control mode and setpoint Internal error signals . . . . . . . . . . . . . . . . . . . . . . Page 23 ERRS: LED control range error ERRP: Parity error Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 24 TA: Test modes TMUX: Multiplexer test signal REGISTER MAP Adr Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Signal conditioning 0x00 P0 – GS(5:0) 0x01 P1 – GC(5:0) 0x02 P2 OSP(6:0) 0x03 P3 OSN(6:0) 0x04 P4 OCP(6:0) 0x05 P5 OCN(6:0) LED current control 0x06 P6 LCSET(6:0) Output 0x07 P7 0x08 P8 NSYNC DIR EPG INC(2:0) – STA GR(1:0) SRC(2:0) Test functions 0x09 P9 0x0A PA – TA(1:0) – TMUX(3:0) 0x0B PB – 0x0C PC – 0x0D PD – 0x0E PE – 0x0F PF – Bit 7: Parity bit (supplemented to an even number of ones) Table 6: Register layout iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 13/25 The configuration registers in the internal RAM are constantly monitored by a parity check. Bit 7 of each address is the parity bit (P0-PF) and is supplemented to an even number of ones. The unused bits are also monitored. A parity error is signaled at pin ERR (high active). Addresses in iC-LNG range from addresses 0x00 to 0x0F. As only the lower nibble of the address byte is evaluated, with addresses that are greater than 0x0F the device then returns to address range 0x00-0x0F. After the system enable (power-on reset, pin POK lo → hi) the registers are initialized as follows: Address Reset value 0x00 - 0x01 0xA0 0x02 - 0x05 0x06 0x07 0x08 0x09 - 0x0F 0xC0 0xA0 0x81 0x96 0x00 Table 7: Register reset values iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 14/25 OPERATING MODES iC-LNG has two operating modes. These are selected using register bit EPG. EPG 0 1 Add. 0x07, bit 4 Interface mode Parallel encoder mode Table 8: Operating mode selection In interface mode a shift register is provided for sensor data readout and an incremental interface with an index signal for the output of encoder quadrature signals Pin GND VDD SCK MOSI MISO CS TNC TNS INCZ NSL DIN DOUT CLK NSL PO5 POK INCB INCA ERR TPS TPC NCOS PCOS NSIN PSIN LED VDDA GNDA at a configurable resolution. A power-on signal at pin POK indicates that the system is enabled (POK = hi). In parallel encoder mode the sensor data is output as a 14-bit, parallel data word in Gray code. For this purpose all the relevant pins are reconfigured as outputs. Table 9 shows the pin functions for the respective operating mode (see also Parallel Encoder Mode on page 20). The SPI interface for device configuration can also be used for position data readout and is available in both operating modes. Pin dependent on VDD VDDA Interface mode x I/O pins ground x +3 V to + 5.5 V I/O pins Supply voltage x SPI clock x SPI data input x SPI data output x SPI chip select x Test input NCOS x Test input NSIN x Incremental output Z x Load shift register x Shift register data input x Shift register data output x Shift register clock x Load shift register x Parallel output 5 x Power OK indication x Incremental output B x Incremental output A x Alarm message output x Test input PSIN x Test input PCOS x Voltage output NCOS x Voltage output PCOS x Voltage output NSIN x Voltage output PSIN x LED current control (highside output) x +4 V to + 5.5 V Supply Voltage x Ground Parallel encoder mode I/O pins ground +3 V to + 5.5 V I/O pins Supply voltage SPI clock SPI data input SPI data output SPI chip select Parallel output 13 Parallel output 12 Parallel output 11 Parallel output 10 Parallel output 9 Parallel output 8 Parallel output 7 Parallel output 6 Parallel output 5 Parallel output 4 Parallel output 3 Parallel output 2 Alarm message output Parallel output 1 Parallel output 0 Voltage output NCOS Voltage output PCOS Voltage output NSIN Voltage output PSIN LED current control (highside output) +4 