Intel® GW80314 I/O Companion Chip Datasheet Product Features ■ ■ ■ ■ ■ Companion chip for the Intel® 80200 processor based on Intel XScale® microarchitecture (ARM* architecture compliant—no integrated core) Internal non-blocking, high-speed switch fabric Two embedded PCI-X ports Intel® 80200 processor interface supporting up to two processors with low-latency path to the SDRAM. Two 10/100/1000 Mbit Ethernet controllers providing descriptor-based access to or from any internal port including SDRAM ■ ■ ■ ■ ■ ■ SDR/DDR SDRAM controller with data queueing to allow the increased performance of DDR memory OpenPIC-based multi-function interrupt controller (MPIC) Peripheral Bus Interface providing a generic parallel port, access to flash, and access to other types of external memory Two 16550-compatible UARTs with 16-byte transmit and receive FIFOs I2C two-wire interface for initial configuration or saving vital product data 1 MB of internal high-speed static RAM for higher-speed access. Order Number: 273757-003US November 2004 Intel® GW80314 I/O Companion Chip INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® GW80314 companion chip may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. This Datasheet as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com. AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2004, Intel Corporation 2 Datasheet Intel® GW80314 I/O Companion Chip Contents 1.0 Introduction......................................................................................................................... 9 1.1 1.2 2.0 Features ...........................................................................................................................12 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 3.0 Package Introduction...........................................................................................19 Package Thermal Specifications .........................................................................64 Socket Information ..............................................................................................66 Electrical Specifications....................................................................................................68 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Datasheet Switch Fabric Unit ...............................................................................................12 PCI-X Interface....................................................................................................12 CIU Interface .......................................................................................................13 SDRAM Controller...............................................................................................14 DMA/XOR Engine ...............................................................................................15 Gigabit Ethernet (GigE) Interface ........................................................................16 Interrupt Controller ..............................................................................................17 General Purpose I/O (GPIO) Block .....................................................................18 Package Information ........................................................................................................19 3.1 3.2 3.3 4.0 Terminology.........................................................................................................10 Other Relevant Documents .................................................................................11 Absolute Maximum Ratings.................................................................................68 PLL Supply Pin Requirements ............................................................................69 Targeted DC Specifications.................................................................................70 Targeted AC Specifications.................................................................................71 AC Timing Waveforms ........................................................................................82 AC Test Conditions .............................................................................................85 Power Sequencing ..............................................................................................87 3 Intel® GW80314 I/O Companion Chip Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4 Intel® GW80314 I/O Processor Block Diagram ..................................................... 9 1025-Lead HSBGA Package Drawing ................................................................ 41 Ball Map - Left Side - Top View........................................................................... 42 Ball Map - Right Side - Top View ........................................................................ 43 Intel® GW80314 I/O Processor PLL Supply Decoupling Network....................... 69 Address Window Signal Timing Diagram ............................................................ 78 Data Window Signal Timing Diagram ................................................................. 79 Address to Read Data Timing Diagram .............................................................. 79 Input Timing Measurement Waveforms .............................................................. 82 Output Timing Measurement Waveforms ........................................................... 82 I2C Interface Signal Timings................................................................................ 83 DDR SDRAM Write Timings ............................................................................... 83 DDR SDRAM Read Timings ............................................................................... 84 AC Test Load for all Signals Except PCI and DDR SDRAM............................... 85 PCI/PCI-X TOV(max) Rising Edge AC Test Load............................................... 85 PCI/PCI-X TOV(max) Falling Edge AC Test Load .............................................. 86 PCI/PCI-X TOV(min) AC Test Load .................................................................... 86 Correct Power Sequence for VDD33, VDD25, and VDD12 ................................................ 87 Datasheet Intel® GW80314 I/O Companion Chip Tables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Datasheet Terms and Acronyms ..........................................................................................10 Related Documentation.......................................................................................11 Signal Type Definitions........................................................................................19 Intel XScale® Microprocessor Bus Signals..........................................................20 SDRAM Signals...................................................................................................21 GigE Signals........................................................................................................22 Peripheral Bus Interface Signals .........................................................................24 P1 PCI/X Signals.................................................................................................25 P2 PCI/X Signals.................................................................................................27 P1 Hot Swap Signals...........................................................................................29 P2 Hot Swap Signals...........................................................................................29 Interrupt Controller Signals..................................................................................29 UART Signals......................................................................................................30 I2C Signals ..........................................................................................................31 Miscellaneous Signals........................................................................................31 Test Signals.........................................................................................................32 PLL Power Signals ..............................................................................................32 Power Supplies ...................................................................................................33 Signal Pin Mode Behavior ...................................................................................34 1025-Lead HSBGA Package — Alphabetical Ball Listing ..................................44 1025-Lead HSBGA Package — Alphabetical Signal Listing ...............................54 Thermal Simulation Data for the Intel® GW80314 I/O Processor........................65 Socket-Header Vendor........................................................................................66 Burn-in Socket Vendor ........................................................................................67 Shipping Tray Vendor..........................................................................................67 Maximum Temperature and Voltage Ratings......................................................68 Operating Conditions...........................................................................................68 DC Characteristics ..............................................................................................70 PCI/X Clock Timings ...........................................................................................71 DDR SDRAM Clock Timings ...............................................................................71 Intel XScale® Microprocessor Clock Timings ......................................................72 AC Specifications for MII Management Interface ................................................72 AC Specifications for G/MII and TBI Interface.....................................................73 AC Specifications for PCI/X Interface..................................................................74 AC Specifications for DDR SDRAM Interface .....................................................75 AC Specifications for Intel XScale® Microprocessor Interface ............................75 AC Specifications for UART Interface .................................................................76 PBI Interface Timing............................................................................................77 AC Specifications for I2C Interface ......................................................................80 Boundary Scan Test Signal Timings ...................................................................81 AC Measurement Conditions ..............................................................................85 5 Intel® GW80314 I/O Companion Chip Revision History Date Revision Description November 2004 003 Changed maximum operation temperature from 105o to 85o in Section 3.2 Removed Thermal Parameters 1 and 3 from Section 3.2.1 Removed a portion of Environmental Conditions information and Thermal Data information from Table 22. Removed Section 3.2.2, Ambient Temperature. Removed Section 3.2.4, Thermal Resistance. Updated Case Temperature Maximum Rating in Table 26. Removed Ambient Temperature information from Table 27. 6 June 2004 002 Updated for B1 stepping. September 2003 001 Initial document. Datasheet Intel® GW80314 I/O Companion Chip Datasheet 7 Intel® GW80314 I/O Companion Chip This Page Intentionally Left Blank 8 Datasheet Intel® GW80314 I/O Companion Chip Introduction 1.0 Introduction This is the Intel® GW80314 I/O Processor Datasheet. This document contains a functional overview, package signal locations, targeted electrical specifications, and bus functional waveforms. Detailed functional descriptions other than parametric performance are published in the Intel® GW80314 I/O Processor Developer Manual. Figure 1 shows a block diagram. Figure 1. Intel® GW80314 I/O Processor Block Diagram JTAG Intel® 80200 Bus Interface DDR Interface SRAM DMA CRC32C XOR PCI-X Switching Fabric 64-72 bit / 200 MHz DDR Memory 32-bit Address / 64-bit Data 100 MHz Operation 10/100/1G Ethernet PCI-X Registers 4 Timers Interrupt Controller I2C UARTs Host Port 4 Chip Selects B1342-01 This bridge is designed as a fabric centric, any-port-to-any-port bridge. All transactions are placed into fabric packets and routed via address-based port selection to another fabric port. The bridge is based on the “store and forward” concept, where transactions are buffered at the incoming port. When a packet is complete, the incoming port knows the size of the packet, and it can be burst across the fabric to the outgoing port. As the timing of the packet is deterministic at the outgoing port, the transaction can be started at the outgoing port as soon as the header arrives. All outgoing Datasheet 9 Intel® GW80314 I/O Companion Chip Introduction ports can buffer incoming packets to allow for delayed access to the external bus. To limit the latency and to provide a certain quality of service, the internal packets are limited to 256 bytes in size. Larger PCI transactions are broken into 256-byte transactions at the PCI port. 1.1 Terminology The following terms are used in this document. Table 1. Terms and Acronyms Term/Acronym BAR Description PCI-X Base Address Register DMA Direct Memory Address Embedded Configuration causing the PCI-X block to provide BARs and address translation mechanism to PCI-X G/MII Gigabit Media Independent Interface LVTTL Low-Voltage Transistor-Transistor Logic MAC Media Access Controller MIB Management Information Base PCI Transfers, interfaces or logic that are PCI Local Bus Specification, Revision 2.3 compatible PCI/X Used to signify either/or PCI or PCI-X designation. PCI-X Transfers, interfaces or logic that may be either PCI Local Bus Specification, Revision 2.3 or PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0a compatible PHY Physical connection device PMA Physical Media Attachment PMD Physical Media Device Primary A device with the PCI port attached to the processor bus side in a homogeneous, transparent system. RMON Remote Monitoring RX Receiver Secondary A device with the PCI port not attached to the host processor in a homogeneous, transparent system. SNMP Simple Network Management Protocol STTL Schottky Transistor-Transistor Logic TBI Ten-Bit Interface Transparent Configuration causing the PCI/X block to use base and limit registers for PCI-X side addressing. TX Transmitter VLAN Virtual Local Area Network 10 Datasheet Intel® GW80314 I/O Companion Chip Introduction 1.2 Other Relevant Documents Table 2. Related Documentation Document Title Document# / Contact Intel® 80312 I/O Companion Chip Developer’s Manual ® Intel 80312 I/O Companion Chip Specification Update ® ® Intel 80200 Processor based on Intel XScale Microarchitecture Developer’s Manual ® ® 273410 273416 273411 Intel 80310 I/O Processor Chipset with Intel XScale Microarchitecture Design Guide 273354 Intel® 80200 Processor based on Intel XScale® Microarchitecture Datasheet 273414 Intel® 80200 Processor based on Intel XScale® Microarchitecture Specification Update 273415 PCI Local Bus Specification, Revision 2.2 PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0a PCI Special Interest Group 1-800-433-5177 http://www.pcisig.com/home PCI-to-PCI Bridge Architecture Specification, Revision 1.1 PCI System Design Guide, Revision 1.0 PCI Hot-Plug Specification, Revision 1.0 PCI Bus Power Management Interface Specification, Revision 1.1 OpenPIC Specification Revision 1.2 I2C Peripherals for Microcontrollers Philips Semiconductors http://www.semiconductors.philips.com/ buses/i2c/ Advanced Configuration and Power Interface Specification, Revision 1.0 (ACPI) http://www.acpi.info/spec10b.htm ® NOTE: Also see the Intel product website at http://developer.intel.com/design/iio/. Datasheet 11 Intel® GW80314 I/O Companion Chip Features 2.0 Features The Intel® GW80314 I/O Processor (GW80314) is an I/O companion chip for the Intel® 80200 processor (80200) with an intelligent PCI-X bridge and Gigabit Ethernet access. 