ICHAUS IC-LNG

iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 1/25
FEATURES
APPLICATIONS
♦ Excellent matching and technical reliability thanks to
system-on-chip design with integrated photodiodes
♦ Gray code scanning (11 digital tracks pitched at 400 µm)
♦ Sine/cosine analog track with electronic calibration
♦ Diff. sine/cosine outputs with 1024 CPR (amplitude: 500 mV)
♦ Position value of up to 16 bits through 6-bit interpolation
♦ Quadrature signals with 1024, 2048, 4096, 8192, 16384 CPR
♦ Index signal in phase with B low
♦ 14-bit parallel position data output
♦ Serial data readout in 1 µs cycles at 16 MHz clock frequency
♦ SPI interface for configuration and position data output
♦ 3.3 V-compatible SPI and I/O ports
♦ LED current control for a constant receive power
(50 mA highside driver, sin2 +cos2 or sum)
♦ Permanent parity monitoring of the internal RAM bits
♦ Alarm for configuration and illumination errors (end of life)
♦ Temperature range from -40°C to 110°C
♦ Small outline, 30-pin optoBGA package for SMT
♦ Illumination: iC-SN85 BLCC SN1C (850 nm encoder LED)
♦ Code discs:
LNG1S 42-1024 (1024 PPR, ∅ 42 mm/18 mm),
LNG2S 25-512 (512 PPR, ∅ 24.8 mm/2 mm)
♦ Optical position sensors
♦ Linear scales
♦ Absolute, incremental, and
parallel encoders
♦ Motor feedback systems
PACKAGES
30-Pin optoBGA
7.6 mm x 7.1 mm x 1.7 mm
BLOCK DIAGRAM
Copyright © 2011 iC-Haus
http://www.ichaus.com
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 2/25
DESCRIPTION
iC-LNG is an optoelectronic encoder IC for absolute
linear and angle measuring systems, such as glass
scales and encoders. Photodiodes, amplifiers, and
comparators, the entire signal conditioning unit, and
interfaces for position data output have been monolithically integrated into the device.
An integrated LED current control with a driver stage
allows a transmitting LED to be directly connected
(e.g. iC-SN85). The optical receive power is kept
constant by the control unit, regardless of temperature and aging effects. The receive power setpoint
can be programmed. Should the LED current control
exit its operating range, this is indicated at the error
message output (end-of-life alarm at pin ERR).
The photocurrent offset and photocurrent amplitude
of the analog sine/cosine signals can be calibrated.
These calibrated voltage signals are lead out to pins
PSIN, NSIN, PCOS, and NCOS and are used by the
integrated 6-bit interpolator.
iC-LNG synchronizes the interpolator and singleturn
data to form a contiguous Gray-coded position data
word. A shift register or SPI interface are available
for position data output. iC-LNG also outputs incremental A/B/Z signals, the resolution of which can be
programmed.
After startup iC-LNG is configured using the SPI interface. To make connection to a 3.3 V microcontroller easier, all digital I/O ports, including the SPI,
can be run on 3.3 V.
Test currents can be applied to test pins TPS, TNS,
TPC, and TNC to simulate photocurrents. Allocation
to various tracks can be selected as required, enabling a full function test of the IC with the exception
of the sensors.
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 3/25
CONTENTS
PACKAGES
4
ABSOLUTE MAXIMUM RATINGS
6
THERMAL DATA
6
ELECTRICAL CHARACTERISTICS
7
OPERATING CONDITIONS: SPI Interface
11
CONFIGURATION PARAMETERS
12
OPERATING MODES
14
SPI INTERFACE
General protocol description
ACTIVATE . . . . . . . . . . .
Sensor data transmission . .
Sensor data status . . . . . .
15
15
15
16
16
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
Read REGISTER (cont.) . . . . . . . . . . . .
17
Write to REGISTER (cont.) . . . . . . . . . .
17
SIGNAL CONDITIONING
19
SYNCHRONIZATION
20
PARALLEL ENCODER MODE
20
SHIFT REGISTER OUTPUT
21
INCREMENTAL OUTPUT
22
LED CURRENT CONTROL
23
10
OPERATING CONDITIONS: Shift Register
.
.
.
.
REGISTER status/data . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
Error Monitoring . . . . . . . . . . . . . . . .
23
ALARM OUTPUT
23
TEST FUNCTIONS
24
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 4/25
PACKAGES
PIN CONFIGURATION oBGA LNB2C
(7.6 mm x 7.1 mm)
1
2
3
4
5
6
A
B
C
D
E
PIN FUNCTIONS
No. Name Function
A1 SCK SPI Clock Input
A2 VDD + 3 V to +5.5 V I/O Ports Supply Voltage
A3 GND I/O Ports Ground
A4 LED LED Current Control
(Highside Output)
A5 VDDA + 4 V to +5.5 V Supply Voltage
A6 GNDA Ground
B1 CS
SPI Chip Select
B2 MISO SPI Data Output
B3 MOSI SPI Data Input
B4 PCOS Analog Voltage Output PCOS
B5 NSIN Analog Voltage Output NSIN
B6 PSIN Analog Voltage Output PSIN
PIN FUNCTIONS
No. Name Function
C1 INCZ Incremental Output Z /
Parallel Output Bit 11
C2 TNS Test Input NSIN /
Parallel Output Bit 12
C3 TNC Test Input NCOS /
Parallel Output Bit 13
C4 TPS
Test Input PSIN /
Parallel Output Bit 1
C5 TPC Test Input PCOS /
Parallel Output Bit 0
C6 NCOS Analog Voltage Output NCOS
D1 DOUT Shift Register Data Output /
Parallel Output Bit 8
D2 DIN
Shift Register Data Input /
Parallel Output Bit 9
D3 NSL
Shift Register Load /
Parallel Output Bit 10
D4 INCB Incremental Output B /
Parallel Output Bit 3
D5 INCA Incremental Output A /
Parallel Output Bit 2
D6 ERR Alarm Message Output, high active
E1 n.c.
E2 PO6 Parallel Output Bit 6
E3 CLK
Shift Register Clock Input /
Parallel Output Bit 7
E4 n.c.