V to + 5.5 V Supply Voltage Ground Table 9: Pin functions depending on operating mode preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 15/25 SPI INTERFACE CS SCLK MOSI OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 MISO OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Figure 4: SPI transmission, taking the Read REGISTER opcode as an example (cont.) General protocol description iC-LNG’s SPI interface is implemented as an SPI slave and supports SPI modes 0 and 3, meaning the idle time at SCK can be 0 or 1. Data is always accepted on a rising edge at SCK. The idle time of the MISO line is 1; on a rising edge at CS the MOSI signal is switched through to the MISO signal. Data is sent byte by byte with the MSB (most significant bit) first. Each data transmission starts when a 1-byte opcode is sent by the SPI master (Table 10). OPCODE Code Description 0xB0 0xA6 ACTIVATE Sensor data transmission 0xF5 0x8A 0xCF 0xAD Sensor data status Read REGISTER (cont.) Write to REGISTER (cont.) REGISTER status/data OPCODE description ACTIVATE iC-LNG’s register and sensor data channels can be switched on and off using the ACTIVATE command. The command causes all slaves to zero their RACTIVE and PACTIVE register and to loop-in this register data between the MOSI and MISO data stream. The register and sensor or actuator data channels can be switched on and off using the following data bytes. After a power-on iC-LNG’s sensor data channel is deactivated (PACTIVE = 0) and the register communication is activated (RACTIVE = 1). CS SCLK MOSI OP MISO OP RAPA 0-4 RAPA 5-7 ... Table 10: Instructions / opcodes 8 cycles SPI data transmission for register readout takes place as follows (Figure 4): 1. The master initializes a transmission by a rising edge at CS. Figure 5: Setting ACTIVATE: RACTIVE/PACTIVE (several slaves) Bytes FAIL, VALID, BUSY, and DISMISS in the STATUS byte are reset by the ACTIVATE command (Table 14). 2. iC-LNG transfers the level from MOSI to MISO. 3. The master transmits the OPCODE and address ADR through MOSI; iC-LNG immediately outputs OPCODE and ADR through MISO. RACTIVE Code Description 0 1 Register communication deactivated Register communication activated Table 11: Register communication 4. iC-LNG transmits the data requested according to the address. 5. The master ends the command by a falling edge at CS. 6. iC-LNG switches its MISO output to 1. If RACTIVE is not set, on commands Read REGISTER (cont.), Write to REGISTER (cont.) and REGISTER status/data the ERROR bit is set in the SPI interface STATUS byte (Table 14), indicating that the command has not been carried out. The slave immediately outputs the data at MISO which has been sent by the master through MOSI. iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 16/25 PACTIVE Code Description 0 1 Sensor data channel deactivated Sensor data channel activated CS REQ SCLK Table 12: Sensor data via SPI If PACTIVE is not set, on commands Sensor data status or Sensor data transmission the ERROR bit is set in the STATUS byte (Table 14), indicating that the command has not been carried out. The slave immediately outputs the data at MISO which has been sent by the master through MOSI. If only one slave is connected up with one register and one sensor data channel, it must be ensured that the RACTIVE and PACTIVE bits are last in the data byte (Figure 6). MOSI OP MISO OP SD1 SD2 ... 8 cycles Figure 7: SDAD transmission: read SD With command Sensor data transmission the master can not only read sensor data (SD) out from the slave; at the same time it can also transmit actuator data (AD) to the slave. iC-LNG ignores the transmitted actuator data. CS REQ SCLK NB: If the slaves are connected in a chain (full duplex chain), with this command the master can determine the number of connected register and sensor data channels. To this end it can send a 1 after the opcode, which is repeated at MISO after the number of register and sensor data channels (Figure 6). MOSI OP AD1 AD2 ... MISO OP SD1 SD2 ... 