2.1 Switch Fabric Unit The purpose of the Switch Fabric Network (SFN) is to provide an interconnect fabric that is useful for on-chip communications between the blocks within the GW80314. The Switch Fabric Unit includes the following features: • • • • • • • 2.2 High-performance interconnect fabric for communication between GW80314 blocks Consistent port definition that is independent of the fabric implementation Protocol independent of fabric pipeline depth Three transaction flows using four priority levels 64-bit local address Four or six deep 256-byte transaction queues (1 K for PCI-X and SDRAM) (mode dependent) Port addressing supports up to 16 SFN ports PCI-X Interface The PCI/X block provides an interface to the SFN (internal switch fabric). It is able to convey transactions from the internal SFN fabric to a PCI/X bus and transactions from a PCI/X bus to the internal switch fabric. The PCI/X block also has the capability to tunnel through the SFN fabric to the other PCI/X block on the fabric providing a pseudo-transparent PCI-to-PCI bridge. This capability is available in the GW80314 as two separate PCI/X blocks are integrated. The PCI-X block provides the following functions: • • • • 12 64-bit capable PCI/X interface Secondary PCI arbiter CompactPCI Hot Swap controller Control and status registers Datasheet Intel® GW80314 I/O Companion Chip Features 2.3 CIU Interface The Intel® 80200 processor (80200) bus Core Interface Unit (CIU) provides a bridge between the 80200 bus and the Switch Fabric, an SDRAM controller, and 1 MB of on chip SRAM. It has a queuing mechanism to store requests from up to two 80200s. The requests from a given 80200 are completed on the 80200 bus in the order in which they are received. The CIU has the following features: • • • • • • • • • • • • • • • Up to two 80200 on the processor bus Up to four read or write requests from each processor Strict ordering rules for each processor Optional ECC for Processor Bus Data Up to four base address registers for the switch fabric Configurable software reset for the CIU and 80200 processors on startup Configurable with and without 1 Mbyte embedded SRAM Reset output for 80200 processors One base address register for the 1 MB on-chip SRAM Switch fabric access to SRAM 64-bit aligned data words 32-bit address decode 80200 external bus ECC protection Two-cycle wait states for write transactions to the SRAM from the processor bus Three-cycle wait states for read transactions to the SRAM from the processor bus The CIU does not have the following features: • Locked transactions • Strict ordering rules between processors Datasheet 13 Intel® GW80314 I/O Companion Chip Features 2.4 SDRAM Controller The SDRAM Controller Core provides an interface to single and double data rate SDRAM. The SDRAM Controller Core has the following features • • • • • • • • • • • 14 Synchronous SDRAM interface for PC100, PC200, and PC1600 Two-port (64-bit data, 36-bit address) concurrent access to memory Internal arbiter with programmable priority for each port One-port (32-bit data, 18-bit address) access to registers Supports up to four physical (eight logical) banks Supports up to 32 bank interleaving (i.e., 32 pages open simultaneously) Flexible row and column address Optional ECC (single-bit error correction, multi-bit error detection) I/O interface compatible with DDR SDRAM I2C master only interface for DIMM detection Digital DLL for automatic DQS timing recovery Datasheet Intel® GW80314 I/O Companion Chip Features 2.5 DMA/XOR Engine The DMA/XOR engine has four identical channels operating independently. Each channel can function as a DMA engine or as an XOR engine. As a DMA engine, it can transfer data from any port to any port and provide CRC calculation on the transferred data. As an XOR engine, it can perform XOR operations on multiple blocks of data, memory fill operation, and parity checking operation. For the DMA data transfer and XOR operation, a channel can be configured to operate in Direct Mode (single operation) or Linked-List mode (multiple operations by stepping through a linked series of Command Packets in external memory). This DMA/XOR engine supports unaligned data transfers. The alignment or unalignment of data is the responsibility of the DMA/XOR engine. The DMA/XOR registers specify the source, destination, command packet address, mode of operation, the type of mapping to achieve the proper byte alignment, and the byte count for a transaction. Note that the maximum byte count is 16 Mbytes. All DMA operations are assumed to be to prefetchable memory. The DMA/XOR Engine has the following features: • • • • • • • • • Four-channel support. Each channel operates independently. Data transfer to and from any port as a DMA engine XOR operation, memory fill, and parity checking as an XOR engine Scatter gather (or Linked-List) and direct modes XOR operation of up to 16 blocks of data Directly fill the store queue with the first block of XOR data (optional) Interrupt on completed segment, chain, and error Mode-selectable byte alignment on transferred data Calculate CRC on the DMA transferred data based on the CRC-32C algorithm required by the iSCSI Specification • Pipeline read requests or read and write requests for better performance • Go/stop/halt control of data transfer operation Datasheet 15 Intel® GW80314 I/O Companion Chip Features 2.6 Gigabit Ethernet (GigE) Interface The Ethernet block is made up of four major sub-blocks. It includes two Gigabit Ethernet interfaces, E0 and E1. There is a single management interface to manage the two PHY devices. Each Ethernet interface has its own statistics monitor that tracks and reports key interface statistics. Each ethernet interface supports a 256-entry hash table for address filtering. Each Ethernet interface is bridged to the SFN interface domain through a 2K byte transmit FIFO and a 4K byte Receive FIFO. There are four independent DMA engines to support transmit and receive data flows for both Ethernet interfaces. The DMA engines rely on descriptors set up in memory, the memory map of the device, and are accessed through the SFN interface. The DMA arbiter handles arbitration for the SFN interface. A register bus interface is provided for the register access and status monitor control. The GigE interface has the following features: • Full support for 10/100/1000 Mbits/s Ethernet standards IEEE 802.3, 802.3u, 802.3x, 802.3z, 802.3ac • • • • • • • • • • • • • • • 16 Full/half-duplex support at 10/100 Mbits/s, full-duplex only Gigabit Ethernet support MAC Control Sublayer w/PAUSE, extended OPCODE support MII Management with suppressed preamble, sequential cycle, variable clock features 8-bit MAC engine optimized for size, reduced latency Optional half-duplex back-pressure (10/100 Mbits/s only) Hash table support for packet filtering VLAN packet filtering support Standard register read/write interface 2K/4K transmit/receive FIFOs for data flow synchronization Two independent DMA channels per Ethernet port: one transmit and one receive Four transmit priority descriptor queues controlled via transmit priority tagging Four receive priority descriptor queues controlled by receive packet filtering priority Collisions detect and retransmit error handling PHY management interface Statistics monitoring and logging: support for RMON MIB group 1, RMON MIB group 2 if table counters, RMON MIB group3, RMON MIB group 9, RMON MIB 2, and the dot 3 Ethernet MIB Datasheet Intel® GW80314 I/O Companion Chip Features 2.7 Interrupt Controller The interrupt controller is a programmable, register based, and multiple port design that meets OpenPIC Specification, Revision 1.2. The interrupt controller has the following features: • • • • • • • • • • • Support for two Intel® 80200 processors Sixteen interrupt priority levels (0 to 15) Level/edge sensibility programmable for 24 IRQ inputs Level/edge sensibility programmable for four output pins Up to 24 input interrupt pins Up to four output interrupt pins Four doorbell registers for additional interrupts Four general-purpose mailbox registers Four global precision timers All registers are read/write 32 bits based Multiple delivery modes are supported: — Directed-single destination — Directed-multicast — Distributed-multiple destination • • • • • Datasheet Nesting of interrupt events Spurious vector generation capable Soft set override for all input sources (maximum 24) Processor initialization registers All registers are at “Known Reset State” on power-up 17 Intel® GW80314 I/O Companion Chip Features 2.8 General Purpose I/O (GPIO) Block The GPIO block contains the general purpose I/O functions available in the GW80314. They include: • • • • Two 16450-compatible UARTs with 16-byte incoming and 16-byte outgoing FIFOs One general-purpose I2C interface port used for initialization and storing of PCI VPD data One 8-bit general-purpose parallel I/O port (shared with UART pins) One configurable 8-, 16-, or 32-bit Peripheral Bus Interface for interfacing to external SRAM/ROM All the interfaces are configurable via the internal configuration bus. 18 Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.0 Package Information 3.1 Package Introduction The GW80314 is offered in a 1025-lead HSBGA (Heat Slug Ball Grid Array) thermally enhanced package. This is a perimeter array package with 904 ball connections in the outer area of the package and a square 11x11 grid of ball connections in the middle area of the package. See Figure 2 “1025-Lead HSBGA Package Drawing” on page 41. 3.1.1 Functional Signal Definitions Signals are classified according to the types defined in Table 3. Table 3. Signal Type Definitions Signal Type I IO Standard input only signal. Standard tristate input/output I(PD) Standard input only signal with internal Pull Down. I(PU) Standard input only signal with internal Pull Up. AI O Analog Input Signal Standard output only signal. OD Open drain output that allows multiple devices to share as a wire-OR TO Standard tristate output only signal. TIO Standard tristate input/output signal. IO(OD) S Datasheet Definition Open drain input/output that allows multiple devices to share as a wire-OR when it is used as output. Supply Pin, either a VCC or VSS. 19 Intel® GW80314 I/O Companion Chip Package Information Intel XScale® Microprocessor Bus Signals 3.1.2 This section describes the GW80314 Intel XScale® microprocessor signals which are 3.3 V LVTTL compatible. Table 4. Intel XScale® Microprocessor Bus Signals Pin Name XS_A[15:0] Count Pin Type Description 16 I Address: During the first cycle of the issue phase, it carries the upper 16 bits of the address for the access. During the second cycle of the issues phase, it carries the lower 16 bits of the address. XS_ABORT 1 O Transaction Abort: Indicates the next transaction on the data bus is aborted. XS_BE[7:0] 8 IO Processor Bus Byte Enables. XS_CLK 1 IO Intel XScale® microprocessor bus clock: Output clock for Intel XScale® microprocessor interface and SDRAM controller. This pin acts as an input in Scan Mode. XS_CWF/ 1 O Critical word first: Indicates the order in which the current 32-byte read burst is returning. Also when the Intel XScale® microprocessor bus is in reset this signal is driven low to indicated data bus width is 64-bit. XS_DQ[63:0] 64 IO Data bus. XS_DVALID[1:0] 2 O Data Valid: One for each Intel XScale® microprocessor on the bus. When asserted high, it indicates that two cycles later, data is valid on XS_DQ, XS_BE, and XS_ECC. XS_HOLD[1:0] 2 O Signal to Intel XScale® microprocessor to request Intel XScale® microprocessor to release the Intel XScale® microprocessor bus. XS_HLDA[1:0]1 2 I Signal from Intel XScale® microprocessor to acknowledge the release of the Intel XScale® microprocessor bus in response to the assertion of the corresponding XS_HOLD signal. XS_ECC[7:0] 8 IO Data Check Bits for Intel XScale® microprocessor ECC Bus Protect. XS_FIQ[1]/PWRUP_SD_ BYP 1 IO Interrupt: indicates a fast interrupt to processor 1. During power-up, this pin is latched at the rising edge of reset and used to enable the SDRAM PLL bypass mode when latched high. DBuswidth (Configuration Pin) XS_FIQ[0] 1 O Interrupt: indicates a fast interrupt to processor 0. XS_IRQ[1]/ 1 IO Interrupt: indicates a interrupt to processor 1. During power-up, this pin is latched at the rising edge of reset and is used to enable the Intel XScale® microprocessor PLL bypass mode when latched high. 1 IO Interrupt: indicates a interrupt to processor 0. During power-up, this pin is used to program Intel XScale® microprocessor PLL frequency adjust logic. PWRUP_XS_BYP (Configuration Pin) XS_IRQ[0]/ PWRUP_FADJ • PWRUP_FADJ = 0, Intel XScale® PLL Frequency = 3/4 * SFN_CLK. Configuration Pin • PWRUP_FADJ = 1, Intel XScale® PLL Frequency = SFN_CLK. XS_LEN[2:0] 3 I Control and length access: During the first cycle of the issue phase: • XS_LEN[2] (ADS#) the start of a bus request. • XS_LEN[0] (W/R#) indicates whether the current request is a read (XS_LEN[0] = 0) or a write (XS_LEN[0] =1). During the second cycle of the issue phase: • XS_LEN[2:0] indicates the length of the request. XS_RESET# 1 Intel XScale® microprocessor Pin Count O Reset pin: When output is low the Intel XScale® microprocessor bus is reset and Intel XScale® microprocessor interface is in reset. 