E5 PO5 Parallel Output Bit 5
E6 POK Power Ok Indication /
Parallel Output Bit 4
n.c.
pin not connected
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 5/25
PAD LAYOUT
PAD FUNCTIONS
No. Name Function
1
2
3
4
5
6
7
2600
DA1
DA2
GND
VDD
SCK
MOSI
MISO
CS
TNC
8 TNS
DA3
9 INCZ
80
DA4
10 NSL
11 DIN
DA5
75
12 DOUT
230
450
200
DPSIN
13 CLK
DPCOS
55
DNCOS
80
14 PO6
15 PO5
16 POK
DNSIN
5480
30
320
DA6
17 INCB
DA7
18 INCA
DA8
19 ERR
20 TPS
21 TPC
DA9
110
DA10
110
DA11
22
23
24
25
26
NCOS
PCOS
NSIN
PSIN
LED
270
27 VDDA
28 GNDA
I/O Ports Ground
+ 3 V to +5.5 V I/O Ports Supply Voltage
SPI Clock Input
SPI Data Input
SPI Data Output
SPI Chip Select
Test Input NCOS /
Parallel Output Bit 13
Test Input NSIN /
Parallel Output Bit 12
Incremental Output Z /
Parallel Output Bit 11
Shift Register Load /
Parallel Output Bit 10
Shift Register Data Input /
Parallel Output Bit 9
Shift Register Data Output /
Parallel Output Bit 8
Shift Register Clock Input /
Parallel Output Bit 7
Parallel Output Bit 6
Parallel Output Bit 5
Power Ok Indication /
Parallel Output Bit 4
Incremental Output B /
Parallel Output Bit 3
Incremental Output A /
Parallel Output Bit 2
Alarm Message Output, high active
Test Input PSIN /
Parallel Output Bit 1
Test Input PCOS /
Parallel Output Bit 0
Analog Voltage Output NCOS
Analog Voltage Output PCOS
Analog Voltage Output NSIN
Analog Voltage Output PSIN
LED Current Control
(Highside Output)
+ 4 V to +5.5 V Supply Voltage
Ground
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 6/25
ABSOLUTE MAXIMUM RATINGS
Maximum ratings do not constitute permissible operating conditions; functionality is not guaranteed.
Exceeding the maximum ratings can damage the device.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Max.
G001 VDDA
Voltage at VDDA
-0.3
6
V
G002 VDD
Voltage at VDD
-0.3
VDDA+0.3
V
G003 V(GND)
Voltage at GND
-0.3
0.3
V
G004 V()
Voltage at LED, PCOS, NCOS, PSIN,
NSIN, TPC, TNC, TPS, TNS
-0.3
VDDA+0.3
V
G005 V()
Voltage at INCA, INCB, INCZ, ERR,
CLK, DOUT, DIN, NSL, CS, MOSI,
MISO, SCK, PO6, PO5, POK, TPC,
TNC, TPS, TNS
-0.3
VDD+0.3
V
G006 I(VDDA)
Current in VDDA
-100
100
mA
G007 I(VDD)
Current in VDD
-50
50
mA
G008 I(GND)
Current in GND
-20
20
mA
G009 I(LED)
Current in LED
-100
20
mA
G010 I()
Current in INCA, INCB, INCZ, ERR,
CLK, DOUT, DIN, NSL, CS, MOSI,
MISO, SCK, PO6, PO5, POK
-60
60
mA
G011 I()
Current in PCOS, NCOS, PSIN, NSIN,
TPC, TNC, TPS, TNS
-35
35
mA
G012 Vd()
ESD Susceptibility at all pins
2
kV
G013 Tj
Chip-Temperature
-40
125
°C
G014 Ts
Storage Temperature Range
HBM, 100 pF discharged through 1.5 kΩ
see package specification
THERMAL DATA
Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V
Item
No.
T01
Symbol
Parameter
Conditions
Unit
Min.
Ta
Operating Ambient Temperature Range see package specification
All voltages are referenced to ground unless otherwise stated.
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.
Typ.
Max.
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 7/25
ELECTRICAL CHARACTERISTICS
Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
Max.
4.0
5.0
5.5
Total Device
001
VDDA
Permissible Supply Voltage
002
VDD
Permissible I/O Supply Voltage
VDD ≤ VDDA
003
VDDA,
VDD
Permissible Residual Ripple
at 150 kHz
10
004
I()
Supply Current in VDDA and
VDD (total sum)
without currents I(LED) and I(ERR), Tj = 27°C
15
005
Vcz()hi
Clamp Voltage hi at VDD, GND,
VDDA, GNDA, MISO, DOUT,
INCA, INCB, INCZ, PO5, PO6,
POK, TNS, TPS, TNC, TPC,
NCOS, NSIN, PCOS, PSIN,
ERR, LED
I() = 4 mA
006
Vc()hi
Clamp Voltage hi at
Vc()hi = V() − V(VDD),
CLK, DIN, NSL, INCA, INCB,
I() = 4 mA
INCZ, ERR, MISO, DOUT, POK,
P05, P06, TPS, TNS, TPC, TNC
007
Vc()hi
Clamp Voltage hi at
CS, MOSI, SCK
008
009
Vc()lo
Vs()hi
010
Isc()hi
011
Vs()lo
012
Isc()lo
3.0
5.5
V
V
mV
40
mA
11
V
0.3
1.2
V
Vc()hi = V() − V(VDD),
I() = 4 mA
1.2
2.2
V
Clamp Voltage lo at all pins
I() = -4 mA
-1.2
-0.3
V
Saturation Voltage hi at
PO6, PO5, POK, CLK, DOUT,
DIN, NSL, MISO, TPC, TNC,
TPS, TNS
Short-Circuit Current hi at
PO6, PO5, POK, CLK, DOUT,
DIN, NSL, MISO, TPC, TNC,
TPS, TNS
Vs()hi = VDD - V()
VDD = 3 to 4 V, I() = 2.5 mA
VDD = 4 to 5.5 V, I() = 3.5 mA
400
mV
-4
mA
Saturation Voltage lo at
PO6, PO5, POK, CLK, DOUT,
DIN, NSL, MISO, TPC, TNC,
TPS, TNS
Short-Circuit Current lo at
PO6, PO5, POK, CLK, DOUT,
DIN, NSL, MISO, TPC, TNC,
TPS, TNS
VDD = 3 to 4 V, l() = 2.5 mA
VDD = 4 to 5.5 V, l() = 3.5 mA
400
mV
100
mA
-100
4
Photodiodes
101
Se(λ)
Spectral Application Range
Se(λ) = 0.1 x S(λ)max
102
S(λ)max
Spectral Sensitivity
λ = 690 nm
400
0.45
1000
A/W
nm
103
Asc()
Radiant Sensitive Area DPSIN,
DNSIN, DPCOS, DNCOS
0.45 x 0.2 mm²
0.09
mm²
104
Ad()
Radiant Sensitive Area Digital
DA1 to DA11
0.2 x 0.32 mm²
0.064
mm²
Photocurrent Amplifier
201
Iph()
Permissible Photocurrent Range
202
Z()
Equivalent Transimpedance Gain Z() = Vout() / Iph()
1.8
0
203
∆Z()pn
Transimpedance Gain Matching
of an Amplifier Pair
P-channel versus corresponding N-channel
-0.2
204
fhc()
Upper Cut-off Frequency (-3dB)
without LED current control
120
205
VR()
Ratio Reference Voltage Digital VR() =
Tracks (Vcomp) to Sum of Analog
Tracks
206
207
Vhys()
Digital Tracks Hysteresis
GR()
Coarse Gain Range
Vcomp
VPSI + VNSI + VPCI + VNCI
300
200
nA
4.2
MΩ
0.2
%
500
kHz
40
mV
0.25
15
GR = 0x00
GR = 0x01
GR = 0x02
GR = 0x03
3.0
25
1
1.33
1.6
2
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 8/25
ELECTRICAL CHARACTERISTICS
Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
Max.