8 cycles Figure 8: SDAD transmission: read SD, write AD Sensor data status CS SCLK MOSI OP 1 0 0 0 0 0 RA PA MISO OP 0 0 1 0 0 0 0 0 8 cycles Should the master not know the processing time, it can request sensor data using the command Sensor data status. iC-LNG does not need any processing time; therefore, SVALID is always valid. RACTIVE / PACTIVE vector Figure 6: Setting ACTIVATE: RACTIVE/PACTIVE (one slave) Sensor data transmission iC-LNG samples its position data on the first rising edge at SCLK if CS is switched to 1 (REQ). The sensor data shift register is looped-in between signals MOSI and MISO for SPI communication and can then be clocked out. The size of the sensor data shift register must be set to 16 bits (cf. section on shift register output, page 21). If invalid data is sampled in the shift register, the ERROR bit is set in the STATUS byte (Table 14) and zeroes are output as the data word. The command causes 1. all slaves activated with PACTIVE to switch their SVALID register between MOSI and MISO. 2. The next request for sensor data, triggered on the first rising edge at SCLK when CS has again been set to 1, is ignored by the slave. The end of conversion is signaled by SVALID (SV). With this command the master can poll to the end of conversion. The sensor data is readout on the command Sensor data transmission. preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 17/25 signals whether an error occurred during the last communication with the SPI interface or not. SVALID Code Description 0 1 Sensor data invalid Sensor data valid The master transmits the opcode REGISTER status/data. iC-LNG immediately passes the opcode on to MISO. iC-LNG then transmits the STATUS byte and a DATA byte. The DATA byte is not available in iC-LNG and is thus not defined. Table 13: SVALID REQ CS SCLK CS MOSI OP MISO OP SCLK SV 0-7 SV 8-15 ... 8 cycles MOSI OP MISO OP 8 cycles Figure 9: SDAD status Figure 11: REGISTER status/data If only one slave is connected, the relevant SVALID bit is placed at bit position 7 in the SVALID byte. CS REQ SCLK MOSI OP 0 0 0 0 0 0 0 0 MISO OP SV 0 0 0 0 0 0 0 0 8 cycles STATUS DATA Read REGISTER (cont.) The master transmits the opcode Read REGISTER (cont.). Start address ADR, from which point data is to be read, is transmitted in the 2nd byte. The slave immediately outputs the opcode and address and then transmits DATA1. The internal address counter is incremented after each data package. SVALID vector Figure 10: SDAD status (one slave) REGISTER status/data The status of the last REGISTER communication or the last data transmission can be queried using the REGISTER status/data command. The STATUS byte contains the information summarized in Table 14. STATUS Bit Name Description of the status report 7 ERROR 6..4 3 2 1 DISMISS FAIL BUSY 0 VALID Opcode invalid. Sensor data was invalid on readout Reserved Address refused Data request has failed Slave is busy with a request DATA is valid NB Display logic: 1 = true, 0 = false Table 14: SPI status information All status bits are updated with each register access. The ERROR bit is the exception to the rule; this bit If an error occurs during register readout (cont.), i.e. the address is invalid, the requested data was not valid on data byte clocking, etc., the internal address counter is incremented no further and the FAIL error bit is set in the status byte (Table 14). CS SCLK MOSI OP ADR MISO OP ADR DATA1 DATA2 ... 