113 NOTES: 1. For single processor configuration, XS_HLDA[0] should be tied low and XS_HLDA[1] should be tied high. 20 Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.1.3 SDRAM Controller Signals This section describes signals for the GW80314 SDRAM controller. Signals in this group are SSTL compatible. Table 5. SDRAM Signals Count Pin Type SD_A[13:0] Pin Name 14 TO Address: Address and command bus SD_BA[1:0] 2 TO Bank Address: Indicates to which bank an Active, Read, Write, or Precharge command is being applied. SD_CAS# 1 TO Column Address Strobe: SD_CAS#, SD_RAS#, and SD_WE# identify the command being sent to the DRAM devices. SD_CLK[3:0] 4 TO Clock Out: Clock outputs for SDRAM DIMMs. All address and control signals are valid on the positive edge of SD_CLK. SD_CLK#[3:0] 4 TO Clock Out Inverted: Clock outputs for SDRAM DIMMs SD_CLKEN 1 TO Clock Enable SD_CKFBI 1 I SD_CKFBO 1 TO DDR SDRAM system flight time removal feedback output. SD_CS#[7:0] 8 TO Chip Select: Enable indicating the command on SD_CAS#, SD_RAS#, and SD_WE# is valid. SD_DQ[63:0] 64 IO Data Bus: Output with write to RAM, and input with read from RAM. SD_DQS/DM[17:9] 9 IO High Data Strobe/Data Mask: Output with write to RAM, and input with read from RAM. Edge-aligned with read data, and center-aligned with write data. Used as Data Mask bits in 8-bit/16-bit wide RAM DDR systems that require only 9 strobes. SD_DQS[8] 1 IO Low ECC Data Strobe: Output with write to RAM, and input with read from RAM. Edge-aligned with read data, and center-aligned with write data. SD_DQS[7:0] 8 IO Low Data Strobe: Output with write to RAM, and input with read from RAM. Edge-aligned with read data, and center-aligned with write data. SD_ECC/DM[7:0] 8 IO ECC: Indicates which bytes on a write are to be updated or the error detection and correction bits. SD_I2C_CLK 1 OD Serial Clock: EEPROM Serial clock for serial DIMM recognition. Internally pulled high. SD_I2C_SDA 1 IO(OD) Serial Data: EEPROM Serial data line serial DIMM recognition. Internally pulled high. SD_RAS# 1 TO Row Address Strobe: SD_CAS#, SD_RAS,# and SD_WE# identify the command being sent to the DRAM devices. SD_VREF 1 AI Input threshold reference for the interface used on the DDR interface. SD_WE# 1 TO Write Enable: SD_CAS#, SD_RAS#, and SD_WE# identify the command being sent to the DRAM devices. SD_PWRDELAY 1 I Indicates healthy power supply. When high during chip reset, the memory controller executes a power failure sequence. DDR Pin Count Datasheet Description DDR SDRAM system flight time removal feedback input. 132 21 Intel® GW80314 I/O Companion Chip Package Information 3.1.4 Dual-Gigabit Ethernet (GigE) Interface Signals This section describes signals for the GW80314 dual-ethernet controller. Signals in this group are 3.3 V LVTTL compatible. Table 6. GigE Signals (Sheet 1 of 3) Pin Name Count Pin Type Description Port 0 E0_TCG[3:0] 4 TO All modes: Transmit Code Group Lower Nibble. E0_TCG[7:4] 4 TO GMII mode: Transmit Code Group Upper Nibble. E0_TCG[8] 1 TO MII mode: Transmit Enable. This signal is synchronous to E0_TX_CLK and provides precise framing for data carried on E0_TCG[3:0] for the external PMA. It is asserted when E0_TCG[3:0] contains valid data to be transmitted. TBI mode: Transmit Code Group Upper Nibble. G/MII mode: Transmit Enable. This signal is synchronous to GTX_CLK and provides precise framing for data carried on E0_TCG[7:0] for the external PMA. It is asserted when E0_TCG[7:0] contains valid data to be transmitted. TBI mode: Transmit Code Group bit 8. Synchronous to GTX_CLK. E0_TCG[9] 1 TO MII mode: Transmit Error. This signal is synchronous to E0_TX_CLK and provides error indications. G/MII mode: Transmit Error. This signal is synchronous to GTX_CLK and provides error indications. TBI mode: Transmit Code Group bit 9. Synchronous to GTX_CLK. E0_RCG[3:0] 4 I All modes: Receive Code Group Lower Nibble. This is a group of four signals, sourced from an external PMA, that contains data aligned on nibble boundaries and are driven synchronous to the E0_CLK. E0_RCG[3] is the most significant bit and E0_RCG[0] is the least significant bit. E0_RCG[7:4] 4 I G/MII mode: Receive Code Group Upper Nibble This is a group of four signals, sourced from an external PMA, that contains data aligned on byte boundaries and are driven synchronous to the E0_CLK. E0_RCG[7] is most significant bit. E0_RCG[8] 1 I G/MII modes: Receive Data Valid. This indicates that the external PMA is presenting recovered and decoded nibbles on the E0_RCG signals, and that E0_CLK is synchronous to the recovered data in 100 Mb/s and 1000 Mb/s operation. This signal encompasses the frame, starting with the Start-of-Frame delimiter (JK) and excluding any End-of-Frame delimiter (TR). E0_RCG[9] 1 I G/MII modes: Receive Error. This signal is synchronous to E0_CLK/E0_PMA_CLK0 and provides media error indications. TBI mode: Receive Code Group Upper Nibble. TBI Mode: Transmit Code Group bit 8. TBI mode: Transmit Code Group bit 9. E0_PCRS_SDET 1 I G/MII modes: PHY Carrier Sense indication. TBI mode: Indicates signals detected. E0_PCOL_RBCM 1 IO G/MII modes: PHY Collision Input. TBI mode: Receive Byte Clock mode output. When low the E0_PMA_CLK0 and E0_PMA_CLK1 are active as half rate clocks. When high the E0_PMA_CLK0 is active as a 125MHz clock input. E0_ECMDT 1 TO TBI mode: Enable Comma Detect. Enables SERDES to perform code group alignment upon detection of comma. E0_EWRAP 1 TO TBI mode: Enable Wrap. Enables SERDES to loop transmit signals to receive (Loopback). E0_PRBSEN 1 TO TBI mode: PRBS Enable. Used to enable PRBS test mode inside TBI SERDES devices. E0_PRBS_PASS 1 I 22 TBI mode: PRBS Pass indicator input (high = pass). Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 6. GigE Signals (Sheet 2 of 3) Pin Name Count Pin Type E0_RXCLK/ E0_PMA_CLK0 1 I E0_TXCLK/ E0_PMA_CLK1 1 Description G/MII modes: Receive Clock from PMA. TBI mode: PMA Receive Clock 0 or 125 MHz Receive Clock depending on state of RBCMODE. I G/MII mode: 2.5 MHz or 25 MHz Transmit Clock. TBI mode: PMA Receive Clock 1. Port 1 E1_TCG[3:0] 4 TO All modes: Transmit Code Group Lower Nibble. E1_TCG[7:4] 4 TO G/MII mode: Transmit Code Group Upper Nibble. E1_TCG[8] 1 TO MII mode: Transmit Enable. This signal is synchronous to E1_TX_CLK and provides precise framing for data carried on E1_TCG[3:0] for the external PMA. It is asserted when E1_TCG[3:0] contains valid data to be transmitted. TBI mode: Transmit Code Group Upper Nibble. G/MII mode: Transmit Enable. This signal is synchronous to GTX_CLK and provides precise framing for data carried on E1_TCG[7:0] for the external PMA. It is asserted when E1_TCG[7:0] contains valid data to be transmitted. TBI mode: Transmit Code Group bit 8. Synchronous to GTX_CLK. E1_TCG[9] 1 TO MII mode: Transmit Error. This signal is synchronous to E1_TX_CLK and provides error indications. G/MII mode: Transmit Error. This signal is synchronous to GTX_CLK and provides error indications. TBI mode: Transmit Code Group bit 9. Synchronous to GTX_CLK. E1_RCG[3:0] 4 I All modes: Receive Code Group Lower Nibble. This is a group of 4 signals, sourced from an external PMA, that contains data aligned on nibble boundaries and are driven synchronous to the E1_CLK. E1_RCG[3] is the most significant bit and E1_RCG[0] is the least significant bit. E1_RCG[7:4] 4 I G/MII mode: Receive Code Group Upper Nibble This is a group of 4 signals, sourced from an external PMA, that contains data aligned on byte boundaries and are driven synchronous to the E1_CLK. E1_RCG[7] is most significant bit. E1_RCG[8] 1 I G/MII modes: Receive Data Valid. This indicates that the external PMA is presenting recovered and decoded nibbles on the E1_RCG signals, and that E1_CLK is synchronous to the recovered data in 100 Mb/s and 1000 Mb/s operation. This signal encompasses the frame, starting with the Start-of-Frame delimiter (JK) and excluding any End-of-Frame delimiter (TR). E1_RCG[9] 1 I G/MII modes: Receive Error. This signal is synchronous to E1_CLK/E1_PMA_CLK0 and provides media error indications. E1_PCRS_SDET 1 I TBI mode: Receive Code Group Upper Nibble. TBI Mode: Transmit Code Group bit 8. TBI mode: Transmit Code Group bit 9. G/MII modes: PHY Carrier Sense indication. TBI mode: Indicates signals detected. E1_PCOL_RBCM 1 IO G/MII modes: PHY Collision Input. TBI mode: Receive Byte Clock mode output. When low the E1_PMA_CLK0 and E1_PMA_CLK1 are active as half rate clocks. When high the E1_PMA_CLK0 is active as a 125 MHz clock input. E1_ECMDT 1 TO TBI mode: Enable Comma Detect. Enables SERDES to perform code group alignment upon detection of comma. E1_EWRAP 1 TO TBI mode: Enable Wrap. Enables SERDES to loop transmit signals to receive (Loopback). E1_PRBSEN 1 TO TBI mode: PRBS Enable. Used to enable PRBS test mode inside TBI SERDES devices. E1_PRBS_PASS 1 I Datasheet TBI mode: PRBS Pass indicator input (high = pass). 23 Intel® GW80314 I/O Companion Chip Package Information Table 6. GigE Signals (Sheet 3 of 3) Pin Name E1_RXCLK/ Count Pin Type 1 I E1_PMA_CLK0 Description G/MII modes: Receive Clock from PMA. TBI mode: PMA Receive Clock 0 or 125 MHz Receive Clock depending on state of RBCMODE. E1_TXCLK/ 1 I E1_PMA_CLK1 G/MII mode: 2.5 MHz or 25 MHz Transmit Clock. TBI mode: PMA Receive Clock 1. Management interface MDC 1 O Management Data Clock (2.5 MHz by 802.3 Specification.) MDIO 1 IO Management Data I/O Bidirectional Pin. Gigabit Clocks REF125M 1 I All Modes: 125 MHz reference clock input. GTX_CLK 1 O All Modes: 125 MHz transmit clock output. GigE Pin Count 60 3.1.5 Peripheral Bus Interface Signals This section describes signals for the GW80314 Peripheral Bus. Signals in this group are 3.3 V LVTTL compatible. Table 7. Peripheral Bus Interface Signals Pin Name Count Pin Type PBI_AD[31:0] 32 IO Address/Data Bus. PBI_OE# 1 O Output Enable. PBI_CS#[3:0] 4 O Chip Selects: Active low signal indicating that an external device has been selected for access. PBI_LE 1 IO Latch Enable: Address latch signal to indicate when addresses are valid on the PBI_AD bus. PBI_RDY# 1 I Ready Input: In handshake mode, indicates that external device is ready to commence transfer. PBI_RW 1 O Read/Write Enable: Low indicates a write access is underway. PBI Pin Count 40 24 Description Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.1.6 P1 PCI/X Signals This section describes the GW80314 PCI/X signals on the P1 PCI/X bus. Table 8. P1 PCI/X Signals (Sheet 1 of 2) Pin Name Count Pin Type Description P1_ACK64# 1 IO Acknowledge 64-bit transaction: Active low signal asserted by a target to indicate its willingness to participate in a 64-bit transaction. Driven by the target; sampled by the master. Rescinded by the target at the end of the transaction. P1_AD[63:0] 64 IO Address/Data Bus: Address and data are multiplexed over these pins providing a 64-bit address/data bus. P1_CBE#[7:0] 8 IO Bus Command and Byte Enable Lines: Command and byte enable information is multiplexed over all eight CBE lines. P1_CLK_IN 1 I PCI Input Clock: Clock In for the PCI/X Port 1 interface used to generate fixed timing parameters. P1_CLK_IN can operate between 25 and 133 MHz P1_CLK_OUT 1 O PCI Output Clock: Clock out for the PCI/X Port 1 interface. This is a valid clock output only when this interface is used as the controlling resource. P1_DEVSEL# 1 IO Device Select: An active low indication from an agent that is the target of the current transaction. Driven by the target; sampled by the master. Rescinded by the target at the end of the transaction. P1_FRAME# 1 IO Cycle Frame for PCI/X Bus: An active low indication from the current bus master of the beginning and end of a transaction. Driven by the bus master; sampled by the selected target. Rescinded by the bus master at the end of the transaction. P1_GNT#[1] 1 IO Grant: This is an input when an external arbiter is used and an output when the internal arbiter is used. As an input it is used by the external arbiter to grant the bus to the GW80314. As an output it is used by the internal arbiter to grant the bus to an external master. P1_GNT#[7:2] 6 TO Grant: These are used by the internal arbiter to grant the bus to an external master P1_IDSEL 1 I Initialization Device Select: Used as a chip select during Configuration 0 read and write transactions P1_INTA# 1 IO(OD) Interrupt A: An active low level sensitive indication of an interrupt. P1_INTB# 1 IO(OD) Interrupt B: An active low level sensitive indication of an interrupt. P1_INTC# 1 IO(OD) Interrupt C: An active low level sensitive indication of an interrupt. P1_INTD# 1 IO(OD) Interrupt B: An active low level sensitive indication of an interrupt. P1_IRDY# 1 IO Initiator Ready: An active low indication of the current bus master’s ability to complete the current data phase. Driven by the master; sampled by the selected target. P1_M66EN 1 I PCI 66 MHz Enable: Controls the 33/66 MHz clock generation when in PCI mode. When pulled low, it configures the PCI Port 1 PLL clock output for 33 MHz. When pulled high, it configures the PCI Port 1 PLL for 66 MHz operation. P1_PAR 1 IO Parity: Carries even parity across P1_AD[31:0] and P1_C/BE[3:0]. Driven by the master for the address and write data phases. Driven by the target for read data phases. P1_PAR64 1 IO Parity upper dword: Carries even parity across P1_AD[63:32] and P1_CBE[7:4]. Driven by the master for address and write data phases. Driven by the target for read data phases. P1_PCIXCAP[1:0] 2 I PCI/X Capability pin: Indicates the speed and mode of PCI/X interface when configured as the control resource (P1_RSTDIR = 1). P1_PERR# 1 IO Datasheet Parity Error: An active low indication of a data parity error. Driven by the target receiving data. Rescinded by that agent at the end of the transaction. 