0.8
1
V
208
Vref
Reference Voltage of Photocurrent Amplifiers
0.6
209
∆Vd()sc
Analog Track Dark Signal Voltage ∆Vd()sc = V() - Vref
versus Vref
-20
20
mV
210
∆Vd()dig
Digital Track Dark Signal Voltage ∆Vd()dig = V() - Vref
versus Vref
-35
35
mV
0.5
LSB
Signal Conditioning
301
GSmin,
GCmin
Adjustable Gain Min
GS, GC = 0x00
1
302
GSmax,
GCmax
Adjustable Gain Max
GS, GC = 0x3F
2
303
∆Gdiff
Differential Gain Calibration
Accuracy
6 bit calibration
304
Omin
Offset Calibration Min
OSP, OSN, OCP, OCN = 0x00
43
45
47
%VDDA
305
Omax
Offset Calibration Max
OSP, OSN, OCP, OCN = 0x7F
53
55
57
%VDDA
306
∆Odiff
Differential Offset Calibration
Accuracy
7 bit calibration
0.02
0.08
0.12
%VDDA
50
53
%VDDA
0.5
0.6
V
1
mA
200
Ω
-100
0
mA
-50
-1
mA
1
1
V
V
1.5
ms
-0.5
Analog Voltage Outputs PSIN, NSIN, PCOS, NCOS
401
Vdc()
DC Output Voltage
Offset adjusted to VDDAH
402
Vpk()
Permissible Signal Amplitude
DC level = VDDA/2
403
I()mx
Permissible Output Current
404
Ri()
Output Impedance
47
-1
I() = -1 to 1 mA
75
LED Current Control, Error Message ERR
501
Imx()
Permissible LED Current
502
503
Iop()
LED Current Control Range
ERRS (internal) = 0, V(LED) > Vs(LED)
Vs()
Saturation Voltage at LED
Vs() = V(VDDA) - V(LED),
Tj = -40°C to 100°C, I() = -50 mA
Tj = 100°C to 125°C, I() = -45 mA
504
tr()
Current Rise Time LED at LED
I(LED): 0 % → 90 %
0.8
505
tset()
Current Settling Time of Control
Loop at LED
amplitude at PSIN, NSIN, PCOS and NCOS
from 50 % to 100 % of setpoint
300
506
Vs()hi
Saturation Voltage hi at ERR
Vs()hi = VDD - V(ERR)
VDD = 3 V to 4 V, I() = 2.5 mA
VDD = 4 V to 5.5 V, I() = 3.5 mA
507
508
Isc()hi
Short-Circuit Current hi in ERR
Vs()lo
Saturation Voltage lo at ERR
509
Isc()lo
Short-Circuit Current lo in ERR
-100
VDD = 3 V to 4 V, l() = 2.5 mA
VDD = 4 V to 5.5 V, l() = 3.5 mA
4
µs
400
mV
-4
mA
400
mV
100
mA
DEG
Interpolator
701
AAabs
Absolute Angle Accuracy
referenced to one SIN/COS period
-5
5
702
AArel
Relative Angle Accuracy
referenced to one AB period, see Figure 1
-10
10
%
703
AAhys
Angle Hysteresis
referenced to one SIN/COS period
1
7
DEG
704
tw()hi
Duty Cycle
referenced to AB period T, see Figure 1
50
%
705
tAB
Phase A versus B
see Figure 1
25
%
Incremental Outputs INCA, INCB, INCZ
801 Vs()hi
Saturation Voltage hi
802
803
Isc()hi
Short-Circuit Current hi
Vs()lo
Saturation Voltage lo
804
Isc()lo
Short-Circuit Current lo
805
tr()
Rise Time
806
tf()
Fall Time
Vs()hi = VDD - V()
VDD = 3 V to 4 V, I() = 2.5 mA
VDD = 4 V to 5.5 V, I() = 3.5 mA
-100
400
mV
-4
mA
400
mV
100
mA
CL = 30 pF, V(): 10% → 90% VDD
30
ns
CL = 30 pF, V(): 90% → 10% VDD
30
ns
VDD = 3 V to 4 V, l() = 2.5 mA
VDD = 4 V to 5.5 V, l() = 3.5 mA
4
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 9/25
ELECTRICAL CHARACTERISTICS
Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
Max.