8 cycles Figure 12: Read REGISTER (cont.) Write to REGISTER (cont.) The master transmits the opcode Write to REGISTER (cont.). Start address ADR, from which point successive data DATA1-DATAn is to be written, is transmitted in the 2nd byte. The slave immediately outputs the opcode, address, and data at MISO. The slave increments its internal address counter after each DATAn data package. preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 18/25 If an error occurs during a write to register (cont.), i.e. the address is invalid, writing of the last address data has not finished, etc., the internal address counter is incremented no further and the FAIL error bit is set in the status byte (Table 14). CS SCLK MOSI OP ADR DATA1 DATA2 ... MISO OP ADR DATA1 DATA2 ... 8 cycles Figure 13: Write to REGISTER (cont.) preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 19/25 SIGNAL CONDITIONING iC-LNG has various parameters for signal conditioning. The gain of the digital tracks and the analog track can both be set using parameter GR. A gain factor of 1.33 (GR = 0x01) can be used for most applications. GR Add. 0x07, bit 1:0 Code Gain factor 0x00 0x01 1.0 1.33 0x02 0x03 1.6 2.0 NCOS. The offset of signal NSIN must then be calibrated to the calibrated offset of signal PSIN. OSP Code Add. 0x02, bit 6:0 Offset value 0x00 0x01 ... 0.45 · VDDA 0.4508 · VDDA (0.45 + OSP·0.1 ) · VDDA 127 0x7F 0.55 · VDDA Table 17: PSIN offset Table 15: Gain range (all tracks) The sine/cosine signals can be calibrated in amplitude and offset (Figure 14). To this end the LED current control must be programmed to sum control (LCSET(6) = 1) and the internal calibration signals switched to analog outputs PSIN, NSIN, PCOS, and NCOS (TA = 0x1). TA = 0x1 PSIN TMUX = 0x0D or TMUX = 0x0E NSIN VNx Add. 0x03, bit 6:0 Offset value 0x00 0x01 ... 0x7F 0.45 · VDDA 0.4508 · VDDA (0.45 + OSN·0.1 ) · VDDA 127 0.55 · VDDA Table 18: NSIN offset To calibrate the cosine signals TMUX must be programmed to 0x0E. The amplitude of signals PCOS and NCOS can then be calibrated to the same amplitude as that of the sine signals using parameter GS. VPx VPx PCOS OSN Code VDDAH VNx NCOS VDDAH GNDA (x = S, C) Figure 14: Sine/cosine signal calibration To calibrate the sine signals TMUX must be programmed to 0x0D. The amplitude of signals PSIN and NSIN can then be calibrated using parameter GS. The target amplitude is 500 mVp. GC Code Add. 0x01, bit 5:0 Gain factor 0x00 0x01 ... 1.0 1.01 0x3F 2.0 1+GC·0.0053 1−GC·0.0053 Table 19: PCOS and NCOS gain The offsets of PCOS and NCOS can be calibrated separately using parameters OCP and OCN. The offset of signal PCOS must be calibrated to reference signal VDDAH. This signal is available in test mode at pin NCOS. The offset of signal NCOS must then be calibrated to the calibrated offset of signal PCOS. GS Code Add. 0x00, bit 5:0 Gain factor 0x00 0x01 ... 1.0 1.01 0x3F 2.0 OCP Code Add. 0x04, bit 6:0 Offset value Table 16: PSIN and NSIN gain 0x00 0x01 ... 0.45 · VDDA 0.4508 · VDDA (0.45 + OCP·0.1 ) · VDDA 127 0x7F 0.55 · VDDA 1+GS·0.0053 1−GS·0.0053 The offsets of PSIN and NSIN can be calibrated separately using parameters OSP and OSN. The offset of signal PSIN must be calibrated to reference signal VDDAH. This signal is available in test mode at pin Table 20: PCOS offset preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 20/25 OCN Code Add. 0x05, bit 6:0 Offset value 0x00 0x01 ... 