25 Intel® GW80314 I/O Companion Chip Package Information Table 8. P1 PCI/X Signals (Sheet 2 of 2) Pin Name Count Pin Type Description P1_PME# 1 IO(OD) P1_REQ#[1] 1 IO P1_REQ#[7:2] 6 I P1_REQ64# 1 IO Request 64-bit transfer: An active low indication from the current master of its choice to perform 64-bit transactions. Rescinded by the bus master at the end of the transaction. P1_RST# 1 IO Reset: Asynchronous active low reset for PCI/X interface. When the interface is the secondary side in a transparent bridge, this pin is configured as an output. P1_RSTDIR 1 I Power Management (optional interrupt pin) Bus Request: This is an output when an external arbiter is used and an input when the internal arbiter is used. As an input it is used by an external master to request the bus. As an output it is used by the GW80314 to request the bus. Bus Request: These signals are used by external masters to request the PCI/X bus. Reset Direction: 0 = P1_RST# is input and P1_CLK_OUT is driven to 0. 1 = P1_RST# is output and P1_CLK_OUT is generated (PCI Port 1 is controlling resource). P1_SERR# 1 OD System Error: An active low indication of address parity error. P1_STOP# 1 IO Stop: An active low indication from the target of its desire to stop the current transition. Sampled by the master; rescinded by the target at the end of the transaction P1_TRDY# 1 IO Target Ready: An active low indication of the current target’s ability to complete the data phase. Driven by the target; sampled by the current bus master. Rescinded by the target at the end of the transaction. P1 PCI/X Pin Count 26 110 Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.1.7 P2 PCI/X Signals This section describes the GW80314 PCI/X signals on P2 PCI/X bus. Table 9. P2 PCI/X Signals (Sheet 1 of 2) Pin Name Count Pin Type Description P2_ACK64# 1 IO Acknowledge 64-bit transaction: Active low signal asserted by a target to indicate its willingness to participate in a 64-bit transaction. Driven by the target; sampled by the master. Rescinded by the target at the end of the transaction. P2_AD[63:0] 64 IO Address/Data Bus: Address and data are multiplexed over these pins providing a 64-bit address/data bus. P2_CBE#[7:0] 8 IO Bus Command and Byte Enable Lines: Command and byte enable information is multiplexed over all eight CBE lines. P2_CLK_IN 1 I PCI Input Clock: Clock input for the PCI/X Port 1 interface used to generate fixed timing parameters. P2_CLK_IN can operate between 25 and 133 MHz. P2_CLK_OUT 1 O PCI Output Clock: Clock out for the PCI/X Port 2 interface. This is a valid clock output only when this interface is used as the controlling resource. P2_DEVSEL# 1 IO Device Select: An active low indication from an agent that is the target of the current transaction. Driven by the target; sampled by the master. Rescinded by the target at the end of the transaction. P2_FRAME# 1 IO Cycle Frame for PCI/X Bus: An active low indication from the current bus master of the beginning and end of a transaction. Driven by the bus master; sampled by the selected target. Rescinded by the bus master at the end of the transaction. P2_GNT#[1] 1 IO Grant: This is an input when an external arbiter is used and an output when the internal arbiter is used. As an input it is used by the external arbiter to grant the bus to the GW80314. As an output it is used by the internal arbiter to grant the bus to an external master. P2_GNT#[7:2] 6 TO Grant: These are used by the internal arbiter to grant the bus to an external master. P2_IDSEL 1 I Initialization Device Select: Used as a chip select during Configuration read and write transactions. P2_INTA# 1 IO(OD) Interrupt A: An active low level sensitive indication of an interrupt. P2_INTB# 1 IO(OD) Interrupt B: An active low level sensitive indication of an interrupt. P2_INTC# 1 IO(OD) Interrupt C: An active low level sensitive indication of an interrupt. P2_INTD# 1 IO(OD) Interrupt D: An active low level sensitive indication of an interrupt. P2_IRDY# 1 IO Initiator Ready: An active low indication of the current bus master’s ability to complete the current data phase. Driven by the master; sampled by the selected target. P2_M66EN 1 I PCI 66 MHz Enable: Controls 33/66 MHz clock generation when in PCI mode. When pulled low, it configures the PCI Port 2 PLL clock output for 33MHz operation. When pulled high, it configures the PCI Port 2 PLL clock output for 66MHz operation. P2_PAR 1 IO Parity: Carries even parity across P2_AD[31:0] and P2_C/BE[3:0]. Driven by the master for the address and write data phases. Driven by the target for read data phases. P2_PAR64 1 IO Parity upper dword: Carries even parity across P2_AD[63:32] and P2_CBE[7:4]. Driven by the master for address and write data phases. Driven by the target for read data phases. P2_PCIXCAP[1:0] 2 I PCI/X Capability pin: Indicates the speed and mode of PCI/X interface when configured as the control resource (P2_RSTDIR = 1). P2_PERR# 1 IO Datasheet Parity Error: An active low indication of a data parity error. Driven by the target receiving data. Rescinded by that agent at the end of the transaction. 27 Intel® GW80314 I/O Companion Chip Package Information Table 9. P2 PCI/X Signals (Sheet 2 of 2) Pin Name Count Pin Type Description P2_PME# 1 IO(OD) P2_REQ#[1] 1 IO P2_REQ#[7:2] 6 I P2_REQ64# 1 IO Request 64-bit transfer: An active low indication from the current master of its choice to perform 64-bit transactions. Rescinded by the bus master at the end of the transaction. P2_RST# 1 IO Reset: Asynchronous active low reset for PCI/X interface P2_RSTDIR 1 I Power Management (optional interrupt pin). Bus Request: This is an output when an external arbiter is used and an input when the internal arbiter is used. As an input it is used by an external master to request the bus. As an output it is used by the GW80314 to request the bus. Bus Request: These signals are used by external masters to request the PCI/X bus. Reset Direction: 0 = P2_RST# is input and P2_CLK_OUT is driven to 0. 1 = P2_RST# is output and P2_CLK_OUT is generated (PCI Port 2 is controlling resource). P2_SERR# 1 O(OD) P2_STOP# 1 IO Stop: An active low indication from the target of its desire to stop the current transition. Sampled by the master; rescinded by the target at the end of the transaction P2_TRDY# 1 IO Target Ready: An active low indication of the current target’s ability to complete the data phase. Driven by the target; sampled by the current bus master. Rescinded by the target at the end of the transaction. P2 PCI/X Pin Count 28 System Error: An active low indication of address parity error. 110 Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.1.8 P1 Hot Swap Signals This section describes the GW80314 PCI Port 1 Hot Swap signals. Table 10. P1 Hot Swap Signals Pin Name P1_ENUM# Count Pin Type 1 IO(OD) Description System Enumeration: Used to notify system host that a board has been freshly inserted or extracted from the system. P1_ES 1 I Ejector Switch: Indicates the status of Hot Swap board ejector switch. P1_HEALTHY# 1 I Board healthy - In a CPCI Hot Swap environment, indicates the board is ready to be released from reset and become an active agent on the PCI bus. Negation of P1_HEALTHY# resets all GW80314 resources, including PLLs. Additionally, all GW80314 outputs are tristated when this pin is negated; some inputs and bidirectionals are inhibited. P1_HS_64EN# 1 I PCI/X 64-bit Enable: An active low indication that a CompactPCI Hot Swap board is in a 64-bit slot. P1_LED# 1 OD P1 Hot Swap Pin Count 5 3.1.9 LED: Controls the Hot Swap status LED. P2 Hot Swap Signals This section describes the GW80314 PCI Port 2 Hot Swap signals. Table 11. P2 Hot Swap Signals Pin Name P2_ENUM# Count Pin Type 1 IO(OD) Description System Enumeration: Used to notify system host that a board has been freshly inserted or extracted from the system. P2_ES 1 I Ejector Switch: Indicates the status of Hot Swap board ejector switch. P2_HEALTHY# 1 I Board healthy - In a CPCI Hot Swap environment, indicates the board is ready to be released from reset and become an active agent on the PCI bus. Negation of P1_HEALTHY# resets all GW80314 resources, including PLLs. Additionally, all GW80314 outputs are tristated when this pin is negated; some inputs and bidirectionals are inhibited. P2_HS_64EN# 1 I PCI/X 64-bit Enable: An active low indication that a CompactPCI Hot Swap board is in a 64-bit slot. P2_LED# 1 O LED: Controls the Hot Swap status LED. P2 Hot Swap Pin Count 5 3.1.10 Interrupt Controller Signals This section describes signals for the GW80314 interrupt controller. Signals in this group are 3.3 V LVTTL compatible. Table 12. Interrupt Controller Signals Pin Name Count Pin Type 8 IO Inputs representing external, incoming interrupts. INT[7:0] 8 I Inputs representing external, incoming interrupts. Interrupt Total 16 INT[15:8] Datasheet Description 29 Intel® GW80314 I/O Companion Chip Package Information 3.1.11 Dual UART Signals This section describes signals for the GW80314 dual UARTs. Signals in this group are 3.3 V LVTTL compatible. On reset, GPIO[7:0] are GW80314 outputs driven to the value 0x88h and remain driven until firmware configures. Table 13. UART Signals Pin Name Count Pin Type Description 1 I U0_TX 1 O Data Out: Serial output data U0_CTS# 1 I Clear to Send: When low, this indicates that the MODEM or data set is ready to exchange data. U0_RTS# 1 O Request to Send: When low, this informs the MODEM or data set that the UART is ready to exchange data. U0_DSR#/ GPIO[6] 1 IO Data Set Ready Output: When low, this indicates that the MODEM or data set is ready to establish the communications link with the UART. U0_DTR#/ GPIO[7] 1 IO U0_DCD#/ GPIO[4] 1 IO U0_RI#/ GPIO[5] 1 IO UART0 U0_RX Data In: Serial input data This pin is multiplexed with GPIO[6]. Data Terminal Ready Output: When low, this informs the MODEM or data set that the UART is ready to establish a communications link. This pin is multiplexed with GPIO[7]. Data Carrier Detect Output: When low, this indicates that the data carrier has been detected by the MODEM or data set. This pin is multiplexed with GPIO[4]. Ring Indicator Output: When low, this indicates that a telephone ringing signal has been received by the MODEM or data set. This pin is multiplexed with GPIO[5]. UART1 U1_RX 1 I Data In: Serial input data U1_TX 1 O Data Out: Serial output data U1_CTS# 1 I Clear to Send: When low, this indicates that the MODEM or data set is ready to exchange data. U1_RTS# 1 O Request to Send: When low, this informs the MODEM or data set that the UART is ready to exchange data. U1_DSR#/ GPIO[2] 1 IO Data Set Ready Output: When low, this indicates that the MODEM or data set is ready to establish the communications link with the UART. U1_DTR#/ GPIO[3] 1 IO This pin is multiplexed with GPIO[2]. Data Terminal Ready Output: When low, this informs the MODEM or data set that the UART is ready to establish a communications link. This pin is multiplexed with GPIO[3]. U1_DCD#/ GPIO[0] 1 IO U1_RI#/ GPIO[1] 1 IO Data Carrier Detect Output: When low, this indicates that the data carrier has been detected by the MODEM or data set. This pin is multiplexed with GPIO[0]. Ring Indicator Output: When low, this indicates that a telephone ringing signal has been received by the MODEM or data set. This pin is multiplexed with GPIO[1]. UART Pin Count 30 16 Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.1.12 I2C Signals This section describes the GW80314 I2C signals, which are 3.3 V LVTTL compatible. Table 14. I2C Signals Pin Name Count Pin Type I2C_SCLK 1 OD I2C_SDA 1 IO(OD) I2C Pin Count 2 3.1.13 Description 2 I C Serial Clock Output - EEPROM Serial clock. Internally Pulled High. Serial data - EEPROM Serial data line. This signal is internally Pulled High. Miscellaneous Signals This section describes the GW80314 miscellaneous signals which are 3.3 V LVTTL compatible. Table 15. Miscellaneous Signals Pin Name Count Pin Type Description PWRUP_PBI_BSWP (Configuration Pin) 1 I Used during power-up to determine whether the PBI interface is operating in Intel XScale® microprocessor Byte Swap Mode (1 - Enable Byte Swap Mode). PWRUP_P1_ARB (Configuration Pin) 1 I Used during power-up to determine whether the PCI1 interface uses the internal GW80314 PCI1 Arbiter (1 - Internal Arbiter Selected). PWRUP_P1_PRIM 1 I Transparent Mode: Always strap low - 0. Embedded Mode: Used in conjunction with P1_RSTDIR to determine the source of chip reset. PWRUP_P2_ARB (Configuration Pin) 1 I Used during power-up to determine whether the PCI2 interface uses the internal GW80314 PCI2 Arbiter (1 - Internal Arbiter Selected). PWRUP_P2_PRIM 1 I Transparent Mode: Always strap low - 0. Embedded Mode: Used in conjunction with P2_RSTDIR to determine the source of chip reset. PWRUP_TRANS (Configuration Pin) 1 I Used during power-up to determine whether the P2P bridge is operating in embedded or transparent mode. 0 = Embedded Mode Operation 1 = Transparent Mode Operation PWRUP_XS_SWRST (Configuration Pin) 1 I Controls state of Software Reset inside Intel XScale® microprocessor CIU block (1 - Intel XScale® interface held in reset until cleared by processor). PWRUP_P1_SWRST (Configuration Pin) 1 I Controls state of Software Reset inside P1 PCI/X block (1 - PCI1 interface held in reset until cleared by processor). PWRUP_P2_SWRST (Configuration Pin) 1 I Controls state of Software Reset inside P2 PCI/X block (1 - PCI2 interface held in reset until cleared by processor). PWRUP_P1_BYP (Configuration Pin) 1 I Used during power up to enable P1PCI PLL bypass mode (1 - PCI1 PLL is bypassed). PWRUP_P2_BYP (Configuration Pin) 1 I Used during power up to enable P2 PCI PLL bypass mode (1 - PCI2 PLL is