SPI Interface SCK, CS, MISO, MOSI
901
fin()
Permissible Input Frequency at
SCK
10
MHz
902
Vt()hi
Threshold Voltage hi at SCK, CS,
MOSI
2
V
903
Vt()lo
Threshold Voltage lo at SCK, CS,
MOSI
904
905
Vt()hys
Hysteresis at SCK, CS, MOSI
Vt() = Vt()hi - Vt()lo
Ipu()
Pull-Up Current at SCK, MOSI
V() = 0 V to VDD - 1 V
VDD = 3 V to 4 V
VDD = 4 V to 5.5 V
0.8
906
Vpu()
Pull-Up Voltage at SCK, MOSI
Vpu() = VDD - V(),
VDD = 3 V to 4 V, I() = -3 µA
VDD = 4 V to 5.5 V, I() = -5 µA
907
Ipd()
Pull-Down Current at CS
V() = 1 V . . . VDD
VDD = 3 V to 4 V
VDD = 4 V to 5.5 V
V
40
100
-65
-120
-25
-60
5
8
25
60
mV
-5
-10
µA
µA
400
mV
80
150
µA
µA
400
mV
908
Vpd()
Pull-Down Voltage at CS
VDD = 3 V to 4 V, I() = 3 µA
VDD = 4 V to 5.5 V, I() = 5 µA
909
tCO
Propagation Delay: MISO hi
after Falling Edge CS
see Figure 2
30
ns
910
tSO
Propagation Delay: MISO Stable see Figure 2
after Clock Edge SCK
30
ns
Shift Register CLK, NSL, DOUT, DIN
A01
fin()
Permissible Input Frequency at
CLK
16
A02
tNO
Propagation Delay: DOUT
after Falling Edge NSL
see Figure 3
20
ns
A03
tCO
Propagation Delay: DOUT stable see Figure 3
after Clock Edge CLK
20
ns
A04
Vt()hi
Threshold Voltage hi at CLK,
NSL, DIN
A05
Vt()lo
Threshold Voltage lo at CLK,
NSL, DIN
A06
A07
Vt()hys
Hysteresis at CLK, NSL, DIN
Vt() = Vt()hi - Vt()lo
Ipu()
Pull-Up-Current at CLK, NSL
V() = 0 V to VDD - 1 V
VDD = 3 V to 4 V
VDD = 4 V to 5.5 V
2
0.8
A08
Vpu()
Pull-Up-Voltage at CLK, NSL
Vpu() = VDD-V(),
VDD = 3 V to 4 V, I() = -3 µA
VDD = 4 V to 5.5 V, I() = -5 µA
A09
Ipd()
Pull-Down Current at DIN
V() = 1 V to VDD
VDD = 3 V to 4 V
VDD = 4 V 5.5 V
A10
Vpd()
Pull-Down-Voltage at DIN
100
-65
-120
-25
-60
VDD = 3 V to 4 V, I() = 3 µA
VDD = 4 V to 5.5 V, I() = 5 µA
Parallel Output Bit 0 to Bit 13 (Parameter EPG = 0x1)
B01 Vs()hi
Saturation Voltage hi
Vs()hi = VDD - V()
VDD = 3 V to 4 V, I() = 2.5 mA,
VDD = 4 V to 5.5 V, I() = 3.5 mA
-100
V
V
40
5
8
MHz
25
60
mV
-5
-10
µA
µA
400
mV
80
150
µA
µA
400
mV
400
mV
-4
mA
400
mV
B02
B03
Isc()hi
Short-Circuit Current hi
Vs()lo
Saturation Voltage lo
B04
Isc()lo
Short-Circuit Current lo
100
mA
B05
tr()
Rise Time
CL = 30 pF, V(): 10% → 90% VDD
30
ns
B06
tf()
Fall Time
CL = 30 pF, V(): 90% → 10% VDD
30
ns
VDD = 3 V to 4 V, I() = 2.5 mA,
VDD = 4 V to 5.5 V, I() = 3.5 mA
4
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 10/25
ELECTRICAL CHARACTERISTICS
Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
Max.
Power-On-Reset POK
C01 VDDAon
Turn-on Threshold VDDA,
Power-On-Reset
VDDA increasing,
POK: lo → hi
3.6
3.8
4.0
V
C02 VDDAoff
Turn-off Threshold VDDA,
Power-Down-Reset
VDDA decreasing,
POK: hi → lo
3.3
3.5
3.7
V
C03 VDDAhys
Hysteresis VDDA
VDDAhys = VDDAon - VDDAoff
0.2
0.3
V
tAB
twhi
AArel
AArel
T
Figure 1: Definition of the relative angle accuracy
OPERATING CONDITIONS: SPI Interface
Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Max.
I001 TSCK
Permissible Clock Period
I002 tCS
Setup Time:
CS hi before SCK hi → lo
I003 tCO
Propagation Delay:
MISO hi after CS hi → lo
I004 tIS
Setup Time:
MOSI stable before SCK lo → hi
50
ns
I005 tSI
Hold Time:
MOSI stable after SCK lo → hi
50
ns
I006 tSO
Propagation Delay:
MOSI stable after Clock Edge SCK
I007 tCC
Hold Time:
Between CS hi → lo and CS lo → hi
CS
tCS
tIS
1/fin(SCK)
50
ns
(Elec. Char. No. 909)
tSI
(Elec. Char. No. 910)
500
TSCK
tCC
SCK
MOSI
tSO
MISO
Figure 2: SPI interface timing
tCO
ns
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 11/25
OPERATING CONDITIONS: Shift Register
Operating conditions: VDDA = 4 V to 5.5 V, VDD = 3 V to 5.5 V, GNDA = GND, Tj = -40°C to 125°C, unless otherwise specified.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Max.
I101 TCLK
Permissible Clock Period
I102 tNC
Setup Time:
NSL lo before CLK lo → hi
1/fin(CLK)
I103 tNO
Propagation Delay:
DOUT stable after NSL hi → lo
(Elec. Char. No. A02)
I104 tCO
Propagation Delay:
DOUT stable after Clock Edge CLK
(Elec. Char. No. A03)
I105 tIC
Setup Time:
DIN stable before CLK lo → hi
30
ns
I106 tCI
Hold Time:
DIN stable after CLK lo → hi
30
ns
I107 tNN
Wait Time:
between NSL lo → hi and NSL hi → lo
60
ns
30
ns
NSL
tNC
tNN
CLK
TCLK
DOUT
tNO
tCO
tIC tCI
DIN
Figure 3: Shift register timing
tNO
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 12/25
CONFIGURATION PARAMETERS
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 14
EPG:
Operating mode selection
Parallel encoder mode . . . . . . . . . . . . . . . . . . . . . Page 20
EPG:
Operating mode selection
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 15
OPCODE:
Instructions
RACTIVE:
Activate register communication
PACTIVE:
Activate sensor data communication
SVALID:
Sensor data valid
STATUS:
SPI status information
Shift register output . . . . . . . . . . . . . . . . . . . . . . . Page 21
SRC:
Shift register length
STA:
SIN/COS resolution
DIR:
Code inversion
Signal conditioning . . . . . . . . . . . . . . . . . . . . . . . . Page 19
GR:
Gain range (all tracks)
GS:
SIN gain
OSP:
PSIN offset
OSN:
NSIN offset
GC:
COS gain
OCP:
PCOS offset
OCN:
NCOS offset
Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 20
NSYNC:
Synchronization
Incremental output . . . . . . . . . . . . . . . . . . . . . . . . Page 22
INC:
Incremental output
LED current control . . . . . . . . . . . . . . . . . . . . . . . .Page 23
LCSET:
Control mode and setpoint
Internal error signals . . . . . . . . . . . . . . . . . . . . . . Page 23
ERRS:
LED control range error
ERRP:
Parity error
Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 24
TA:
Test modes
TMUX:
Multiplexer test signal
REGISTER MAP
Adr
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Signal conditioning
0x00
P0
–
GS(5:0)
0x01
P1
–
GC(5:0)
0x02
P2
OSP(6:0)
0x03
P3
OSN(6:0)
0x04
P4
OCP(6:0)
0x05
P5
OCN(6:0)
LED current control
0x06
P6
LCSET(6:0)
Output
0x07
P7
0x08
P8
NSYNC
DIR
EPG
INC(2:0)
–
STA
GR(1:0)
SRC(2:0)
Test functions
0x09
P9
0x0A
PA
–
TA(1:0)
–
TMUX(3:0)
0x0B
PB
–
0x0C
PC
–
0x0D
PD
–
0x0E
PE
–
0x0F
PF
–
Bit 7: Parity bit (supplemented to an even number of ones)
Table 6: Register layout
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 13/25
The configuration registers in the internal RAM are
constantly monitored by a parity check. Bit 7 of each
address is the parity bit (P0-PF) and is supplemented
to an even number of ones. The unused bits are also
monitored. A parity error is signaled at pin ERR (high
active).