0x7F 0.45 · VDDA 0.4508 · VDDA ) · VDDA (0.45 + OCN·0.1 127 0.55 · VDDA DPSIN Vref 3Meg GS + + - VPSI - NSIN + GS GR OSN VREFNS VREFPS Table 21: NCOS offset - The signal path of the SIN/COS tracks is shown in Figure 15 with the conditioning unit. + - Vref VDDA DNSIN Vref 3Meg - VDDA OSP GS + + + + VNSI - GS GR PSIN - Vref DPCOS Vref 3Meg GC + + - VPCO - NCOS + GC GR + - Vref VDDA OCN VREFNC VREFPC DNCOS Vref 3Meg - + VNCO GR GC - Vref Figure 15: SIN/COS signal path SYNCHRONIZATION iC-LNG synchronizes the digital tracks to the interpolator. NSYNC can be used to deactivate synchronization to check the adjustment or for code discs not in Gray code. The comparated signals of the digital tracks are then output. NSYNC 0 1 Add. 0x07, bit 6 Synchronization activated Synchronization deactivated Table 22: Synchronization PARALLEL ENCODER MODE In parallel encoder mode an absolute position data word with a width of 14 bits is output in parallel. This position data word consists of the 11 bits of the digital tracks and of 3 bits interpolated from the analog track. The position data is output in Gray code. Parallel encoder mode is activated by parameter EPG (see also Operating Modes on page 14). EPG 0 1 VDDA OCP GC + + + Add. 0x07, bit 4 Interface mode Parallel encoder mode Table 23: Selecting the operating mode PCOS preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 21/25 SHIFT REGISTER OUTPUT In interface mode (EPG = 0) iC-LNG provides a shift register for the readout of position data. In order to be able to use this shift register the SPI interface sensor data channel must be deactivated by command ACTIVATE with PACTIVE = 0 (Table 12). STA 0 1 After a power-on the shift register in iC-LNG is active. The position data is output in Gray code with the MSB first. This MSB is output in real time at the shift register output (pin DOUT) when NSL = 1. When NSL = 0 the position data is stored in the shift register and can then be output serially with rising edge CLK. The position data readout process is shown in Figure 16. SRC Code Add. 0x08, bit 2:0 Shift register Data bits for length STA = 0 Data bits for STA = 1 0x0 0x1 0x2 0x3 16 bits 16 bits 16 bits 16 bits 16 16 15 14 15 15 14 13 0x4 0x5 0x6 0x7 16 bits 16 bits 14 bits 14 bits 13 12 13 12 12 11 12 11 External data can be read into iC-LNG through shift register input pin DIN. This is output after the position data. For example, iC-LNG’s pin ERR can be connected to pin DIN to link the alarm output to the position data. The length of the shift register and the number of data bits used can be selected using parameter SRC, depending on the set SIN/COS resolution. Add. 0x08, bit 3 1024 SIN/COS cycles 512 SIN/COS cycles Table 24: SIN/COS resolution Table 25: Shift register length The MSB of the position data can be inverted by parameter DIR (code inversion). DIR 0 1 Add. 0x07, bit 5 No code inversion Code inversion Table 26: Code inversion NSL CLK DOUT MSB MSB-1 MSB-2 LSB Figure 16: Shift register output (EPG = 0) DIN iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 22/25 INCREMENTAL OUTPUT At pins INCA and INCB either incremental signals with interpolation factors of 1 to 16 or internal digital signals are output. Selection is made using parameter INC. INC 0x00 0x01 0x02 0x03 Add. 0x08, bit 6:4 Interpolation factor 1 Interpolation factor 2 Interpolation factor 4 Interpolation factor 8 0x04 0x05 0x06 0x07 Interpolation factor 16 Digital test iC-Haus test 1 iC-Haus test 2 At pin INCZ a zero pulse is output which is suitable for the selected interpolation factor. The zero pulse is symmetrical to the falling edge of the MSB signal on the digital tracks and is half an incremental cycle long gated with B low. The phase relationship between the SIN/COS signals and the incremental signals is shown in Figure 17. Output in digital test and iC-Haus test modes is described in the section on test functions on page 24. Table 27: Incremental output PSIN PCOS INCA INCB INC=0x00 INCZ MSB (D11) INCA INCB INC=0x01 INCZ MSB (D11) Figure 17: SIN/COS and ABZ phase relationship preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 23/25 LED CURRENT CONTROL The optical receive