bypassed). SFN_CLK 1 I Fabric Clock input. SFN_RST# 1 I Fabric Gasket Reset and General Chip Reset. SRAM_SKU 1 I The SRAM_SKU pin (AW33) is an input-only pin with an internal pull-up. When this pin is tied low, the SDRAM inside the Intel® GW80314 I/O Companion Chip is inaccessible. “No SRAM” skew parts must tie this pin low. When this pin is left floating, the device ID incorrectly indicates that SDRAM is usable. NC_(Location) 5 Misc. Pin Count 19 Datasheet No Connect Pins (NC_J35, NC_K34, NC_L6, NC_M33, NC_N6) 31 Intel® GW80314 I/O Companion Chip Package Information 3.1.14 Test Signals This section describes the GW80314 signals used to support silicon or board-level testing. Signals in this section are 3.3 V LVTTL compatible. Table 16. Test Signals Count Pin Type Description TCK Pin Name 1 I Test Clock (JTAG): Used to clock state information and data into and out of the device during boundary scan TMS 1 I(PU) Test Mode Select (JTAG): Used to control the state of the TAP controller. Internally Pulled High. TDI 1 I(PU) Test Data Input (JTAG): Used to shift data and instruction into boundary scan. Internally Pulled High. TDO 1 TO TRST# 1 I(PU) Test Pin Count 5 Test Data Output (JTAG): Used to shift data and instruction out of boundary scan Test Reset (JTAG): Asynchronous reset for the JTAG controller. This pin must be asserted low during the power-up reset sequence to ensure that the Boundary Scan Register elements are configured for normal system operation. Customers must assert TRST# concurrently with SF_RST or P1_RST or P2_RST (depending on power-up configurations) as part of the power-up reset sequence. Internally pulled high. Pull-down resistor when JTAG is not used. 3.1.15 PLL Power Signals This section describes the GW80314 signals used to support on board PLLs for the various interfaces. Each AVCC pin supplies 3.3 V (typical) to each interface. Table 17. PLL Power Signals Count Pin Type XS_PLL_AVCC (VCC33) Pin Name 1 S Analog Power pin for Intel XScale® microprocessor Interface PLL. Description XS_PLL_AVSS 1 S Analog Ground pin for Intel XScale® microprocessor Interface PLL. Analog Power pin for DDR SDRAM Interface PLL. SD_PLL_AVCC (VCC33) 1 S SD_PLL_AVSS 1 S Analog Ground pin for DDR SDRAM Interface PLL. P1_PLL_AVCC (VCC33) 1 S Analog Power pin for PCI1 Interface PLL. P1_PLL_AVSS 1 S Analog Ground pin for PCI1 Interface PLL. P2_PLL_AVCC (VCC33) 1 S Analog Power pin for PCI2 Interface PLL. P2_PLL_AVSS 1 S Analog Ground pin for PCI2 Interface PLL. PLL Supply Count 8 32 Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.1.16 Power Supplies This section describes the GW80314 power supplies used to support both I/O interfaces and Core elements. Table 18. Power Supplies Pin Name Pin Type / Count Description VCC_CORE (VCC12) S / 75 VCC_PC (VCC33) S / 56 I/O Power Supply for PCI Interface. VCC_SD (VCC25) S / 26 I/O Power Supply for DDR SDRAM Interface. VCC_XS (VCC33) S / 28 I/O Power Supply for Intel XScale® microprocessor Interface. VSS_CORE S / 73 Core Ground Supply for the GW80314. VSS_IO S / 119 I/O Ground Supply. VCC Pin Count Total 185 VSS Pin Count Total 192 Datasheet Core Power Supply for the GW80314. 33 Intel® GW80314 I/O Companion Chip Package Information 3.1.17 Signal Pin Mode Behavior This section describes the GW80314 signal pin mode behavior during reset, normal operation, 32-bit PCI mode, and error correction mode. Table 19. Signal Pin Mode Behavior (Sheet 1 of 7) Pin Name Reset Norm Hold 32-Bit PCI 32-Bit Mem ECC Off XS_A[15:0] VI VI – – – – XS_ABORT 0 VO – – – – XS_BE[7:0] 0 VB – – – – XS_CLK 0 VB – – – – XS_CWF / DBuswidth 0 VO – – – – XS_DQ[63:0] 0 VB – – – – XS_DVALID[1:0] 0 VO – – – – XS_HOLD[1:0] 0 VO – – – – XS_HLDA[1:0] VI VI – – – – XS_ECC[7:0] 0 VB – – – – XS_FIQ[1] / PWRUP_SD_BYP L VO 1 – – – XS_FIQ[0] 0 VO – – – – XS_IRQ[1]/PWRUP_XS_BYP L VO 1 – – – XS_IRQ[0]/PWRUP_FADJ L VO 1 – – – XS_LEN[2:0] VI VI – – – – XS_RESET# 0 VO – – – – SD_A[13:0] 0* VO – – – – SD_BA[1:0] 0* VO – – – – SD_CAS# 1* VO – – – – SD_CLK[3:0] VO VO – – – – SD_CLK#[3:0] VO VO – – – – SD_CLKEN 0* VO – – – – SD_CKFBI VI VI – – – – SD_CKFBO VO VO – – – – SD_CS#[7:0] 1* VO – – – – SD_DQ[63:32] Z* VB – – ID – NOTES: 1. 1 = driven to VCC 2. Z = output disabled (floats) 3. 0 = driven to VSS 4. VB = acts like a valid bidirectional pin 5. ID = input is disabled 6. VO = a valid output level is driven 7. VOM = a valid output level is driven (PCI Master) 8. VOT = a valid output level is driven (PCI Target) 9. H = pulled up to VCC 10.L = pulled down to VSS 11. VI = need to drive a valid input level 12.VIM = need to drive a valid input level (PCI Master) 13.VIT = need to drive a valid input level (PCI Target) 14.PD = pull-up disabled 15.* = after power fail sequence completes 34 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 19. Signal Pin Mode Behavior (Sheet 2 of 7) Pin Name Reset Norm Hold 32-Bit PCI 32-Bit Mem ECC Off SD_DQ[31:0] Z* VB – – – – SD_DQS[17] Z* VB – – – ID SD_DQS/DM[16:9] Z* VB – – ID – SD_DQS[8] Z* VB – – – ID SD_DQS[7:0] Z* VB – – – – SD_ECC Z* VB – – – ID SD_I2C_CLK H VO – – – – SD_I2C_SDA H VB – – – – SD_RAS# 1* VO – – – – SD_WE# 1* VO – – – – SD_PWRDELAY VI VI – – – – E0_TCG[9:0] VO VO – – – – E0_RCG[9:0] VI VI – – – – E0_PCRS_SDET VI VI – – – – E0_PCOL_RBCM Z VB – – – – E0_ECMDT Z VO – – – – E0_EWRAP Z VO – – – – E0_PRBSEN Z VO – – – – E0_PRBS_PASS VI VI – – – – E0_RXCLK/E0_PMA_CLK0 VI VI – – – – E0_TXCLK/E0_PMA_CLK1 VI VI – – – – E1_TCG[9:0] VO VO – – – – E1_RCG[9:0] VI VI – – – – E1_PCRS_SDET VI VI – – – – E1_PCOL_RBCM Z VB – – – – E1_ECMDT Z VO – – – – E1_EWRAP Z VO – – – – E1_PRBSEN Z VO – – – – E1_PRBS_PASS VI VI – – – – E1_RXCLK/E1_PMA_CLK0 VI VI – – – – NOTES: 1. 1 = driven to VCC 2. Z = output disabled (floats) 3. 0 = driven to VSS 4. VB = acts like a valid bidirectional pin 5. ID = input is disabled 6. VO = a valid output level is driven 7. VOM = a valid output level is driven (PCI Master) 8. VOT = a valid output level is driven (PCI Target) 9. H = pulled up to VCC 10.L = pulled down to VSS 11. VI = need to drive a valid input level 12.VIM = need to drive a valid input level (PCI Master) 13.VIT = need to drive a valid input level (PCI Target) 14.PD = pull-up disabled 15.* = after power fail sequence completes Datasheet 35 Intel® GW80314 I/O Companion Chip Package Information Table 19. Signal Pin Mode Behavior (Sheet 3 of 7) Pin Name Reset Norm Hold 32-Bit PCI 32-Bit Mem ECC Off VI VI – – – – MDC 0 VO – – – – MDIO Z VB – – – – REF125M VI VI – – – – GTX_CLK 0 VO – – – – PBI_AD[31:0] 0 VB Z – – – PBI_OE# 1 VO – – – – E1_TXCLK/E1_PMA_CLK1 PBI_CS#[3:0] 1 VO – – – – PBI_LE 0 VO Z – – – PBI_RDY# VI VI – – – – PBI_RW 0 VO Z – – – P1_ACK64# Z VB – – – – P1_AD[63:32] Z VB – H – – P1_AD[31:0] Z VB – – – – P1_CBE#[7:4] Z VB – H – – P1_CBE#[3:0] Z VB – – – – P1_CLK_IN VI VI – – – – P1_CLK_OUT 0 VO – – – – P1_DEVSEL# Z VB – – – – P1_FRAME# Z VB – – – – P1_GNT#[1] Z VB – – – – P1_GNT#[7:2] Z VO – – – – P1_IDSEL VI VI – – – – P1_INTA# Z VO – – – – P1_INTB# Z VO – – – – P1_INTC# Z VO – – – – P1_INTD# Z VO – – – – P1_IRDY# Z VB – – – – P1_M66EN VI VI – – – – P1_PAR Z VB – – – – NOTES: 1. 1 = driven to VCC 2. Z = output disabled (floats) 3. 0 = driven to VSS 4. VB = acts like a valid bidirectional pin 5. ID = input is disabled 6. VO = a valid output level is driven 7. VOM = a valid output level is driven (PCI Master) 8. VOT = a valid output level is driven (PCI Target) 9. H = pulled up to VCC 10.L = pulled down to VSS 11. VI = need to drive a valid input level 12.VIM = need to drive a valid input level (PCI Master) 13.VIT = need to drive a valid input level (PCI Target) 14.PD = pull-up disabled 15.* = after power fail sequence completes 36 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 19. Signal Pin Mode Behavior (Sheet 4 of 7) Pin Name Reset Norm Hold 32-Bit PCI 32-Bit Mem ECC Off P1_PAR64 Z VB – H – – P1_PCIXCAP[1:0] VI VI – – – – P1_PERR# Z VB – – – – P1_PME# Z VB – – – – P1_REQ#[1] Z VB – – – – P1_REQ#[7:2] VI VI – – – – VOM/VIT VOM/VIT – – – – P1_RST# VB VB – – – – P1_RSTDIR VI VI – – – – P1_REQ64# P1_SERR# Z VB – – – – P1_STOP# VOT/VIM VOT/VIM – – – – P1_TRDY# VOT/VIM VOT/VIM – – – – P2_ACK64# Z VB – – – – P2_AD[63:32] Z VB – H – – P2_AD[31:0] Z VB – – – – P2_CBE#[7:4] Z VB – H – – P2_CBE#[3:0 Z VB – – – – P2_CLK_IN VI VI – – – – P2_CLK_OUT 0 VO – – – – P2_DEVSEL# Z VB – – – – P2_FRAME# Z VB – – – – P2_GNT#[1] Z VB – – – – P2_GNT#[7:2] Z VO – – – – P2_IDSEL VI VI – – – – P2_INTA# Z VO – – – – P2_INTB# Z VO – – – – P2_INTC# Z VO – – – – P2_INTD# Z VO – – – – P2_IRDY# Z VB – – – – P2_M66EN VI VI – – – – NOTES: 1. 1 = driven to VCC 2. Z = output disabled (floats) 3. 0 = driven to VSS 4. VB = acts like a valid bidirectional pin 5. ID = input is disabled 6. VO = a valid output level is driven 7. VOM = a valid output level is driven (PCI Master) 8. VOT = a valid output level is driven (PCI Target) 9. H = pulled up to VCC 10.L = pulled down to VSS 11. VI = need to drive a valid input level 12.VIM = need to drive a valid input level (PCI Master) 13.VIT = need to drive a valid input level (PCI Target) 14.PD = pull-up disabled 15.* = after power fail sequence completes Datasheet 37 Intel® GW80314 I/O Companion Chip Package Information Table 19. Signal Pin Mode Behavior (Sheet 5 of 7) Pin Name Reset Norm Hold 32-Bit PCI 32-Bit Mem ECC Off Z VB – – – – P2_PAR64 Z VB – H – – P2_PCIXCAP[1:0] VI VI – – – – P2_PAR P2_PERR# Z VB – – – – P2_PME# Z VB – – – – P2_REQ#[1] Z VB – – – – P2_REQ#[7:2] VI VI – – – – VOM/VIT VOM/VIT – – – – P2_RST# P2_REQ64# VB VB – – – – P2_RSTDIR VI VI – – – – P2_SERR# Z VB – – – – P2_STOP# VOT/VIM VOT/VIM – – – – P2_TRDY# VOT/VIM VOT/VIM – – – – P1_ENUM# Z VB – – – – P1_ES VI VI – – – – P1_HEALTHY# VI VI – – – – P1_HS_64EN# VI VI – – – – P1_LED# Z VO – – – – P2_ENUM# Z VO – – – – P2_ES VI VI – – – – P2_HEALTHY# VI VI – – – – P2_HS_64EN# VI VI – – – – P2_LED# Z VO – – – – INT[15:8]/TM_MON[7:0] VI VB – – – – INT[7:0] VI VI – – – – U0_RX VI VI – – – – U0_TX 0 VO – – – – U0_CTS# VI VI – – – – U0_RTS# 1 VI – – – – U0_DSR#/GPIO[0] VI VB – – – – NOTES: 1. 1 = driven to VCC 2. Z = output disabled (floats) 3. 0 = driven to VSS 4. VB = acts like a valid bidirectional pin 5. ID = input is disabled 6. VO = a valid output level is driven 7. VOM = a valid output level is driven (PCI Master) 8. VOT = a valid output level is driven (PCI Target) 9. H = pulled up to VCC 10.L = pulled down to VSS 11. VI = need to drive a valid input level 12.VIM = need to drive a valid input level (PCI Master) 13.VIT = need to drive a valid input level (PCI Target) 14.PD = pull-up disabled 15.* = after power fail sequence completes 38 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 19. Signal Pin Mode Behavior (Sheet 6 of 7) Pin Name Reset Norm Hold 32-Bit PCI 32-Bit Mem ECC Off U0_DTR#/GPIO[1] VI VB – – – – U0_DCD#/GPIO[2] VI VB – – – – U0_RI#/GPIO[3] VI VB – – – – U1_RX VI VI – – – – U1_TX 0 VO – – – – U1_CTS# VI VI – – – – U1_RTS# 1 VI – – – – U1_DSR#/GPIO[4] VI VB – – – – U1_DTR#/GPIO[5] VI VB – – – – U1_DCD#/GPIO[6] VI VB – – – – U1_RI#/GPIO[7] VI VB – – – – I2C_SCLK H VO – – – – I2C_SDA H VB – – – – PWRUP_PBI_BSWP VI VI – – – – PWRUP_P1_ARB VI VI – – – – PWRUP_P1_PRIM VI VI – – – – PWRUP_P2_ARB VI VI – – – – PWRUP_P2_PRIM VI VI – – – – PWRUP_TRANS VI VI – – – – PWRUP_XS_SWRST VI VI – – – – PWRUP_P1_SWRST VI VI – – – – PWRUP_P2_SWRST VI VI – – – – PWRUP_P1_BYP VI VI – – – – PWRUP_P2_BYP VI VI – – – – SF_CLK VI VI – – – – NOTES: 1. 1 = driven to VCC 2. Z = output disabled (floats) 3. 0 = driven to VSS 4. VB = acts like a valid bidirectional pin 5. ID = input is disabled 6. VO = a valid output level is driven 7. VOM = a valid output level is driven (PCI Master) 8. VOT = a valid output level is driven (PCI Target) 9. H = pulled up to VCC 10.L = pulled down to VSS 11. VI = need to drive a valid input level 12.VIM = need to drive a valid input level (PCI Master) 13.VIT = need to drive a valid input level (PCI Target) 14.PD = pull-up disabled 15.* = after power fail sequence completes Datasheet 39 Intel® GW80314 I/O Companion Chip Package Information Table 19. Signal Pin Mode Behavior (Sheet 7 of 7) Pin Name Reset Norm Hold 32-Bit PCI 32-Bit Mem ECC Off SF_RST# VI VI – – – – TCK VI VI – – – – TMS H H – – – – TDI H H – – – – TDO Z VO – – – – TRST# H H – – – – NOTES: 1. 1 = driven to VCC 2. Z = output disabled (floats) 3. 0 = driven to VSS 4. VB = acts like a valid bidirectional pin 5. ID = input is disabled 6. VO = a valid output level is driven 7. VOM = a valid output level is driven (PCI Master) 8. VOT = a valid output level is driven (PCI Target) 9. H = pulled up to VCC 10.L = pulled down to VSS 11. VI = need to drive a valid input level 12.VIM = need to drive a valid input level (PCI Master) 13.VIT = need to drive a valid input level (PCI Target) 14.PD = pull-up disabled 15.* = after power fail sequence completes 40 Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.1.18 1025-Lead HSBGA (Heat Slug Ball Grid Array) Package Figure 2 shows the drawings for the 1025-lead HSBGA thermally enhanced package being used for the GW80314 device. Figure 2. 