Addresses in iC-LNG range from addresses 0x00 to
0x0F. As only the lower nibble of the address byte is
evaluated, with addresses that are greater than 0x0F
the device then returns to address range 0x00-0x0F.
After the system enable (power-on reset, pin POK
lo → hi) the registers are initialized as follows:
Address
Reset value
0x00 - 0x01
0xA0
0x02 - 0x05
0x06
0x07
0x08
0x09 - 0x0F
0xC0
0xA0
0x81
0x96
0x00
Table 7: Register reset values
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 14/25
OPERATING MODES
iC-LNG has two operating modes. These are selected
using register bit EPG.
EPG
0
1
Add. 0x07, bit 4
Interface mode
Parallel encoder mode
Table 8: Operating mode selection
In interface mode a shift register is provided for sensor
data readout and an incremental interface with an index signal for the output of encoder quadrature signals
Pin
GND
VDD
SCK
MOSI
MISO
CS
TNC
TNS
INCZ
NSL
DIN
DOUT
CLK
NSL
PO5
POK
INCB
INCA
ERR
TPS
TPC
NCOS
PCOS
NSIN
PSIN
LED
VDDA
GNDA
at a configurable resolution. A power-on signal at pin
POK indicates that the system is enabled (POK = hi).
In parallel encoder mode the sensor data is output as
a 14-bit, parallel data word in Gray code. For this
purpose all the relevant pins are reconfigured as outputs. Table 9 shows the pin functions for the respective operating mode (see also Parallel Encoder Mode
on page 20).
The SPI interface for device configuration can also be
used for position data readout and is available in both
operating modes.
Pin dependent on
VDD
VDDA
Interface mode
x
I/O pins ground
x
+3 V to + 5.5 V I/O pins
Supply voltage
x
SPI clock
x
SPI data input
x
SPI data output
x
SPI chip select
x
Test input NCOS
x
Test input NSIN
x
Incremental output Z
x
Load shift register
x
Shift register data input
x
Shift register data output
x
Shift register clock
x
Load shift register
x
Parallel output 5
x
Power OK indication
x
Incremental output B
x
Incremental output A
x
Alarm message output
x
Test input PSIN
x
Test input PCOS
x Voltage output NCOS
x Voltage output PCOS
x Voltage output NSIN
x Voltage output PSIN
x LED current control (highside output)
x +4 V to + 5.5 V Supply Voltage
x Ground
Parallel encoder mode
I/O pins ground
+3 V to + 5.5 V I/O pins
Supply voltage
SPI clock
SPI data input
SPI data output
SPI chip select
Parallel output 13
Parallel output 12
Parallel output 11
Parallel output 10
Parallel output 9
Parallel output 8
Parallel output 7
Parallel output 6
Parallel output 5
Parallel output 4
Parallel output 3
Parallel output 2
Alarm message output
Parallel output 1
Parallel output 0
Voltage output NCOS
Voltage output PCOS
Voltage output NSIN
Voltage output PSIN
LED current control (highside output)
+4 V to + 5.5 V Supply Voltage
Ground
Table 9: Pin functions depending on operating mode
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 15/25
SPI INTERFACE
CS
SCLK
MOSI
OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0
MISO
OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Figure 4: SPI transmission, taking the Read REGISTER opcode as an example (cont.)
General protocol description
iC-LNG’s SPI interface is implemented as an SPI slave
and supports SPI modes 0 and 3, meaning the idle
time at SCK can be 0 or 1. Data is always accepted
on a rising edge at SCK. The idle time of the MISO
line is 1; on a rising edge at CS the MOSI signal is
switched through to the MISO signal.
Data is sent byte by byte with the MSB (most significant bit) first. Each data transmission starts when a
1-byte opcode is sent by the SPI master (Table 10).
OPCODE
Code
Description
0xB0
0xA6
ACTIVATE
Sensor data transmission
0xF5
0x8A
0xCF
0xAD
Sensor data status
Read REGISTER (cont.)
Write to REGISTER (cont.)
REGISTER status/data
OPCODE description
ACTIVATE
iC-LNG’s register and sensor data channels can be
switched on and off using the ACTIVATE command.
The command causes all slaves to zero their RACTIVE and PACTIVE register and to loop-in this register
data between the MOSI and MISO data stream. The
register and sensor or actuator data channels can be
switched on and off using the following data bytes.
After a power-on iC-LNG’s sensor data channel is deactivated (PACTIVE = 0) and the register communication is activated (RACTIVE = 1).
CS
SCLK
MOSI
OP
MISO
OP
RAPA 0-4
RAPA 5-7
...
Table 10: Instructions / opcodes
8 cycles
SPI data transmission for register readout takes place
as follows (Figure 4):
1. The master initializes a transmission by a rising
edge at CS.
Figure 5: Setting ACTIVATE: RACTIVE/PACTIVE
(several slaves)
Bytes FAIL, VALID, BUSY, and DISMISS in the STATUS byte are reset by the ACTIVATE command (Table 14).
2. iC-LNG transfers the level from MOSI to MISO.