power of the sine/cosine sensors is kept constant by the integrated LED control unit, regardless of the temperature and ageing effects of the LED. The type of control can be selected using parameter LCSET(6), the possible options being sum control or square control. So that the internal interpolator is always optimally controlled in all operating conditions, square control should be used. Sum control should be used for signal conditioning. LCSET(6) 0 1 Add. 0x06, bit 6 Square control (sum of the amplitude squares) Sum control (DC control prop. to VR()) Table 28: Control mode LCSET(5:0) Add. 0x06, bit 5:0 Code LCSET(6) = 0 LCSET(6) = 1 0x00 0x01 ... 0.240 Vp 0.243 Vp 0.140 V 0.142 V 0.24 Vp 1−i·0.0125 0.14 V 1−i·0.0125 0x3F 1.1 Vp 0.640 V Table 29: Control Setpoint Error Monitoring iC-LNG’s LED current control range is monitored. Should the LED current control exit its control range, internal error ERRS is set to 1. This error signal is orgated with iC-LNG’s ERRP alarm (parity check) and output at error output ERR (cf. section on the alarm output). The setpoint for the control can be configured using parameter LCSET(5:0). ALARM OUTPUT iC-LNG has an alarm or error output to indicate existing errors. If an error occurs, pin ERR is set to 1. ERROR MESSAGE iC-LNG’s LED current control range is monitored. Should the LED current control exit its control range, internal error ERRS is set to 1. If the parity check signals an error in the RAM area, internal error ERRP is set to 1. ERRS ERRP ³1 VDD ERR GND Figure 18: Alarm output preliminary iC-LNG 16-BIT OPTO ENCODER WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 24/25 TEST FUNCTIONS TA Code Addr. 0x09; bit 5:4 Output at SIN/COS 0x0 0x1 0x2 0x3 Normal operation Test signals (cf. Table 31) iC-Haus test iC-Haus test In the digital test synchronized data is output when NYSNC = 0; when NSYNC = 1 the comparator outputs of tracks 1-11 are output to D1-D11. INC Code Add. 0x08, bit 6:4 INCA INCB 0x06 XALL D0 Table 30: Test modes Table 33: iC-Haus test 1 TMUX Code Add. 0x09, bit 3:0 PSIN NSIN PCOS NCOS 0x00 VPSI VNSI VPCI VNCI INC Code Add. 0x08, bit 6:4 INCA INCB 0x01 VPSI VTH A1 VREF 0x07 TP NPOR ... VPSI VTH A(TMUX) VREF 0x0B VPSI VTH A11 VREF 0x0C VREFPS VREFNS VREFPC VREFNC 0x0D PSIN NSIN PCOS VDDAH 0x0E PCOS NCOS PSIN VDDAH 0x0F – – – – Table 34: iC-Haus test 2 Table 31: Test signal multiplexer for analog signals TMUX Add. 0x09, bit 3:0 Code INCA INCB 0x00 D09 D0 0x01 D1 D0 ... D(TMUX) D0 0x0B D11 D0 0x0C I3 D0 0x0D I2 D0 0x0E I1 D0 0x0F I0 D0 Table 32: Test signal multiplexer for digital signals iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source. iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product. As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe). We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to. iC-LNG 16-BIT OPTO ENCODER preliminary WITH SPI AND SERIAL / PARALLEL OUTPUTS Rev A1, Page 25/25 ORDERING INFORMATION Type Package Options Order Designation iC-LNG 30-Pin optoBGA, 7.6 mm x 7.1 mm, thickness 1.7 mm Standard reticle LNG1R iC-LNG oBGA LNB2C-1R iC-LNG 30-Pin optoBGA, 7.6 mm x 7.1 mm, thickness 1.7 mm Standard reticle LNG2R iC-LNG oBGA LNB2C-2R iC-LNG 30-Pin optoBGA, 7.6 mm x 7.1 mm, thickness 1.7 mm Reticle on request iC-LNG oBGA LNB2C-xR iC-LNG optoQFN Package Under preparation Suitable Encoder Discs: 1024 PPR OD / ID ∅42.0 / 18.0 mm glass 1 mm LNG1Sz 42-1024 512 PPR OD / ID ∅24.8 / 2.0 mm glass 1 mm LNG2S 25-512 For technical support, information about prices and terms of delivery please contact: iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (61 35) 92 92-0 Fax: +49 (61 35) 92 92-192 Web: http://www.ichaus.com E-Mail: [email protected] Appointed local distributors: http://www.ichaus.com/sales_partners