1025-Lead HSBGA Package Drawing ø0.10 M C ø0.25 M C A B ø0.50~ø0.70(1025X) PIN #1 CORNER 2 4 3 1 6 5 7 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 A A J L N R U W AA AC AE AG AJ AL AN AR AU AW E F G 1.00 G C H J K L M N P R T V Y 34.50 REF AB U 38.00 E B D 40.00 ± 0.20 C W AA AC AD AE AF AG AH AJ AK AL AM AN AP AR AT AU AV AW B D F H K M P T V Y AB AD AF AH AK AM AP AT AV –E– HEAT SLUG ø26.5~27.5 34.50 REF ø0.30 S C A S B S ø0.50 S C D S E S TOP VIEW 1.00 –B– 4.60*45º(4X) –D– 38.00 –A– 0.20(4X) 40.00 ± 0.20 Ball Pitch: Substrate Thickness: 1.00 Ball Diameter: 0.56 Mold Thickness: 0.60 1.17 0.20 C 30º TYP. 0.25 C 0.35 C –A– SEATING PLANE 0.56 REF 1.17 REF 0.40~0.60 2.23 ±0.13 SIDE VIEW B0957-02 Datasheet 41 Intel® GW80314 I/O Companion Chip Package Information Figure 3. Ball Map - Left Side - Top View Top View (Left Side) 1 2 3 4 5 6 A NB NB E0_ ECMDT E0_ TCG[5] E0_ TCG[3] SD_ DQ[63] SD_ DQS[6] B NB VSS_IO VSS_IO E0_ TCG[1] MDIO E0_ TCG[9] C E0_ RCG[3] VSS_IO VSS_IO E0_PMA_ CLK1 MDC D E0_PCOL _RBCM E0_T CG[7] E E0_ RCG[1] E0_ EWRAP E0_ TCG[4] E0_ TCG[0] E0_ PRBS_ PASS E0_ RCG[0] F E0_ RCG[4] E0_ RCG[5] E1_ TCG[5] E0_ RCG[6] E0_ VCC_PC RCG[2] G E0_ RCG[8] E0_ RCG[9] VSS_IO E1_ E0_PMA_ VCC_PC TCG[9] CLK0 H E0_ RCG[7] E1_ TCG[3 E1_ TCG[4] E1_ TCG[1] E1_ TCG[7] VCC_PC VCC_PC J E1_PMA_ E1_ E1_ CLK1 RCG[2 TCG[2] E1_ TCG[8] E1_ TCG[0] VCC_PC K E1_ TCG[6] E1_ EWRAP VSS_IO REF 125M E1_ RCG[5] L P2_ INTD# E1_ RCG[1] E1_ RCG[0] GTX _CLK M P2_ GNT#[1] N P2_ INTB# P P2_ AD[31 R T E0_PCRS VSS_IO _SDET 8 9 10 11 12 13 14 15 16 17 SD_ DQS[7] SD_ CLKEN SD_ DQ[57] SD_ DQ[46] SD_ DQ[43] VSS_IO SD_ CS#[0] SD_ CS#[1] SD_ CS#[2] SD_ CS#[3] SD_ WE# VSS_IO SD_ DQ[60] SD_ DQ[56] SD_ CAS# VSS_IO SD_ VREF SD_ DQ[62] VSS_IO SD_ BA[0] SD_ RAS# SD_ CLK[3] SD_ CLK#[3] E0_ SD_ PRBSEN DQS[15] SD_ DQ[58] SD_ DQ[53] SD_ DQ[49] SD_ DQ[48] SD_ DQ[35] SD_ DQ[38] SD_ DQS[14] SD_ DQS[4] SD_ DQ[37] SD_ DQ[32] SD_ DQ[52] SD_ DQ[54] SD_ DQ[55] SD_ DQ[50] SD_ DQ[51] SD_ DQ[39] SD_ VSS_IO DQS[13] SD_ DQ[33] VSS_IO VSS_IO E1_PCOL _RBCM VSS_IO SD_ DQ[59] SD_ DQS[16] VSS_IO SD_ DQ[47] SD_ DQS[5] SD_ DQ[34] SD_ DQ[45] SD_ DQ[44] VCC_ CORE E0_ VCC_SD VCC_SD VCC_SD TCG[6] SD_ DQ[61] SD_ DQ[42] SD_ DQ[41] VSS_IO SD_ DQ[40] SD_ECC [7] SD_ DQ[36] VCC_ CORE VCC_ CORE E0_ TCG[2] 7 E0_ TCG[8] 18 19 20 SD_ BA[1] SD_A[0] A VSS_IO SD_A[10] B SD_ECC SD_ECC [2] [3] SD_ DQS[8] C SD_ECC SD_ DQ[27] [6] VSS_IO D SD_ DQ[31] SD_ DQS[17] SD_ ECC[1] E VSS_IO SD_ DQ[30] SD_ DQS[3] F VCC_SD VCC_SD VCC_SD VCC_SD VCC_SD VCC_SD VCC_SD VCC_SD VCC_SD VCC_SD VCC_SD VCC_SD G VCC_ CORE VCC_ CORE VCC_ CORE NB NB NB NB NB NB NB NB NB NB H VCC_ CORE VCC_ CORE NB NB NB NB NB NB NB NB NB NB NB NB J VCC_PC VCC_ CORE VCC_ CORE NB NB NB NB NB NB NB NB NB NB NB NB K E1_ PRBSEN NC_L6 VCC _ CORE NB NB NB NB NB NB NB NB NB NB NB NB NB L E1_ RCG[7] E1_ PRBS_ PASS E1_ RCG[8] VSS_IO VCC_PC NB NB NB NB NB NB NB NB NB NB NB NB NB M NC_N6 VCC_PC NB NB NB NB NB NB NB NB NB NB NB NB NB N E1_ VCC_PC RCG[6] NB NB NB NB NB NB NB NB NB NB NB NB NB P P2_ AD[30] VSS_IO E1_ RCG[9] VCC_PC NB NB NB NB NB NB NB VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE R P2_ E1_PMA_ E1_ RCG[4] REQ#[1] CLK0 E1_ E1_ VSS_IO PCRS_ RCG[3] SDET P2_ P2_ RST# INTA# P2_ P2_ P2_ HEALTHY IDSEL AD[26] # P2_ P2_ P2_ PME# AD[27] AD[28] E1_ ECMDT P2_ AD[24] P2_ CLK_IN P2_PLL VCC_PC _AVSS NB NB NB NB NB NB NB VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE T U P2_ AD[21] VSS_IO P2_ INTC# P2_ IRDY# P2_ VSS_IO CLK_OUT VCC_PC NB NB NB NB NB NB NB VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE U V P2_ CBE#[3] P2_ CBE#[1] P2_ AD[25] P2_ AD[29] P2_ AD[23] NB NB NB NB NB NB NB VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VSS_ CORE VSS_ CORE V W P2_ AD[22] P2_ SERR# P2_ AD[20] P2_ AD[18] NB NB NB NB NB NB NB VSS_ CORE VCC_ CORE VSS_ CORE VSS_ CORE VSS_ CORE VSS_ CORE W Y P2_ CBE#[2] VSS_IO P2_ AD[19] P2_ FRAME# P2_PLL_ VCC_PC AVCC P2_ VSS_IO DEVSEL VCC_PC # P2_ P2_ AD[15] TRDY# VCC_PC NB NB NB NB NB NB NB VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VSS_ CORE VSS_ CORE Y AA P2_ AD[16] P2_ AD[17] P2_ PEER# P2_PAR P2_ RSTDIR P2_ STOP# VCC_PC NB NB NB NB NB NB NB VSS_ CORE VCC_ CORE VSS_ CORE VSS_ CORE VSS_ CORE VSS_ CORE AA AB P2_ ACK64# P2_ AD[12] P2_ AD[13] P2_ AD[9] VSS_IO P2_ AD[14] VCC_PC NB NB NB NB NB NB NB VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VSS_ CORE VSS_ CORE AB AC P2_ AD[10] P2_AD[3] P2_AD[8] VSS_IO P2_CBE_ [0]# P2_ AD[11] VCC_PC NB NB NB NB NB NB NB VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE AC P2_ P2_CBE_ AD P2_AD[5] M66EN P2_AD[6] P2_AD[4] [7]# P2_AD[7] VCC_PC NB NB NB NB NB NB NB VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE AD AE P2_ P2_REQ_ VSS_IO P2_AD[2] VCC_PC CBE#[6] P2_AD[1] P2_AD[0] [3]# NB NB NB NB NB NB NB VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE VSS_ CORE VCC_ CORE AE AF P2_ REQ#[4] P2_GNT_ P2_ P2_ VSS_IO P2_GNT_ [2]# [4]# REQ#[5] ENUM# VCC_PC NB NB NB NB NB NB NB NB NB NB NB NB NB AF AG P2_ CBE#[4] P2_ P2_GNT_ [3]# GNT#[5] AH P2_ AD[59] VSS_IO AJ AK P2_ AD[55] P2_ AD[50] AL P2_ AD[61] VSS_IO P2_ REQ#[2] VCC_PC NB NB NB NB NB NB NB NB NB NB NB NB NB AG P2_ AD[63] P2_ AD[62] P2_ AD[58] P2_ PAR64 VCC_PC NB NB NB NB NB NB NB NB NB NB NB NB NB AH P2_ AD[60] P2_ AD[56] VSS_IO NB NB NB NB NB NB NB NB NB NB NB NB AJ P2_ REQ64# P2_ AD[49] P2_ VCC_PC CBE#[5] P2_ AD[57] VCC_PC NB VSS_IO P2_ AD[53] P2_ AD[54] VCC_ CORE NB NB NB NB NB NB NB NB NB NB NB NB AK P2_ AD[46] P2_ AD[51] P2_ AD[44] P2_ AD[43] VSS_IO P2_ AD[52] VCC_PC VCC_ CORE NB NB NB NB NB NB NB NB NB NB NB NB AL AM P2_ AD[45] VSS_IO P2_ AD[47] P2_ AD[40] P2_ AD[39] P2_ AD[48] VCC_PC VCC_ CORE VCC_ CORE VCC_ CORE NB NB NB NB NB NB NB NB NB NB AM AN P2_ AD[37] P2_ AD[41] P2_ AD[35] P2_ LED# VSS_IO P2_ AD[42] VSS_IO VCC-PC AP P2_ AD[34] VSS_IO P2_ AD[38] P2_ AD[32] P2_ AD[33] P2_ AD[36] P1_ P1_PLL_ P1_PLL_ AVSS CLK_OUT AVCC AR AT AU AV AW P1_ P2_ P2_ P2_REQ_ P2_ GNT#[6] REQ#[7] [6]# GNT#[7] VSS_IO AD[29] P2_ P2_ P2_ P1_ HS_64EN PCIXCAP PCIXCAP VSS_IO P1_RST # GNT#[1] [0] # [1] P1_ P1_ HEALTHY P2_ES VSS_IO VSS_IO P1_IDSEL AD[28] # P1_ P1_ VSS_IO VSS_IO INTD# NB AD[27] VSS_IO VCC-PC VCC-PC VCC-PC VCC-PC VCC-PC VCC-PC VCC-PC VCC-PC VCC-PC VCC-PC VCC-PC VCC-PC AN P1_ ENUM# P1_ REQ#[4] P1_ PAR64 P1_ CBE#[5] P1_ AD[57] AP VSS_IO P1_AD[3] VSS_IO P1_ GNT#[4] VSS_IO P1_ AD[61] VSS_IO AR P1_ AD[15] P1_ P1_ P1_ P1_AD[9] P1_AD[8] P1_AD[4] REQ#[2] REQ#[5] CBE#[7] P1_ AD[62] P1_ AD[58] AT P1_ AD[12] P1_ AD[13] P1_ P1_ P1_AD[6] CBE#[0] GNT#[5] P1_AD[0] P1_ AD[63] P1_ GNT#[3] P1_ CBE#[4] P1_ AD[56] AU P1_ AD[17] VSS_IO P1_ M66EN VSS_IO P1_AD[1] VSS_IO P1_ GNT#[2] VSS_IO P1_ AD[60] VSS_IO P1_ AD[51] AV AW P1_ TRDY# P1_ STOP# P1_ AD[14] P1_ AD[11] P1_CLK _IN P1_ P1_ P1_ AD[23] DEVSEL# VSS_IO FRAME# VSS_IO P1_ RSTDIR P1_ AD[30] P1_ AD[24] P1_ IRDY# P1_ AD[18] P1_PAR P1_ INTC# P1_ AD[25] P1_ AD[20] P1_ AD[19] P1_CBE_ [1]# P1_ SERR# VSS_IO P1_ AD[7] P1_AD[2] NB NB P1_ REQ#[1] P1_ INTA# P1_ INTB# P1_ AD[21] P1_ AD[31] P1_ AD[26] P1_ PME# P1_ PERR# P1_ CBE#[3] P1_ AD[22] P1_ CBE#[2] P1_ AD[16] P1_ ACK64# P1_ AD[10] P1_AD[5] P1_ REQ#[3] P1_ CBE#[6] P1_ REQ64# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 B1044-02 42 Datasheet Intel® GW80314 I/O Companion Chip Package Information Figure 4. Ball Map - Right Side - Top View Top View (Right Side) "# "# "# "# "# "# "# " # "# "# "#& %! "#& "#& %! "# "# %! $"# $" # $"# $"# $" # $"# $"# $"# $"# $"# $"# $"# $"# %! $"# $"# %! $"# $"# %! $"# $"# "# "# $ "# $"# $"# $"# $"# $"# $"# $"# $"# %! %! "# $"# %! $"# $"# %! $"# $"# $"# % $" # % "#& "#& "#& "# "# %! "#& "#& %! ! % "# %! %! % $"# % "# % "# %! %! ' % "# % "# % "#& % " # %! % "# % "# % "# % "# % "# %! % "# % " # % "# %! % "# % "# ( ( % "#& % "# % % "#& % ( ( % "#& % "# %! % " % "# ! ! ( ( % "# % "# % "# % "# % "# %! ! ! ( ( % !& % " # ( $" # %! ! ( % & % "# ( $"# ( ( $"# ( %! ( $"# ( $"# ( $"# ( $"# ( % "# ( $"# ( $"# %! ( $"# ( % "# %! ( $"# ( $" # ( $"# ( $"# ( % "# % "# ( $"# ( $"# %! ( $"# ! ! ! ! ! ( ( $"# %! ( $"# ( $"# ( $"# ( $"# ! ! ! ! ! ( ( $"# ( $"# ( $"# ( $"# %! ( $"# ! ! ! ! ! ( ( $"# %! ( $"# ( $"# ( $"# ( $"# ! ! ! ! ! ( ( $" # ( $" # ( $"# ( $"# %! ( $"# ! ! ! ! ! ( ( $"# %! ( $"# ( $"# ( $"# ( $"# ! ! ! ! ! ( ( $"# ( $"# ( $"# ( $"# %! ( $"# ! ! ! ! ! ( ( $"# ( "# ( "# ! ! ! ! ! ( ( ( %"# "# ( "# ( "# %! ( "# ! ! ! ! ! ( ( "#& %! ( "# ( "# ( "# ( "# ! ! ! ! ! ( ( "# ( "# ( "# ( "# %! ( "# ! ! ! ! ! ( ( "# %! ( "# ( ( ( ! ( "# ( "# ( " # ( ( "# %! ( "# ( "# ( "# ( "# ( ( "# ( "# ( "# ( "# %! ( "# ( ( "# %! ( "# ( $"# ( $"# ( "# ! ( ( "# ( $"# ( $"# ( $"# %! ( $"# ! %! ( $" # ( $"# ( $"# ( $"# ! ! ! & & ( $"# ( $"# %! ( $" # & %! & ( $"# ( $"# ( $"# ( %$"# ( %$"# ! % "# ( ( %! %"# "# $"#& ! %"# %! %! ( ( & %! %! %"# %"# % ( & & %"# %"# % %! & % %"# %! %"# % %"# %"# %"# %"# %"# %" # %"# "# %"# "# " # "# "# %! "# "# "# "# & & % "#& "#& & & "# "# " # "# %! "# %! "# "# "# "# % "# "# "# %! $"#& %! %( "# %( ( % "# "# "# "# ( ( "# !"# ( %! !"# ( ( %$"# %$"# %& ( & %! %! & ( %! %! %"# % Datasheet 43 Intel® GW80314 I/O Companion Chip Package Information Table 20. 1025-Lead HSBGA Package — Alphabetical Ball Listing Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 1 of 30) 44 Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 2 of 30) Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 3 of 30) Ball Signal Name Ball Signal Name Ball Signal Name A3 E0_ECMDT A37 SD_CS#[6] B35 SD_CKFBO A4 E0_TCG[5] B2 VSS_IO B36 PBI_AD[29] A5 E0_TCG[3] B3 VSS_IO B37 VSS_IO A6 SD_DQ[63] B4 E0_TCG[1] B38 VSS_IO A7 SD_DQS[6] B5 MDIO C1 E0_RCG[3] A8 SD_VREF B6 E0_TCG[9] C2 VSS_IO A9 SD_DQS[7] B7 VSS_IO C3 VSS_IO A10 SD_DQ[57] B8 SD_DQ[62] C4 E0_PMA_CLK1 A11 SD_DQ[60] B9 SD_CLKEN C5 MDC A12 SD_DQ[46] B10 VSS_IO C6 E0_PRBSEN A13 SD_CAS# B11 SD_DQ[56] C7 SD_DQS[15] A14 SD_CS#[0] B12 SD_DQ[43] C8 SD_DQ[58] A15 SD_CS#[2] B13 VSS_IO C9 SD_DQ[53] A16 SD_WE# B14 SD_CS#[1] C10 SD_DQ[49] A17 SD_BA[0] B15 SD_CS#[3] C11 SD_DQ[48] A18 SD_CLK[3] B16 VSS_IO C12 SD_DQ[35] A19 SD_BA[1] B17 SD_RAS# C13 SD_DQ[38] A20 SD_A[0] B18 SD_CLK#[3] C14 SD_DQS[14] A21 SD_CLK[0] B19 VSS_IO C15 SD_DQS[4] A22 SD_A[1] B20 SD_A[10] C16 SD_DQ[37] A23 SD_CLK[1] B21 SD_CLK#[0] C17 SD_DQ[32] A24 SD_CLK[2] B22 VSS_IO C18 SD_ECC[3] A25 SD_A[2] B23 SD_CLK#[1] C19 SD_ECC[2] A26 SD_A[4] B24 SD_CLK#[2] C20 SD_DQS[8] A27 SD_A[5] B25 VSS_IO C21 SD_DQ[26] A28 SD_A[8] B26 SD_A[3] C22 SD_DQ[28] A29 SD_A[9] B27 SD_A[6] C23 SD_DQ[25] A30 SD_A[12] B28 VSS_IO C24 SD_DQ[11] A31 SD_DQ[1] B29 SD_A[7] C25 SD_DQ[18] A32 SD_I2C_SDA B30 SD_A[11] C26 SD_DQS[2] A33 SD_DQ[8] B31 VSS_IO C27 SD_DQ[21] A34 SD_CKFBI B32 SD_A[13] C28 SD_DQ[20] A35 SD_CS#[4] B33 SD_CS#[5] C29 SD_DQ[2] A36 SD_CS#[7] B34 VSS_IO C30 SD_DQ[6] Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 4 of 30) Ball Datasheet Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 5 of 30) Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 6 of 30) Signal Name Ball Signal Name Ball Signal Name C31 SD_DQS[9] D27 SD_DQS[10] E23 SD_DQ[19] C32 SD_I2C_CLK D28 SD_DQ[13] E24 SD_DQ[22] C33 SD_PWRDELAY D29 VSS_IO E25 SD_DQ[15] C34 SD_DQ[4] D30 SD_DQ[9] E26 SD_DQ[14] C35 PBI_AD[31] D31 SD_DQ[0] E27 SD_DQ[16] C36 PBI_AD[27] D32 SD_PLL_AVSS E28 SD_DQ[3] C37 VSS_IO D33 PBI_AD[4] E29 SD_DQS[0] C38 VSS_IO D34 PBI_CS#[3] E30 SD_DQ[7] C39 PBI_AD[24] D35 PBI_AD[28] E31 SD_DQ[5] D1 E0_PCOL_RBCM D36 VSS_IO E32 VSS_IO D2 E0_TCG[7] D37 PBI_AD[23] E33 PBI_AD[26] D3 E0_PCRS_SDET D38 PBI_AD[25] E34 PBI_AD[21] D4 VSS_IO D39 PBI_AD[19] E35 VSS_IO D5 E0_PRBS_PASS E1 E0_RCG[1] E36 PBI_AD[22] D6 E0_TCG[2] E2 E0_EWRAP E37 PBI_AD[18] D7 E0_TCG[8] E3 E0_TCG[4] E38 PBI_AD[20] D8 SD_DQ[52] E4 E0_TCG[0] E39 VSS_IO D9 SD_DQ[54] E5 E0_RCG[0] F1 E0_RCG[4] D10 SD_DQ[55] E6 VSS_IO F2 E0_RCG[5] D11 SD_DQ[50] E7 E1_PCOL_RBCM F3 E1_TCG[5] D12 SD_DQ[51] E8 VSS_IO F4 E0_RCG[6] D13 SD_DQ[39] E9 SD_DQ[59] F5 E0_RCG[2] D14 VSS_IO E10 SD_DQS[16] F6 VCC_PC D15 SD_DQS[13] E11 VSS_IO F7 VCC_CORE D16 SD_DQ[33] E12 SD_DQ[47] F8 E0_TCG[6] D17 VSS_IO E13 SD_DQS[5] F9 VCC_SD D18 SD_ECC[6] E14 SD_DQ[34] F10 VCC_SD D19 SD_DQ[27] E15 SD_DQ[45] F11 VCC_SD D20 VSS_IO E16 SD_DQ[44] F12 SD_DQ[61] D21 SD_DQS[12] E17 SD_ECC[7] F13 SD_DQ[42] D22 SD_DQ[29] E18 SD_DQ[31] F14 SD_DQ[41] D23 VSS_IO E19 SD_DQS[17] F15 VSS_IO D24 SD_DQ[24] E20 SD_ECC[1] F16 SD_DQ[40] D25 SD_DQ[10] E21 SD_ECC[5] F17 SD_DQ[36] D26 VSS_IO E22 SD_ECC[4] F18 VSS_IO 45 Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 7 of 30) Ball 46 Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 8 of 30) Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 9 of 30) Signal Name Ball Signal Name Ball Signal Name F19 SD_DQ[30] G15 VCC_SD H30 VCC_CORE F20 SD_DQS[3] G16 VCC_SD H31 VCC_CORE F21 VSS_IO G17 VCC_SD H32 VCC_CORE F22 SD_ECC[0] G18 VCC_SD H33 VCC_XS F23 SD_DQ[23] G19 VCC_SD H34 VCC_XS F24 VSS_IO G20 VCC_SD H35 PBI_AD[9] F25 SD_DQS[11] G21 VCC_SD H36 PBI_AD[10] F26 SD_DQ[17] G22 VCC_SD H37 PBI_AD[5] F27 VSS_IO G23 VCC_SD H38 PBI_AD[12] F28 SD_DQS[1] G24 VCC_SD H39 PBI_AD[11] F29 SD_DQ[12] G25 VCC_SD J1 E1_TCG[2] F30 VSS_IO G26 VCC_SD J2 E1_PMA_CLK1 F31 VCC_SD G27 VCC_SD J3 E1_RCG[2] F32 PBI_AD[30] G28 VCC_SD J4 E1_TCG[8] F33 VCC_XS G29 VCC_SD J5 E1_TCG[0] F34 VCC_XS G30 SD_PLL_AVCC J6 VCC_PC F35 PBI_CS#[0] G31 VCC_SD J7 VCC_CORE F36 PBI_AD[15] G32 PBI_LE J8 VCC_CORE F37 PBI_CS#[1] G33 VCC_XS J32 VCC_CORE F38 PBI_RW G34 VCC_XS J33 VCC_XS F39 PBI_AD[17] G35 PBI_CS#[2] J34 VCC_XS G1 E0_RCG[8] G36 PBI_AD[14] J35 NC_J35 G2 E0_RCG[9] G37 VSS_IO J36 PBI_OE# G3 VSS_IO G38 PBI_AD[16] J37 PBI_AD[8] G4 E1_TCG[9] G39 PBI_AD[13] J38 XS_DQ[48] G5 E0_PMA_CLK0 H1 E0_RCG[7] J39 VSS_IO G6 VCC_PC H2 E1_TCG[3] K1 E1_TCG[6] G7 VCC_CORE H3 E1_TCG[4] K2 E1_EWRAP G8 VCC_CORE H4 E1_TCG[1] K3 VSS_IO G9 VCC_SD H5 E1_TCG[7] K4 REF125M G10 VCC_SD H6 VCC_PC K5 E1_RCG[5] G11 VCC_SD H7 VCC_PC K6 VCC_PC G12 VCC_SD H8 VCC_CORE K7 VCC_CORE G13 VCC_SD H9 VCC_CORE K8 VCC_CORE G14 VCC_SD H10 VCC_CORE K32 VCC_CORE Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 10 of 30) Datasheet Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 11 of 30) Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 12 of 30) Ball Signal Name Ball Signal Name Ball Signal Name K33 VCC_XS N1 P2_INTB# R15 VSS_CORE k34 NC_K34 N2 VSS_IO R16 VCC_CORE K35 PBI_RDY# N3 E1_PCRS_SDET R17 VSS_CORE K36 PBI_AD[0] N4 E1_RCG[3] R18 VCC_CORE K37 XS_DQ[49] N5 E1_PRBS_PASS R19 VSS_CORE K38 XS_CLK N6 NC_N6 R20 VCC_CORE K39 XS_DQ[51] N7 VCC_PC R21 VSS_CORE L1 P2_INTD# N33 VCC_XS R22 VCC_CORE L2 E1_RCG[1] N34 PBI_AD[6] R23 VSS_CORE L3 E1_RCG[0] N35 VSS_IO R24 VCC_CORE L4 GTX_CLK N36 XS_DQ[19] R25 VSS_CORE L5 E1_PRBSEN N37 XS_DQ[18] R33 VCC_XS L6 NC_L6 N38 XS_DQ[16] R34 XS_DQ[45] L7 VCC_CORE N39 XS_DQ[22] R35 VSS_IO L33 XS_PLL_AVCC P1 P2_AD[31] R36 XS_DQ[43] L34 PBI_AD[2] P2 P2_RST# R37 XS_DQ[46] L35 VSS_IO P3 P2_INTA# R38 XS_DQ[40] L36 XS_DQ[50] P4 E1_ECMDT R39 XS_DQ[44] L37 XS_DQ[52] P5 E1_RCG[8] T1 P2_PME# L38 XS_DQ[20] P6 E1_RCG[6] T2 P2_AD[27] L39 XS_DQ[53] P7 VCC_PC T3 P2_AD[28] M1 P2_GNT#[1] P33 VCC_XS T4 P2_AD[24] M2 P2_REQ#[1] P34 PBI_AD[7] T5 P2_CLK_IN M3 E1_PMA_CLK0 P35 PBI_AD[1] T6 P2_PLL_AVSS M4 E1_RCG[4] P36 XS_DQ[17] T7 VCC_PC M5 E1_RCG[7] P37 XS_DQ[21] T15 VCC_CORE M6 VSS_IO P38 VSS_IO T16 VSS_CORE M7 VCC_PC P39 XS_DQ[47] T17 VCC_CORE M33 NC_M33 R1 P2_AD[26] T18 VSS_CORE M34 XS_PLL_AVSS R2 P2_HEALTHY# T19 VCC_CORE M35 PBI_AD[3] R3 P2_IDSEL T20 VSS_CORE M36 XS_DQ[55] R4 P2_AD[30] T21 VCC_CORE M37 XS_DQ[54] R5 VSS_IO T22 VSS_CORE M38 VSS_IO R6 E1_RCG[9] T23 VCC_CORE M39 XS_DQ[23] R7 