3. The master transmits the OPCODE and address
ADR through MOSI; iC-LNG immediately outputs
OPCODE and ADR through MISO.
RACTIVE
Code
Description
0
1
Register communication deactivated
Register communication activated
Table 11: Register communication
4. iC-LNG transmits the data requested according
to the address.
5. The master ends the command by a falling edge
at CS.
6. iC-LNG switches its MISO output to 1.
If RACTIVE is not set, on commands Read REGISTER (cont.), Write to REGISTER (cont.) and REGISTER status/data the ERROR bit is set in the SPI
interface STATUS byte (Table 14), indicating that the
command has not been carried out. The slave immediately outputs the data at MISO which has been sent
by the master through MOSI.
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 16/25
PACTIVE
Code
Description
0
1
Sensor data channel deactivated
Sensor data channel activated
CS
REQ
SCLK
Table 12: Sensor data via SPI
If PACTIVE is not set, on commands Sensor data status or Sensor data transmission the ERROR bit is
set in the STATUS byte (Table 14), indicating that the
command has not been carried out. The slave immediately outputs the data at MISO which has been sent
by the master through MOSI.
If only one slave is connected up with one register and
one sensor data channel, it must be ensured that the
RACTIVE and PACTIVE bits are last in the data byte
(Figure 6).
MOSI
OP
MISO
OP
SD1
SD2
...
8 cycles
Figure 7: SDAD transmission: read SD
With command Sensor data transmission the master
can not only read sensor data (SD) out from the slave;
at the same time it can also transmit actuator data (AD)
to the slave. iC-LNG ignores the transmitted actuator
data.
CS
REQ
SCLK
NB:
If the slaves are connected in a chain (full duplex
chain), with this command the master can determine
the number of connected register and sensor data
channels. To this end it can send a 1 after the opcode,
which is repeated at MISO after the number of register
and sensor data channels (Figure 6).
MOSI
OP
AD1
AD2
...
MISO
OP
SD1
SD2
...
8 cycles
Figure 8: SDAD transmission: read SD, write AD
Sensor data status
CS
SCLK
MOSI
OP
1
0
0
0
0
0
RA
PA
MISO
OP
0
0
1
0
0
0
0
0
8 cycles
Should the master not know the processing time, it can
request sensor data using the command Sensor data
status. iC-LNG does not need any processing time;
therefore, SVALID is always valid.
RACTIVE / PACTIVE vector
Figure 6: Setting ACTIVATE: RACTIVE/PACTIVE
(one slave)
Sensor data transmission
iC-LNG samples its position data on the first rising
edge at SCLK if CS is switched to 1 (REQ). The sensor
data shift register is looped-in between signals MOSI
and MISO for SPI communication and can then be
clocked out. The size of the sensor data shift register must be set to 16 bits (cf. section on shift register
output, page 21).
If invalid data is sampled in the shift register, the ERROR bit is set in the STATUS byte (Table 14) and zeroes are output as the data word.
The command causes
1. all slaves activated with PACTIVE to switch their
SVALID register between MOSI and MISO.
2. The next request for sensor data, triggered on
the first rising edge at SCLK when CS has again
been set to 1, is ignored by the slave.
The end of conversion is signaled by SVALID (SV).
With this command the master can poll to the end of
conversion. The sensor data is readout on the command Sensor data transmission.
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 17/25
signals whether an error occurred during the last communication with the SPI interface or not.
SVALID
Code
Description
0
1
Sensor data invalid
Sensor data valid
The master transmits the opcode REGISTER status/data. iC-LNG immediately passes the opcode on
to MISO. iC-LNG then transmits the STATUS byte and
a DATA byte. The DATA byte is not available in iC-LNG
and is thus not defined.
Table 13: SVALID
REQ
CS
SCLK
CS
MOSI
OP
MISO
OP
SCLK
SV 0-7 SV 8-15
...
8 cycles
MOSI
OP
MISO
OP
8 cycles
Figure 9: SDAD status
Figure 11: REGISTER status/data
If only one slave is connected, the relevant SVALID bit
is placed at bit position 7 in the SVALID byte.
CS
REQ
SCLK
MOSI
OP
0
0
0
0
0
0
0
0
MISO
OP
SV 0
0
0
0
0
0
0
0
8 cycles
STATUS DATA
Read REGISTER (cont.)
The master transmits the opcode Read REGISTER
(cont.). Start address ADR, from which point data is
to be read, is transmitted in the 2nd byte. The slave
immediately outputs the opcode and address and then
transmits DATA1. The internal address counter is incremented after each data package.
SVALID vector
Figure 10: SDAD status (one slave)
REGISTER status/data
The status of the last REGISTER communication or
the last data transmission can be queried using the
REGISTER status/data command. The STATUS byte
contains the information summarized in Table 14.
STATUS
Bit
Name
Description of the status
report
7
ERROR
6..4
3
2
1
DISMISS
FAIL
BUSY
0
VALID
Opcode invalid. Sensor
data was invalid on
readout
Reserved
Address refused
Data request has failed
Slave is busy with a
request
DATA is valid
NB
Display logic: 1 = true, 0 = false
Table 14: SPI status information
All status bits are updated with each register access.
The ERROR bit is the exception to the rule; this bit
If an error occurs during register readout (cont.), i.e.
the address is invalid, the requested data was not
valid on data byte clocking, etc., the internal address
counter is incremented no further and the FAIL error
bit is set in the status byte (Table 14).
CS
SCLK
MOSI
OP
ADR
MISO
OP
ADR
DATA1
DATA2
...
8 cycles
Figure 12: Read REGISTER (cont.)
Write to REGISTER (cont.)
The master transmits the opcode Write to REGISTER
(cont.). Start address ADR, from which point successive data DATA1-DATAn is to be written, is transmitted
in the 2nd byte. The slave immediately outputs the
opcode, address, and data at MISO. The slave increments its internal address counter after each DATAn
data package.
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 18/25
If an error occurs during a write to register (cont.), i.e.
the address is invalid, writing of the last address data
has not finished, etc., the internal address counter is
incremented no further and the FAIL error bit is set in
the status byte (Table 14).
CS
SCLK
MOSI
OP
ADR
DATA1
DATA2
...
MISO
OP
ADR
DATA1
DATA2
...
8 cycles
Figure 13: Write to REGISTER (cont.)
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 19/25
SIGNAL CONDITIONING
iC-LNG has various parameters for signal conditioning.