VCC_PC T24 VSS_CORE 47 Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 13 of 30) 48 Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 14 of 30) Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 15 of 30) Ball Signal Name Ball Signal Name Ball Signal Name T25 VCC_CORE V3 P2_AD[25] W20 VSS_CORE T33 VCC_XS V4 P2_AD[29] W21 VSS_CORE T34 XS_DQ[41] V5 P2_AD[23] W22 VSS_CORE T35 XS_DQ[10] V6 P2_PLL_AVCC W23 VSS_CORE T36 XS_DQ[42] V7 VCC_PC W24 VCC_CORE T37 XS_DQ[14] V15 VCC_CORE W25 VSS_CORE T38 VSS_IO V16 VSS_CORE W33 VCC_XS T39 XS_DQ[15] V17 VCC_CORE W34 XS_DQ[37] U1 P2_AD[21] V18 VSS_CORE W35 VSS_IO U2 VSS_IO V19 VSS_CORE W36 XS_DQ[35] U3 P2_INTC# V20 VSS_CORE W37 XS_DQ[7] U4 P2_IRDY# V21 VSS_CORE W38 XS_DQ[3] U5 VSS_IO V22 VSS_CORE W39 XS_DQ[32] U6 P2_CLK_OUT V23 VCC_CORE Y1 P2_CBE#[2] U7 VCC_PC V24 VSS_CORE Y2 VSS_IO U15 VSS_CORE V25 VCC_CORE Y3 P2_AD[19] U16 VCC_CORE V33 VCC_XS Y4 P2_FRAME# U17 VSS_CORE V34 XS_DQ[8] Y5 P2_AD[15] U18 VCC_CORE V35 XS_DQ[38] Y6 P2_TRDY# U19 VSS_CORE V36 XS_DQ[34] Y7 VCC_PC U20 VCC_CORE V37 XS_DQ[33] Y15 VCC_CORE U21 VSS_CORE V38 VSS_IO Y16 VSS_CORE U22 VCC_CORE V39 XS_DQ[36] Y17 VCC_CORE U23 VSS_CORE W1 P2_AD[22] Y18 VSS_CORE U24 VCC_CORE W2 P2_SERR# Y19 VSS_CORE U25 VSS_CORE W3 P2_AD[20] Y20 VSS_CORE U33 VCC_XS W4 P2_AD[18] Y21 VSS_CORE U34 XS_DQ[13] W5 VSS_IO Y22 VSS_CORE U35 VSS_IO W6 P2_DEVSEL# Y23 VCC_CORE U36 XS_DQ[11] W7 VCC_PC Y24 VSS_CORE U37 XS_DQ[9] W15 VSS_CORE Y25 VCC_CORE U38 XS_DQ[39] W16 VCC_CORE Y33 VCC_XS U39 XS_DQ[12] W17 VSS_CORE Y34 XS_DQ[6] V1 P2_CBE#[3] W18 VSS_CORE Y35 XS_DQ[0] V2 P2_CBE#[1] W19 VSS_CORE Y36 XS_DQ[2] Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 16 of 30) Datasheet Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 17 of 30) Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 18 of 30) Ball Signal Name Ball Signal Name Ball Signal Name Y37 XS_DQ[1] AB15 VCC_CORE AC25 VSS_CORE Y38 VSS_IO AB16 VSS_CORE AC33 VCC_XS Y39 XS_DQ[4] AB17 VCC_CORE AC34 XS_ECC[4] AA1 P2_AD[16] AB18 VSS_CORE AC35 VSS_IO AA2 P2_AD[17] AB19 VSS_CORE AC36 XS_BE[0] AA3 P2_PERR# AB20 VSS_CORE AC37 XS_BE[2] AA4 P2_PAR AB21 VSS_CORE AC38 XS_BE[5] AA5 P2_RSTDIR AB22 VSS_CORE AC39 XS_BE[3] AA6 P2_STOP# AB23 VCC_CORE AD1 P2_AD[5] AA7 VCC_PC AB24 VSS_CORE AD2 P2_M66EN AA15 VSS_CORE AB25 VCC_CORE AD3 P2_AD[6] AA16 VCC_CORE AB33 VCC_XS AD4 P2_AD[4] AA17 VSS_CORE AB34 XS_DVALID[1] AD5 P2_CBE#[7] AA18 VSS_CORE AB35 XS_ECC[3] AD6 P2_AD[7] AA19 VSS_CORE AB36 XS_ECC[5] AD7 VCC_PC AA20 VSS_CORE AB37 XS_ECC[7] AD15 VCC_CORE AA21 VSS_CORE AB38 VSS_IO AD16 VSS_CORE AA22 VSS_CORE AB39 XS_ECC[6] AD17 VCC_CORE AA23 VSS_CORE AC1 P2_AD[10] AD18 VSS_CORE AA24 VCC_CORE AC2 VSS_IO AD19 VCC_CORE AA25 VSS_CORE AC3 P2_CBE#[0] AD20 VSS_CORE AA33 VCC_XS AC4 P2_AD[3] AD21 VCC_CORE AA34 XS_DQ[5] AC5 P2_AD[8] AD22 VSS_CORE AA35 VSS_IO AC6 P2_AD[11] AD23 VCC_CORE AA36 XS_DVALID[0] AC7 VCC_PC AD24 VSS_CORE AA37 XS_ECC[2] AC15 VSS_CORE AD25 VCC_CORE AA38 XS_ECC[0] AC16 VCC_CORE AD33 VCC_XS AA39 XS_ECC[1] AC17 VSS_CORE AD34 XS_BE[1] AB1 P2_ACK64# AC18 VCC_CORE AD35 XS_LEN[2] AB2 P2_AD[12] AC19 VSS_CORE AD36 XS_LEN[0] AB3 P2_AD[13] AC20 VCC_CORE AD37 XS_LEN[1] AB4 P2_AD[9] AC21 VSS_CORE AD38 VSS_IO AB5 VSS_IO AC22 VCC_CORE AD39 XS_BE[4] AB6 P2_AD[14] AC23 VSS_CORE AE1 P2_CBE#[6] AB7 VCC_PC AC24 VCC_CORE AE2 P2_AD[1] 49 Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 19 of 30) Ball 50 Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 20 of 30) Signal Name Ball AE3 P2_AD[0] AE4 P2_REQ#[3] AE5 AE6 Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 21 of 30) Signal Name Ball Signal Name AF38 VSS_IO AJ6 P2_CBE#[5] AF39 XS_HOLD[1] AJ7 VCC_PC VSS_IO AG1 P2_CBE#[4] AJ33 VCC_XS P2_AD[2] AG2 P2_GNT#[5] AJ34 XS_A[5] AE7 VCC_PC AG3 P2_GNT#[3] AJ35 VSS_IO AE15 VSS_CORE AG4 P2_AD[61] AJ36 XS_A[10] AE16 VCC_CORE AG5 VSS_IO AJ37 XS_DQ[56] AE17 VSS_CORE AG6 P2_REQ#[2] AJ38 XS_DQ[59] AE18 VCC_CORE AG7 VCC_PC AJ39 XS_A[15] AE19 VSS_CORE AG33 VCC_XS AK1 P2_AD[50] AE20 VCC_CORE AG34 XS_HLDA[0] AK2 VSS_IO AE21 VSS_CORE AG35 VSS_IO AK3 P2_REQ64# AE22 VCC_CORE AG36 XS_A[12] AK4 P2_AD[54] AE23 VSS_CORE AG37 XS_A[3] AK5 P2_AD[49] AE24 VCC_CORE AG38 XS_A[1] AK6 P2_AD[57] AE25 VSS_CORE AG39 XS_A[2] AK7 VCC_PC AE33 VCC_XS AH1 P2_AD[59] AK8 VCC_CORE AE34 XS_BE[6] AH2 VSS_IO AK32 VCC_CORE AE35 VSS_IO AH3 P2_AD[63] AK33 VCC_XS AE36 XS_BE[7] AH4 P2_AD[62] AK34 XS_A[9] AE37 XS_CWF AH5 P2_AD[58] AK35 XS_DQ[60] AE38 XS_HLDA[1] AH6 P2_PAR64 AK36 XS_DQ[57] AE39 XS_HOLD[0] AH7 VCC_PC AK37 XS_DQ[61] AF1 P2_REQ#[4] AH33 VCC_XS AK38 VSS_IO AF2 VSS_IO AH34 XS_A[0] AK39 XS_DQ[62] AF3 P2_GNT#[2] AH35 XS_A[11] AL1 P2_AD[46] AF4 P2_REQ#[5] AH36 XS_A[14] AL2 P2_AD[51] AF5 P2_GNT#[4] AH37 XS_A[6] AL3 P2_AD[44] AF6 P2_ENUM# AH38 VSS_IO AL4 P2_AD[43] AF7 VCC_PC AH39 XS_A[7] AL5 VSS_IO AF33 VCC_XS AJ1 P2_AD[55] AL6 P2_AD[52] AF34 XS_ABORT AJ2 P2_AD[60] AL7 VCC_PC AF35 XS_A[13] AJ3 P2_AD[56] AL8 VCC_CORE AF36 XS_A[4] AJ4 P2_AD[53] AL32 VCC_CORE AF37 XS_A[8] AJ5 VSS_IO AL33 VCC_PC Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 22 of 30) Datasheet Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 23 of 30) Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 24 of 30) Ball Signal Name Ball Signal Name Ball Signal Name AL34 U1_DTR# AN10 VCC_PC AP6 P2_AD[36] AL35 VSS_IO AN11 VCC_PC AP7 P1_PLL_AVSS AL36 XS_DQ[58] AN12 VCC_PC AP8 P1_CLK_OUT AL37 XS_DQ[30] AN13 VCC_PC AP9 P1_PLL_AVCC AL38 XS_DQ[27] AN14 VCC_PC AP10 P1_TRDY# AL39 XS_DQ[29] AN15 VCC_PC AP11 P1_STOP# AM1 P2_AD[45] AN16 VCC_PC AP12 P1_AD[14] AM2 VSS_IO AN17 VCC_PC AP13 P1_AD[11] AM3 P2_AD[47] AN18 VCC_PC AP14 P1_AD[7] AM4 P2_AD[40] AN19 VCC_PC AP15 P1_AD[2] AM5 P2_AD[39] AN20 VCC_PC AP16 P1_ENUM# AM6 P2_AD[48] AN21 VCC_PC AP17 P1_REQ#[4] AM7 VCC_PC AN22 VCC_PC AP18 P1_PAR64 AM8 VCC_CORE AN23 VCC_PC AP19 P1_CBE#[5] AM9 VCC_CORE AN24 VCC_PC AP20 P1_AD[57] AM10 VCC_CORE AN25 VCC_PC AP21 P1_AD[52] AM30 VCC_CORE AN26 VCC_PC AP22 P1_AD[48] AM31 VCC_CORE AN27 VCC_PC AP23 P1_AD[42] AM32 VCC_CORE AN28 VCC_PC AP24 P1_REQ#[7] AM33 VCC_PC AN29 VCC_CORE AP25 SF_RST# AM34 U0_DCD# AN30 VCC_PC AP26 PWRUP_P1_ARB AM35 U0_DTR# AN31 VCC_PC AP27 PWRUP_TRANS AM36 XS_DQ[63] AN32 VCC_PC AP28 TDO AM37 XS_DQ[31] AN33 VCC_PC AP29 VCC_PC AM38 VSS_IO AN34 U1_DSR# AP30 VCC_PC AM39 XS_DQ[28] AN35 VSS_IO AP31 VCC_PC AN1 P2_AD[37] AN36 U0_DSR# AP32 INT[5] AN2 P2_AD[41] AN37 XS_DQ[25] AP33 VSS_IO AN3 P2_AD[35] AN38 XS_DQ[24] AP34 VSS_IO AN4 P2_LED# AN39 XS_DQ[26] AP35 U0_RX AN5 VSS_IO AP1 P2_AD[34] AP36 U1_RX AN6 P2_AD[42] AP2 VSS_IO AP37 U1_CTS# AN7 VSS_IO AP3 P2_AD[38] AP38 XS_IRQ[1] AN8 VCC_PC AP4 P2_AD[32] AP39 XS_IRQ[0] AN9 VCC_PC AP5 P2_AD[33] AR1 P2_GNT#[6] 51 Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 25 of 30) 52 Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 26 of 30) Ball Signal Name Ball AR2 P2_REQ#[7] AR3 P2_REQ#[6] AR4 AR5 Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 27 of 30) Signal Name Ball Signal Name AR37 U0_RTS# AT33 INT[7] AR38 XS_FIQ[1] AT34 INT[14] P2_GNT#[7] AR39 XS_FIQ[0] AT35 I2C_SCLK VSS_IO AT1 P2_HS_64EN# AT36 VSS_IO AR6 P1_AD[29] AT2 P2_PCIXCAP[1] AT37 U1_RTS# AR7 P1_CLK_IN AT3 P2_PCIXCAP[0] AT38 U0_RI# AR8 P1_AD[23] AT4 VSS_IO AT39 XS_RESET# AR9 P1_DEVSEL# AT5 P1_RST# AU1 P2_ES AR10 VSS_IO AT6 P1_GNT#[1] AU2 VSS_IO AR11 P1_FRAME# AT7 P1_AD[30] AU3 VSS_IO AR12 VSS_IO AT8 P1_AD[24] AU4 P1_IDSEL AR13 P1_RSTDIR AT9 P1_IRDY# AU5 P1_AD[28] AR14 VSS_IO AT10 P1_AD[18] AU6 P1_HEALTHY# AR15 P1_AD[3] AT11 P1_PAR AU7 P1_INTC# AR16 VSS_IO AT12 P1_AD[15] AU8 P1_AD[25] AR17 P1_GNT#[4] AT13 P1_AD[9] AU9 P1_AD[20] AR18 VSS_IO AT14 P1_AD[8] AU10 P1_AD[19] AR19 P1_AD[61] AT15 P1_AD[4] AU11 P1_AD[12] AR20 VSS_IO AT16 P1_REQ#[2] AU12 P1_AD[13] AR21 P1_AD[53] AT17 P1_REQ#[5] AU13 P1_AD[6] AR22 VSS_IO AT18 P1_CBE#[7] AU14 P1_CBE#[0] AR23 P1_AD[43] AT19 P1_AD[62] AU15 P1_GNT#[5] AR24 VSS_IO AT20 P1_AD[58] AU16 P1_AD[0] AR25 PWRUP_P1_PRIM AT21 P1_AD[54] AU17 P1_AD[63] AR26 PWRUP_P1_SWRST AT22 P1_AD[49] AU18 P1_GNT#[3] AR27 TRST# AT23 P1_AD[44] AU19 P1_CBE#[4] AR28 VSS_IO AT24 P1_GNT#[7] AU20 P1_AD[56] AR29 NC AT25 P1_GNT#[6] AU21 P1_AD[46] AR30 INT[1] AT26 P1_LED# AU22 P1_AD[47] AR31 NC AT27 P1_HS_64EN# AU23 P1_AD[38] AR32 INT[11] AT28 TMS AU24 P1_AD[40] AR33 NC AT29 TCK AU25 P1_AD[34] AR34 I2C_SDA AT30 NC AU26 P1_AD[35] AR35 U0_TX AT31 NC AU27 P1_ES AR36 U0_CTS# AT32 NC AU28 P1_AD[32] Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 28 of 30) Datasheet Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 29 of 30) Table 20 1025-Lead HSBGA Package — Alphabetical Ball Listing (Sheet 30 of 30) Ball Signal Name Ball Signal Name Ball AU29 PWRUP_P2_PRIM AV26 P1_PCIXCAP[0] AW25 P1_AD[37] AU30 TDI AV27 P1_AD[33] AW26 PWRUP_P2_SWRST AU31 INT[2] AV28 P1_AD[39] AW27 P1_PCIXCAP[1] AU32 VSS_IO AV29 VSS_IO AW28 PWRUP_XS_SWRST AU33 INT[6] AV30 INT[0] AW29 PWRUP_PBI_BSWP AU34 INT[13] AV31 INT[3] AW30 P1_AD[36] AU35 INT[15] AV32 PWRUP_P1_BYP AW31 SF_CLK AU36 PWRUP_P2_BYP AV33 INT[10] AW32 INT[9] AU37 VSS_IO AV34 INT[8] AW33 SRAM_SKU AU38 VSS_IO AV35 INT[12] AW34 PWRUP_P2_ARB AU39 U1_DCD# AV36 U1_TX AW35 NC AV2 VSS_IO AV37 VSS_IO AW36 INT[4] AV3 VSS_IO AV38 VSS_IO AW37 U1_RI# AV4 P1_INTD# AW3 P1_REQ#[1] AV5 P1_AD[27] AW4 P1_INTA# AV6 VSS_IO AW5 P1_INTB# AV7 P1_CBE#[1] AW6 P1_AD[21] AV8 P1_SERR# AW7 P1_AD[31] AV9 VSS_IO AW8 P1_AD[26] AV10 P1_AD[17] AW9 P1_PME# AV11 VSS_IO AW10 P1_PERR# AV12 P1_M66EN AW11 P1_CBE#[3] AV13 VSS_IO AW12 P1_AD[22] AV14 P1_AD[1] AW13 P1_CBE#[2] AV15 VSS_IO AW14 P1_AD[16] AV16 P1_GNT#[2] AW15 P1_ACK64# AV17 VSS_IO AW16 P1_AD[10] AV18 P1_AD[60] AW17 P1_AD[5] AV19 VSS_IO AW18 P1_REQ#[3] AV20 P1_AD[51] AW19 P1_CBE#[6] AV21 VSS_IO AW20 P1_REQ64# AV22 P1_AD[41] AW21 P1_AD[59] AV23 VSS_IO AW22 P1_AD[55] AV24 P1_REQ#[6] AW23 P1_AD[50] AV25 VSS_IO AW24 P1_AD[45] Signal Name 53 Intel® GW80314 I/O Companion Chip Package Information Table 21. 1025-Lead HSBGA Package — Alphabetical Signal Listing Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 1 of 30) 54 Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 2 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 3 of 30) Signal Name Ball Signal Name Ball Signal Name Ball E0_ECMDT A3 E1_PRBS_PASS N5 INT[9] AW32 E0_EWRAP E2 E1_PRBSEN L5 INT[10] AV33 E0_PCOL_RBCM D1 E1_RCG[0] L3 INT[11] AR32 E0_PCRS_SDET D3 E1_RCG[1] L2 INT[12] AV35 E0_PMA_CLK0 G5 E1_RCG[2] J3 INT[13] AU34 E0_PMA_CLK1 C4 E1_RCG[3] N4 INT[14] AT34 E0_PRBS_PASS D5 E1_RCG[4] M4 INT[15] AU35 E0_PRBSEN C6 E1_RCG[5] K5 MDC C5 E0_RCG[0] E5 E1_RCG[6] P6 MDIO B5 E0_RCG[1] E1 E1_RCG[7] M5 NC AR29 E0_RCG[2] F5 E1_RCG[8] P5 NC AR31 E0_RCG[3] C1 E1_RCG[9] R6 NC AR33 E0_RCG[4] F1 E1_TCG[0] J5 NC AT30 E0_RCG[5] F2 E1_TCG[1] H4 NC AT31 E0_RCG[6] F4 E1_TCG[2] J1 NC AT32 E0_RCG[7] H1 E1_TCG[3] H2 NC AW35 E0_RCG[8] G1 E1_TCG[4] H3 NC_J35 J35 E0_RCG[9] G2 E1_TCG[5] F3 NC_K34 K34 E0_TCG[0] E4 E1_TCG[6] K1 NC_L6 L6 E0_TCG[1] B4 E1_TCG[7] H5 NC_M33 M33 E0_TCG[2] D6 E1_TCG[8] J4 NC_N6 N6 E0_TCG[3] A5 E1_TCG[9] G4 P1_ACK64# AW15 E0_TCG[4] E3 GTX_CLK L4 P1_AD[0] AU16 E0_TCG[5] A4 I2C_SCLK AT35 P1_AD[1] AV14 E0_TCG[6] F8 I2C_SDA AR34 P1_AD[2] AP15 E0_TCG[7] D2 INT[0] AV30 P1_AD[3] AR15 E0_TCG[8] D7 INT[1] AR30 P1_AD[4] AT15 E0_TCG[9] B6 INT[2] AU31 P1_AD[5] AW17 E1_ECMDT P4 INT[3] AV31 P1_AD[6] AU13 E1_EWRAP K2 INT[4] AW36 P1_AD[7] AP14 E1_PCOL_RBCM E7 INT[5] AP32 P1_AD[8] AT14 E1_PCRS_SDET N3 INT[6] AU33 P1_AD[9] AT13 E1_PMA_CLK0 M3 INT[7] AT33 P1_AD[10] AW16 E1_PMA_CLK1 J2 INT[8] AV34 P1_AD[11] AP13 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 4 of 30) Signal Name Datasheet Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 5 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 6 of 30) Ball Signal Name Ball Signal Name Ball P1_AD[12] AU11 P1_AD[47] AU22 P1_GNT#[5] AU15 P1_AD[13] AU12 P1_AD[48] AP22 P1_GNT#[6] AT25 P1_AD[14] AP12 P1_AD[49] AT22 P1_GNT#[7] AT24 P1_AD[15] AT12 P1_AD[50] AW23 P1_HEALTHY# AU6 P1_AD[16] AW14 P1_AD[51] AV20 P1_HS_64EN# AT27 P1_AD[17] AV10 P1_AD[52] AP21 P1_IDSEL AU4 P1_AD[18] AT10 P1_AD[53] AR21 P1_INTA# AW4 P1_AD[19] AU10 P1_AD[54] AT21 P1_INTB# AW5 P1_AD[20] AU9 P1_AD[55] AW22 P1_INTC# AU7 P1_AD[21] AW6 P1_AD[56] AU20 P1_INTD# AV4 P1_AD[22] AW12 P1_AD[57] AP20 P1_IRDY# AT9 P1_AD[23] AR8 P1_AD[58] AT20 P1_LED# AT26 P1_AD[24] AT8 P1_AD[59] AW21 P1_M66EN AV12 P1_AD[25] AU8 P1_AD[60] AV18 P1_PAR AT11 P1_AD[26] AW8 P1_AD[61] AR19 P1_PAR64 AP18 P1_AD[27] AV5 P1_AD[62] AT19 P1_PCIXCAP[0] AV26 P1_AD[28] AU5 P1_AD[63] AU17 P1_PCIXCAP[1] AW27 P1_AD[29] AR6 P1_CBE#[0] AU14 P1_PERR# AW10 P1_AD[30] AT7 P1_CBE#[1] AV7 P1_PLL_AVCC AP9 P1_AD[31] AW7 P1_CBE#[2] AW13 P1_PLL_AVSS AP7 P1_AD[32] AU28 P1_CBE#[3] AW11 P1_PME# AW9 P1_AD[33] AV27 P1_CBE#[4] AU19 P1_REQ#[1] AW3 P1_AD[34] AU25 P1_CBE#[5] AP19 P1_REQ#[2] AT16 P1_AD[35] AU26 P1_CBE#[6] AW19 P1_REQ#[3] AW18 P1_AD[36] AW30 P1_CBE#[7] AT18 P1_REQ#[4] AP17 P1_AD[37] AW25 P1_CLK_IN AR7 P1_REQ#[5] AT17 P1_AD[38] AU23 P1_CLK_OUT AP8 P1_REQ#[6] AV24 P1_AD[39] AV28 P1_DEVSEL# AR9 P1_REQ#[7] AP24 P1_AD[40] AU24 P1_ENUM# AP16 P1_REQ64# AW20 P1_AD[41] AV22 P1_ES AU27 P1_RST# AT5 P1_AD[42] AP23 P1_FRAME# AR11 P1_RSTDIR AR13 P1_AD[43] AR23 P1_GNT#[1] AT6 P1_SERR# AV8 P1_AD[44] AT23 P1_GNT#[2] AV16 P1_STOP# AP11 P1_AD[45] AW24 P1_GNT#[3] AU18 P1_TRDY# AP10 P1_AD[46] AU21 P1_GNT#[4] AR17 P2_ACK64# AB1 55 Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 7 of 30) 56 Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 8 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 9 of 30) Signal Name Ball Signal Name Ball Signal Name Ball P2_AD[0] AE3 P2_AD[35] AN3 P2_CBE#[6] AE1 P2_AD[1] AE2 P2_AD[36] AP6 P2_CBE#[7] AD5 P2_AD[2] AE6 P2_AD[37] AN1 P2_CLK_IN T5 P2_AD[3] AC4 P2_AD[38] AP3 P2_CLK_OUT U6 P2_AD[4] AD4 P2_AD[39] AM5 P2_DEVSEL# W6 P2_AD[5] AD1 P2_AD[40] AM4 P2_ENUM# AF6 P2_AD[6] AD3 P2_AD[41] AN2 P2_ES AU1 P2_AD[7] AD6 P2_AD[42] AN6 P2_FRAME# Y4 P2_AD[8] AC5 P2_AD[43] AL4 P2_GNT#[1] M1 P2_AD[9] AB4 P2_AD[44] AL3 P2_GNT#[2] AF3 P2_AD[10] AC1 P2_AD[45] AM1 P2_GNT#[3] AG3 P2_AD[11] AC6 P2_AD[46] AL1 P2_GNT#[4] AF5 P2_AD[12] AB2 P2_AD[47] AM3 P2_GNT#[5] AG2 P2_AD[13] AB3 P2_AD[48] AM6 P2_GNT#[6] AR1 P2_AD[14] AB6 P2_AD[49] AK5 P2_GNT#[7] AR4 P2_AD[15] Y5 P2_AD[50] AK1 P2_HEALTHY# R2 P2_AD[16] AA1 P2_AD[51] AL2 P2_HS_64EN# AT1 P2_AD[17] AA2 P2_AD[52] AL6 P2_IDSEL R3 P2_AD[18] W4 P2_AD[53] AJ4 P2_INTA# P3 P2_AD[19] Y3 P2_AD[54] AK4 P2_INTB# N1 P2_AD[20] W3 P2_AD[55] AJ1 P2_INTC# U3 