The gain of the digital tracks and the analog track can
both be set using parameter GR. A gain factor of 1.33
(GR = 0x01) can be used for most applications.
GR
Add. 0x07, bit 1:0
Code
Gain factor
0x00
0x01
1.0
1.33
0x02
0x03
1.6
2.0
NCOS. The offset of signal NSIN must then be calibrated to the calibrated offset of signal PSIN.
OSP
Code
Add. 0x02, bit 6:0
Offset value
0x00
0x01
...
0.45 · VDDA
0.4508 · VDDA
(0.45 + OSP·0.1
) · VDDA
127
0x7F
0.55 · VDDA
Table 17: PSIN offset
Table 15: Gain range (all tracks)
The sine/cosine signals can be calibrated in amplitude and offset (Figure 14). To this end the LED
current control must be programmed to sum control (LCSET(6) = 1) and the internal calibration signals
switched to analog outputs PSIN, NSIN, PCOS, and
NCOS (TA = 0x1).
TA = 0x1
PSIN
TMUX = 0x0D
or
TMUX = 0x0E
NSIN
VNx
Add. 0x03, bit 6:0
Offset value
0x00
0x01
...
0x7F
0.45 · VDDA
0.4508 · VDDA
(0.45 + OSN·0.1
) · VDDA
127
0.55 · VDDA
Table 18: NSIN offset
To calibrate the cosine signals TMUX must be programmed to 0x0E. The amplitude of signals PCOS and
NCOS can then be calibrated to the same amplitude as
that of the sine signals using parameter GS.
VPx
VPx
PCOS
OSN
Code
VDDAH
VNx
NCOS
VDDAH
GNDA
(x = S, C)
Figure 14: Sine/cosine signal calibration
To calibrate the sine signals TMUX must be programmed to 0x0D. The amplitude of signals PSIN and
NSIN can then be calibrated using parameter GS. The
target amplitude is 500 mVp.
GC
Code
Add. 0x01, bit 5:0
Gain factor
0x00
0x01
...
1.0
1.01
0x3F
2.0
1+GC·0.0053
1−GC·0.0053
Table 19: PCOS and NCOS gain
The offsets of PCOS and NCOS can be calibrated separately using parameters OCP and OCN. The offset
of signal PCOS must be calibrated to reference signal
VDDAH. This signal is available in test mode at pin
NCOS. The offset of signal NCOS must then be calibrated to the calibrated offset of signal PCOS.
GS
Code
Add. 0x00, bit 5:0
Gain factor
0x00
0x01
...
1.0
1.01
0x3F
2.0
OCP
Code
Add. 0x04, bit 6:0
Offset value
Table 16: PSIN and NSIN gain
0x00
0x01
...
0.45 · VDDA
0.4508 · VDDA
(0.45 + OCP·0.1
) · VDDA
127
0x7F
0.55 · VDDA
1+GS·0.0053
1−GS·0.0053
The offsets of PSIN and NSIN can be calibrated separately using parameters OSP and OSN. The offset
of signal PSIN must be calibrated to reference signal
VDDAH. This signal is available in test mode at pin
Table 20: PCOS offset
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 20/25
OCN
Code
Add. 0x05, bit 6:0
Offset value
0x00
0x01
...
0x7F
0.45 · VDDA
0.4508 · VDDA
) · VDDA
(0.45 + OCN·0.1
127
0.55 · VDDA
DPSIN
Vref
3Meg
GS
+
+
-
VPSI
-
NSIN
+
GS
GR
OSN
VREFNS
VREFPS
Table 21: NCOS offset
-
The signal path of the SIN/COS tracks is shown in Figure 15 with the conditioning unit.
+
-
Vref
VDDA
DNSIN
Vref
3Meg
-
VDDA
OSP
GS
+
+
+
+
VNSI
-
GS
GR
PSIN
-
Vref
DPCOS
Vref
3Meg
GC
+
+
-
VPCO
-
NCOS
+
GC
GR
+
-
Vref
VDDA
OCN
VREFNC
VREFPC
DNCOS
Vref
3Meg
-
+
VNCO
GR
GC
-
Vref
Figure 15: SIN/COS signal path
SYNCHRONIZATION
iC-LNG synchronizes the digital tracks to the interpolator.
NSYNC can be used to deactivate synchronization to
check the adjustment or for code discs not in Gray
code. The comparated signals of the digital tracks are
then output.
NSYNC
0
1
Add. 0x07, bit 6
Synchronization activated
Synchronization deactivated
Table 22: Synchronization
PARALLEL ENCODER MODE
In parallel encoder mode an absolute position data
word with a width of 14 bits is output in parallel. This
position data word consists of the 11 bits of the digital
tracks and of 3 bits interpolated from the analog track.
The position data is output in Gray code. Parallel encoder mode is activated by parameter EPG (see also
Operating Modes on page 14).
EPG
0
1
VDDA
OCP
GC
+
+
+
Add. 0x07, bit 4
Interface mode
Parallel encoder mode
Table 23: Selecting the operating mode
PCOS
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 21/25
SHIFT REGISTER OUTPUT
In interface mode (EPG = 0) iC-LNG provides a shift
register for the readout of position data. In order to
be able to use this shift register the SPI interface sensor data channel must be deactivated by command
ACTIVATE with PACTIVE = 0 (Table 12).
STA
0
1
After a power-on the shift register in iC-LNG is active.
The position data is output in Gray code with the MSB
first. This MSB is output in real time at the shift register output (pin DOUT) when NSL = 1. When NSL =
0 the position data is stored in the shift register and
can then be output serially with rising edge CLK. The
position data readout process is shown in Figure 16.
SRC
Code
Add. 0x08, bit 2:0
Shift register
Data bits for
length
STA = 0
Data bits for
STA = 1
0x0
0x1
0x2
0x3
16 bits
16 bits
16 bits
16 bits
16
16
15
14
15
15
14
13
0x4
0x5
0x6
0x7
16 bits
16 bits
14 bits
14 bits
13
12
13
12
12
11
12
11
External data can be read into iC-LNG through shift
register input pin DIN. This is output after the position
data. For example, iC-LNG’s pin ERR can be connected to pin DIN to link the alarm output to the position data.
The length of the shift register and the number of data
bits used can be selected using parameter SRC, depending on the set SIN/COS resolution.
Add. 0x08, bit 3
1024 SIN/COS cycles
512 SIN/COS cycles
Table 24: SIN/COS resolution
Table 25: Shift register length
The MSB of the position data can be inverted by parameter DIR (code inversion).
DIR
0
1
Add. 0x07, bit 5
No code inversion
Code inversion
Table 26: Code inversion
NSL
CLK
DOUT
MSB
MSB-1
MSB-2
LSB
Figure 16: Shift register output (EPG = 0)
DIN
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 22/25
INCREMENTAL OUTPUT
At pins INCA and INCB either incremental signals with
interpolation factors of 1 to 16 or internal digital signals
are output. Selection is made using parameter INC.
INC
0x00
0x01
0x02
0x03
Add. 0x08, bit 6:4
Interpolation factor 1
Interpolation factor 2
Interpolation factor 4
Interpolation factor 8
0x04
0x05
0x06
0x07
Interpolation factor 16
Digital test
iC-Haus test 1
iC-Haus test 2
At pin INCZ a zero pulse is output which is suitable
for the selected interpolation factor. The zero pulse is
symmetrical to the falling edge of the MSB signal on
the digital tracks and is half an incremental cycle long
gated with B low.
The phase relationship between the SIN/COS signals
and the incremental signals is shown in Figure 17.
Output in digital test and iC-Haus test modes is described in the section on test functions on page 24.
Table 27: Incremental output
PSIN
PCOS
INCA
INCB
INC=0x00
INCZ
MSB
(D11)
INCA
INCB
INC=0x01
INCZ
MSB
(D11)
Figure 17: SIN/COS and ABZ phase relationship
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 23/25
LED CURRENT CONTROL
The optical receive power of the sine/cosine sensors
is kept constant by the integrated LED control unit, regardless of the temperature and ageing effects of the
LED. The type of control can be selected using parameter LCSET(6), the possible options being sum control
or square control. So that the internal interpolator is
always optimally controlled in all operating conditions,
square control should be used. Sum control should be
used for signal conditioning.
LCSET(6)
0
1
Add. 0x06, bit 6
Square control (sum of the amplitude squares)
Sum control (DC control prop. to VR())
Table 28: Control mode
LCSET(5:0)
Add. 0x06, bit 5:0
Code
LCSET(6) = 0
LCSET(6) = 1
0x00
0x01
...
0.240 Vp
0.243 Vp
0.140 V
0.142 V
0.24 Vp
1−i·0.0125
0.14 V
1−i·0.0125
0x3F
1.1 Vp
0.640 V
Table 29: Control Setpoint
Error Monitoring
iC-LNG’s LED current control range is monitored.
Should the LED current control exit its control range,
internal error ERRS is set to 1. This error signal is orgated with iC-LNG’s ERRP alarm (parity check) and
output at error output ERR (cf. section on the alarm
output).
The setpoint for the control can be configured using
parameter LCSET(5:0).
ALARM OUTPUT
iC-LNG has an alarm or error output to indicate existing errors. If an error occurs, pin ERR is set to 1.
ERROR MESSAGE
iC-LNG’s LED current control range is monitored.
Should the LED current control exit its control range,
internal error ERRS is set to 1.
If the parity check signals an error in the RAM area,
internal error ERRP is set to 1.
ERRS
ERRP
³1
VDD
ERR
GND
Figure 18: Alarm output
preliminary
iC-LNG 16-BIT OPTO ENCODER
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 24/25
TEST FUNCTIONS
TA
Code
Addr. 0x09; bit 5:4
Output at SIN/COS
0x0
0x1
0x2
0x3
Normal operation
Test signals (cf. Table 31)
iC-Haus test
iC-Haus test
In the digital test synchronized data is output when
NYSNC = 0; when NSYNC = 1 the comparator outputs
of tracks 1-11 are output to D1-D11.
INC
Code
Add. 0x08, bit 6:4
INCA
INCB
0x06
XALL
D0
Table 30: Test modes
Table 33: iC-Haus test 1
TMUX
Code
Add. 0x09, bit 3:0
PSIN
NSIN
PCOS
NCOS
0x00
VPSI
VNSI
VPCI
VNCI
INC
Code
Add. 0x08, bit 6:4
INCA
INCB
0x01
VPSI
VTH
A1
VREF
0x07
TP
NPOR
...
VPSI
VTH
A(TMUX)
VREF
0x0B
VPSI
VTH
A11
VREF
0x0C
VREFPS
VREFNS
VREFPC
VREFNC
0x0D
PSIN
NSIN
PCOS
VDDAH
0x0E
PCOS
NCOS
PSIN
VDDAH
0x0F
–
–
–
–
Table 34: iC-Haus test 2
Table 31: Test signal multiplexer for analog signals
TMUX
Add. 0x09, bit 3:0
Code
INCA
INCB
0x00
D09
D0
0x01
D1
D0
...
D(TMUX)
D0
0x0B
D11
D0
0x0C
I3
D0
0x0D
I2
D0
0x0E
I1
D0
0x0F
I0
D0
Table 32: Test signal multiplexer for digital signals
iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by
email.
Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source.
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these
materials.
The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness
for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no
guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of
the product.
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in
Hanover (Hannover-Messe).
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can
be put to.
iC-LNG 16-BIT OPTO ENCODER
preliminary
WITH SPI AND SERIAL / PARALLEL OUTPUTS
Rev A1, Page 25/25
ORDERING INFORMATION
Type
Package
Options
Order Designation
iC-LNG
30-Pin optoBGA,
7.6 mm x 7.1 mm,
thickness 1.7 mm
Standard reticle LNG1R
iC-LNG oBGA LNB2C-1R
iC-LNG
30-Pin optoBGA,
7.6 mm x 7.1 mm,
thickness 1.7 mm
Standard reticle LNG2R
iC-LNG oBGA LNB2C-2R
iC-LNG
30-Pin optoBGA,
7.6 mm x 7.1 mm,
thickness 1.7 mm
Reticle on request
iC-LNG oBGA LNB2C-xR
iC-LNG
optoQFN Package
Under preparation
Suitable Encoder Discs:
1024 PPR
OD / ID ∅42.0 / 18.0 mm
glass 1 mm
LNG1Sz 42-1024
512 PPR
OD / ID ∅24.8 / 2.0 mm
glass 1 mm
LNG2S 25-512
For technical support, information about prices and terms of delivery please contact:
iC-Haus GmbH
Am Kuemmerling 18
D-55294 Bodenheim
GERMANY
Tel.: +49 (61 35) 92 92-0
Fax: +49 (61 35) 92 92-192
Web: http://www.ichaus.com
E-Mail: [email protected]
Appointed local distributors: http://www.ichaus.com/sales_partners