P2_AD[21] U1 P2_AD[56] AJ3 P2_INTD# L1 P2_AD[22] W1 P2_AD[57] AK6 P2_IRDY# U4 P2_AD[23] V5 P2_AD[58] AH5 P2_LED# AN4 P2_AD[24] T4 P2_AD[59] AH1 P2_M66EN AD2 P2_AD[25] V3 P2_AD[60] AJ2 P2_PAR AA4 P2_AD[26] R1 P2_AD[61] AG4 P2_PAR64 AH6 P2_AD[27] T2 P2_AD[62] AH4 P2_PCIXCAP[0] AT3 P2_AD[28] T3 P2_AD[63] AH3 P2_PCIXCAP[1] AT2 P2_AD[29] V4 P2_CBE#[0] AC3 P2_PERR# AA3 P2_AD[30] R4 P2_CBE#[1] V2 P2_PLL_AVCC V6 P2_AD[31] P1 P2_CBE#[2] Y1 P2_PLL_AVSS T6 P2_AD[32] AP4 P2_CBE#[3] V1 P2_PME# T1 P2_AD[33] AP5 P2_CBE#[4] AG1 P2_REQ#[1] M2 P2_AD[34] AP1 P2_CBE#[5] AJ6 P2_REQ#[2] AG6 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 10 of 30) Datasheet Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 11 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 12 of 30) Signal Name Ball Signal Name Ball Signal Name Ball P2_REQ#[3] AE4 PBI_AD[24] C39 SD_A[7] B29 P2_REQ#[4] AF1 PBI_AD[25] D38 SD_A[8] A28 P2_REQ#[5] AF4 PBI_AD[26] E33 SD_A[9] A29 P2_REQ#[6] AR3 PBI_AD[27] C36 SD_A[10] B20 P2_REQ#[7] AR2 PBI_AD[28] D35 SD_A[11] B30 P2_REQ64# AK3 PBI_AD[29] B36 SD_A[12] A30 P2_RST# P2 PBI_AD[30] F32 SD_A[13] B32 P2_RSTDIR AA5 PBI_AD[31] C35 SD_BA[0] A17 P2_SERR# W2 PBI_CS#[0] F35 SD_BA[1] A19 P2_STOP# AA6 PBI_CS#[1] F37 SD_CAS# A13 P2_TRDY# Y6 PBI_CS#[2] G35 SD_CKFBI A34 PBI_AD[0] K36 PBI_CS#[3] D34 SD_CKFBO B35 PBI_AD[1] P35 PBI_LE G32 SD_CLK#[0] B21 PBI_AD[2] L34 PBI_OE# J36 SD_CLK#[1] B23 PBI_AD[3] M35 PBI_RDY# K35 SD_CLK#[2] B24 PBI_AD[4] D33 PBI_RW F38 SD_CLK#[3] B18 PBI_AD[5] H37 PWRUP_P1_ARB AP26 SD_CLK[0] A21 PBI_AD[6] N34 PWRUP_P1_BYP AV32 SD_CLK[1] A23 PBI_AD[7] P34 PWRUP_P1_PRIM AR25 SD_CLK[2] A24 PBI_AD[8] J37 PWRUP_P1_SWRST AR26 SD_CLK[3] A18 PBI_AD[9] H35 PWRUP_P2_ARB AW34 SD_CLKEN B9 PBI_AD[10] H36 PWRUP_P2_BYP AU36 SD_CS#[0] A14 PBI_AD[11] H39 PWRUP_P2_PRIM AU29 SD_CS#[1] B14 PBI_AD[12] H38 PWRUP_P2_SWRST AW26 SD_CS#[2] A15 PBI_AD[13] G39 PWRUP_PBI_BSWP AW29 SD_CS#[3] B15 PBI_AD[14] G36 PWRUP_TRANS AP27 SD_CS#[4] A35 PBI_AD[15] F36 PWRUP_XS_SWRST AW28 SD_CS#[5] B33 PBI_AD[16] G38 REF125M K4 SD_CS#[6] A37 PBI_AD[17] F39 SD_A[0] A20 SD_CS#[7] A36 PBI_AD[18] E37 SD_A[1] A22 SD_DQ[0] D31 PBI_AD[19] D39 SD_A[2] A25 SD_DQ[1] A31 PBI_AD[20] E38 SD_A[3] B26 SD_DQ[2] C29 PBI_AD[21] E34 SD_A[4] A26 SD_DQ[3] E28 PBI_AD[22] E36 SD_A[5] A27 SD_DQ[4] C34 PBI_AD[23] D37 SD_A[6] B27 SD_DQ[5] E31 57 Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 13 of 30) 58 Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 14 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 15 of 30) Signal Name Ball Signal Name Ball Signal Name Ball SD_DQ[6] C30 SD_DQ[41] F14 SD_DQS[12] D21 SD_DQ[7] E30 SD_DQ[42] F13 SD_DQS[13] D15 SD_DQ[8] A33 SD_DQ[43] B12 SD_DQS[14] C14 SD_DQ[9] D30 SD_DQ[44] E16 SD_DQS[15] C7 SD_DQ[10] D25 SD_DQ[45] E15 SD_DQS[16] E10 SD_DQ[11] C24 SD_DQ[46] A12 SD_DQS[17] E19 SD_DQ[12] F29 SD_DQ[47] E12 SD_ECC[0] F22 SD_DQ[13] D28 SD_DQ[48] C11 SD_ECC[1] E20 SD_DQ[14] E26 SD_DQ[49] C10 SD_ECC[2] C19 SD_DQ[15] E25 SD_DQ[50] D11 SD_ECC[3] C18 SD_DQ[16] E27 SD_DQ[51] D12 SD_ECC[4] E22 SD_DQ[17] F26 SD_DQ[52] D8 SD_ECC[5] E21 SD_DQ[18] C25 SD_DQ[53] C9 SD_ECC[6] D18 SD_DQ[19] E23 SD_DQ[54] D9 SD_ECC[7] E17 SD_DQ[20] C28 SD_DQ[55] D10 SD_I2C_CLK C32 SD_DQ[21] C27 SD_DQ[56] B11 SD_I2C_SDA A32 SD_DQ[22] E24 SD_DQ[57] A10 SD_PLL_AVCC G30 SD_DQ[23] F23 SD_DQ[58] C8 SD_PLL_AVSS D32 SD_DQ[24] D24 SD_DQ[59] E9 SD_PWRDELAY C33 SD_DQ[25] C23 SD_DQ[60] A11 SD_RAS# B17 SD_DQ[26] C21 SD_DQ[61] F12 SD_VREF A8 SD_DQ[27] D19 SD_DQ[62] B8 SD_WE# A16 SD_DQ[28] C22 SD_DQ[63] A6 SF_CLK AW31 SD_DQ[29] D22 SD_DQS[0] E29 SF_RST# AP25 SD_DQ[30] F19 SD_DQS[1] F28 SRAM_SKU AW33 SD_DQ[31] E18 SD_DQS[2] C26 TCK AT29 SD_DQ[32] C17 SD_DQS[3] F20 TDI AU30 SD_DQ[33] D16 SD_DQS[4] C15 TDO AP28 SD_DQ[34] E14 SD_DQS[5] E13 TMS AT28 SD_DQ[35] C12 SD_DQS[6] A7 TRST# AR27 SD_DQ[36] F17 SD_DQS[7] A9 U0_CTS# AR36 SD_DQ[37] C16 SD_DQS[8] C20 U0_DCD# AM34 SD_DQ[38] C13 SD_DQS[9] C31 U0_DSR# AN36 SD_DQ[39] D13 SD_DQS[10] D27 U0_DTR# AM35 SD_DQ[40] F16 SD_DQS[11] F25 U0_RI# AT38 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 16 of 30) Datasheet Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 17 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 18 of 30) Signal Name Ball Signal Name Ball Signal Name Ball U0_RTS# AR37 VCC_CORE T21 VCC_CORE AE16 U0_RX AP35 VCC_CORE T23 VCC_CORE AE18 U0_TX AR35 VCC_CORE T25 VCC_CORE AE20 U1_CTS# AP37 VCC_CORE U16 VCC_CORE AE22 U1_DCD# AU39 VCC_CORE U18 VCC_CORE AE24 U1_DSR# AN34 VCC_CORE U20 VCC_CORE AK8 U1_DTR# AL34 VCC_CORE U22 VCC_CORE AK32 U1_RI# AW37 VCC_CORE U24 VCC_CORE AL8 U1_RTS# AT37 VCC_CORE V15 VCC_CORE AL32 U1_RX AP36 VCC_CORE V17 VCC_CORE AM8 U1_TX AV36 VCC_CORE V23 VCC_CORE AM9 VCC_CORE F7 VCC_CORE V25 VCC_CORE AM10 VCC_CORE G7 VCC_CORE W16 VCC_CORE AM30 VCC_CORE G8 VCC_CORE W24 VCC_CORE AM31 VCC_CORE H8 VCC_CORE Y15 VCC_CORE AM32 VCC_CORE H9 VCC_CORE Y17 VCC_CORE AN29 VCC_CORE H10 VCC_CORE Y23 VCC_PC F6 VCC_CORE H30 VCC_CORE Y25 VCC_PC G6 VCC_CORE H31 VCC_CORE AA16 VCC_PC H6 VCC_CORE H32 VCC_CORE AA24 VCC_PC H7 VCC_CORE J7 VCC_CORE AB15 VCC_PC J6 VCC_CORE J8 VCC_CORE AB17 VCC_PC K6 VCC_CORE J32 VCC_CORE AB23 VCC_PC M7 VCC_CORE K7 VCC_CORE AB25 VCC_PC N7 VCC_CORE K8 VCC_CORE AC16 VCC_PC P7 VCC_CORE K32 VCC_CORE AC18 VCC_PC R7 VCC_CORE L7 VCC_CORE AC20 VCC_PC T7 VCC_CORE R16 VCC_CORE AC22 VCC_PC U7 VCC_CORE R18 VCC_CORE AC24 VCC_PC V7 VCC_CORE R20 VCC_CORE AD15 VCC_PC W7 VCC_CORE R22 VCC_CORE AD17 VCC_PC Y7 VCC_CORE R24 VCC_CORE AD19 VCC_PC AA7 VCC_CORE T15 VCC_CORE AD21 VCC_PC AB7 VCC_CORE T17 VCC_CORE AD23 VCC_PC AC7 VCC_CORE T19 VCC_CORE AD25 VCC_PC AD7 59 Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 19 of 30) 60 Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 20 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 21 of 30) Signal Name Ball Signal Name Ball Signal Name Ball VCC_PC AE7 VCC_PC AP30 VCC_XS J34 VCC_PC AF7 VCC_PC AP31 VCC_XS K33 VCC_PC AG7 VCC_SD F9 VCC_XS N33 VCC_PC AH7 VCC_SD F10 VCC_XS P33 VCC_PC AJ7 VCC_SD F11 VCC_XS R33 VCC_PC AK7 VCC_SD F31 VCC_XS T33 VCC_PC AL7 VCC_SD G9 VCC_XS U33 VCC_PC AM7 VCC_SD G10 VCC_XS V33 VCC_PC AM33 VCC_SD G11 VCC_XS W33 VCC_PC AN8 VCC_SD G12 VCC_XS Y33 VCC_PC AN9 VCC_SD G13 VCC_XS AA33 VCC_PC AN10 VCC_SD G14 VCC_XS AB33 VCC_PC AN11 VCC_SD G15 VCC_XS AC33 VCC_PC AN12 VCC_SD G16 VCC_XS AD33 VCC_PC AN13 VCC_SD G17 VCC_XS AE33 VCC_PC AN14 VCC_SD G18 VCC_XS AF33 VCC_PC AN15 VCC_SD G19 VCC_XS AG33 VCC_PC AN16 VCC_SD G20 VCC_XS AH33 VCC_PC AN17 VCC_SD G21 VCC_XS AJ33 VCC_PC AN18 VCC_SD G22 VCC_XS AK33 VCC_PC AN19 VCC_SD G23 VCC_XS AL33 VCC_PC AN20 VCC_SD G24 VSS_CORE R15 VCC_PC AN21 VCC_SD G25 VSS_CORE R17 VCC_PC AN22 VCC_SD G26 VSS_CORE R19 VCC_PC AN23 VCC_SD G27 VSS_CORE R21 VCC_PC AN24 VCC_SD G28 VSS_CORE R23 VCC_PC AN25 VCC_SD G29 VSS_CORE R25 VCC_PC AN26 VCC_SD G31 VSS_CORE T16 VCC_PC AN27 VCC_XS F33 VSS_CORE T18 VCC_PC AN28 VCC_XS F34 VSS_CORE T20 VCC_PC AN30 VCC_XS G33 VSS_CORE T22 VCC_PC AN31 VCC_XS G34 VSS_CORE T24 VCC_PC AN32 VCC_XS H33 VSS_CORE U15 VCC_PC AN33 VCC_XS H34 VSS_CORE U17 VCC_PC AP29 VCC_XS J33 VSS_CORE U19 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 22 of 30) Datasheet Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 23 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 24 of 30) Signal Name Ball Signal Name Ball Signal Name Ball VSS_CORE U21 VSS_CORE AB16 VSS_IO B34 VSS_CORE U23 VSS_CORE AB18 VSS_IO B37 VSS_CORE U25 VSS_CORE AB19 VSS_IO B38 VSS_CORE V16 VSS_CORE AB20 VSS_IO C2 VSS_CORE V18 VSS_CORE AB21 VSS_IO C3 VSS_CORE V19 VSS_CORE AB22 VSS_IO C37 VSS_CORE V20 VSS_CORE AB24 VSS_IO C38 VSS_CORE V21 VSS_CORE AC15 VSS_IO D4 VSS_CORE V22 VSS_CORE AC17 VSS_IO D14 VSS_CORE V24 VSS_CORE AC19 VSS_IO D17 VSS_CORE W15 VSS_CORE AC21 VSS_IO D20 VSS_CORE W17 VSS_CORE AC23 VSS_IO D23 VSS_CORE W18 VSS_CORE AC25 VSS_IO D26 VSS_CORE W19 VSS_CORE AD16 VSS_IO D29 VSS_CORE W20 VSS_CORE AD18 VSS_IO D36 VSS_CORE W21 VSS_CORE AD20 VSS_IO E6 VSS_CORE W22 VSS_CORE AD22 VSS_IO E8 VSS_CORE W23 VSS_CORE AD24 VSS_IO E11 VSS_CORE W25 VSS_CORE AE15 VSS_IO E32 VSS_CORE Y16 VSS_CORE AE17 VSS_IO E35 VSS_CORE Y18 VSS_CORE AE19 VSS_IO E39 VSS_CORE Y19 VSS_CORE AE21 VSS_IO F15 VSS_CORE Y20 VSS_CORE AE23 VSS_IO F18 VSS_CORE Y21 VSS_CORE AE25 VSS_IO F21 VSS_CORE Y22 VSS_IO B2 VSS_IO F24 VSS_CORE Y24 VSS_IO B3 VSS_IO F27 VSS_CORE AA15 VSS_IO B7 VSS_IO F30 VSS_CORE AA17 VSS_IO B10 VSS_IO G3 VSS_CORE AA18 VSS_IO B13 VSS_IO G37 VSS_CORE AA19 VSS_IO B16 VSS_IO J39 VSS_CORE AA20 VSS_IO B19 VSS_IO K3 VSS_CORE AA21 VSS_IO B22 VSS_IO L35 VSS_CORE AA22 VSS_IO B25 VSS_IO M6 VSS_CORE AA23 VSS_IO B28 VSS_IO M38 VSS_CORE AA25 VSS_IO B31 VSS_IO N2 61 Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 25 of 30) 62 Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 26 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 27 of 30) Signal Name Ball Signal Name Ball Signal Name Ball VSS_IO N35 VSS_IO AN5 VSS_IO AV29 VSS_IO P38 VSS_IO AN7 VSS_IO AV37 VSS_IO R5 VSS_IO AN35 VSS_IO AV38 VSS_IO R35 VSS_IO AP2 XS_A[0] AH34 VSS_IO T38 VSS_IO AP33 XS_A[1] AG38 VSS_IO U2 VSS_IO AP34 XS_A[2] AG39 VSS_IO U5 VSS_IO AR5 XS_A[3] AG37 VSS_IO U35 VSS_IO AR10 XS_A[4] AF36 VSS_IO V38 VSS_IO AR12 XS_A[5] AJ34 VSS_IO W5 VSS_IO AR14 XS_A[6] AH37 VSS_IO W35 VSS_IO AR16 XS_A[7] AH39 VSS_IO Y2 VSS_IO AR18 XS_A[8] AF37 VSS_IO Y38 VSS_IO AR20 XS_A[9] AK34 VSS_IO AA35 VSS_IO AR22 XS_A[10] AJ36 VSS_IO AB5 VSS_IO AR24 XS_A[11] AH35 VSS_IO AB38 VSS_IO AR28 XS_A[12] AG36 VSS_IO AC2 VSS_IO AT4 XS_A[13] AF35 VSS_IO AC35 VSS_IO AT36 XS_A[14] AH36 VSS_IO AD38 VSS_IO AU2 XS_A[15] AJ39 VSS_IO AE5 VSS_IO AU3 XS_ABORT AF34 VSS_IO AE35 VSS_IO AU32 XS_BE[0] AC36 VSS_IO AF2 VSS_IO AU37 XS_BE[1] AD34 VSS_IO AF38 VSS_IO AU38 XS_BE[2] AC37 VSS_IO AG5 VSS_IO AV2 XS_BE[3] AC39 VSS_IO AG35 VSS_IO AV3 XS_BE[4] AD39 VSS_IO AH2 VSS_IO AV6 XS_BE[5] AC38 VSS_IO AH38 VSS_IO AV9 XS_BE[6] AE34 VSS_IO AJ5 VSS_IO AV11 XS_BE[7] AE36 VSS_IO AJ35 VSS_IO AV13 XS_CLK K38 VSS_IO AK2 VSS_IO AV15 XS_CWF AE37 VSS_IO AK38 VSS_IO AV17 XS_DQ[0] Y35 VSS_IO AL5 VSS_IO AV19 XS_DQ[1] Y37 VSS_IO AL35 VSS_IO AV21 XS_DQ[2] Y36 VSS_IO AM2 VSS_IO AV23 XS_DQ[3] W38 VSS_IO AM38 VSS_IO AV25 XS_DQ[4] Y39 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 28 of 30) Datasheet Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 29 of 30) Table 21 1025-Lead HSBGA Package — Alphabetical Signal Listing (Sheet 30 of 30) Signal Name Ball Signal Name Ball XS_DQ[5] AA34 XS_DQ[40] R38 XS_FIQ[1] AR38 XS_DQ[6] Y34 XS_DQ[41] T34 XS_HLDA[0] AG34 XS_DQ[7] W37 XS_DQ[42] T36 XS_HLDA[1] AE38 XS_DQ[8] V34 XS_DQ[43] R36 XS_HOLD[0] AE39 Signal Name Ball XS_DQ[9] U37 XS_DQ[44] R39 XS_HOLD[1] AF39 XS_DQ[10] T35 XS_DQ[45] R34 XS_IRQ[0] AP39 XS_DQ[11] U36 XS_DQ[46] R37 XS_IRQ[1] AP38 XS_DQ[12] U39 XS_DQ[47] P39 XS_LEN[0] AD36 XS_DQ[13] U34 XS_DQ[48] J38 XS_LEN[1] AD37 XS_DQ[14] T37 XS_DQ[49] K37 XS_LEN[2] AD35 XS_DQ[15] T39 XS_DQ[50] L36 XS_PLL_AVCC L33 XS_DQ[16] N38 XS_DQ[51] K39 XS_PLL_AVSS M34 XS_DQ[17] P36 XS_DQ[52] L37 XS_RESET# AT39 XS_DQ[18] N37 XS_DQ[53] L39 XS_DQ[19] N36 XS_DQ[54] M37 XS_DQ[20] L38 XS_DQ[55] M36 XS_DQ[21] P37 XS_DQ[56] AJ37 XS_DQ[22] N39 XS_DQ[57] AK36 XS_DQ[23] M39 XS_DQ[58] AL36 XS_DQ[24] AN38 XS_DQ[59] AJ38 XS_DQ[25] AN37 XS_DQ[60] AK35 XS_DQ[26] AN39 XS_DQ[61] AK37 XS_DQ[27] AL38 XS_DQ[62] AK39 XS_DQ[28] AM39 XS_DQ[63] AM36 XS_DQ[29] AL39 XS_DVALID[0] AA36 XS_DQ[30] AL37 XS_DVALID[1] AB34 XS_DQ[31] AM37 XS_ECC[0] AA38 XS_DQ[32] W39 XS_ECC[1] AA39 XS_DQ[33] V37 XS_ECC[2] AA37 XS_DQ[34] V36 XS_ECC[3] AB35 XS_DQ[35] W36 XS_ECC[4] AC34 XS_DQ[36] V39 XS_ECC[5] AB36 XS_DQ[37] W34 XS_ECC[6] AB39 XS_DQ[38] V35 XS_ECC[7] AB37 XS_DQ[39] U38 XS_FIQ[0] AR39 63 Intel® GW80314 I/O Companion Chip Package Information 3.2 Package Thermal Specifications The device is specified for operation when TC (case temperature) is within the range of 0 °C to 85 °C, depending on operating conditions. Case temperature may be measured in any environment to determine whether the processor is within specified operating range. Case temperature is best measured at the center of the top surface, opposite the ball pad. 3.2.1 Thermal Characteristics Table 22 summarizes the thermal simulation data for the GW80314. The thermal performance of the GW80314 package is represented by the following parameters: 1. ψJT, thermal characterization parameter from junction-to-top center ψJT = (TJ - TT) / P where TT is the temperature of the top-center of the package ψJT is used to estimate junction temperature by measuring TT in an actual environment ψJT simulations are carried out to show the thermal performance of the GW80314. 64 Datasheet Intel® GW80314 I/O Companion Chip Package Information Table 22. Thermal Simulation Data for the Intel® GW80314 I/O Processor Package Conditions Package Type HSBGA Ball Count 1025 Package Size (mm) 40x40 Mold Thickness (mm) 1.17 Pitch (mm) 1 Ball Matrix (mm) 39x39 Ball Row Depth 7x7 Thermal Ball Matrix 11x11 Vias 144 Pad Size (mm) 12.5x12.5 Die Size (mm) 11.62x11.62 Substrate Layer 4 Substrate Thickness (mm) 0.56 PCB Conditions (JEDEC JESD51-9) PCB Layer 4 PCB Dimensions (mm) 127.0x139.5 PCB Thickness (mm) 1.6 Environment Conditions Maximum Junction Temperature (C) 125 Power Dissipation (W) 2.456 Typical 4.226 Max Thermal Data Property VAIR (m/s) Psi jt (C/W) 0.00 1.8 1.00 1.8 2.00 1.8 Heat Flow Path Datasheet Heat Dissipated from PCB (%) 66.1 (%) 15.9 Heat Dissipated from Others (%) 18.0 65 Intel® GW80314 I/O Companion Chip Package Information 3.2.2 Case Temperature When measuring case temperature, TC, attention to detail is required to ensure accuracy. When a thermocouple is used, calibrate is before taking measurements. Errors may result when the measured surface temperature is affected by the surrounding ambient air temperature. Such errors may be due to a poor thermal contact between thermocouple junction and the surface, heat loss by radiation, or conduction through thermocouple leads. To minimize measurement errors: • Use a 35 gauge K-type thermocouple or equivalent. • Attach the thermocouple bead or junction to the package top surface at a location corresponding to the center of the die. The center of the die gives a more accurate measurement and less variation as the boundary condition changes. • Attach the thermocouple bead at a 0o angle with respect to the package when no heat sink is attached. 3.3 Socket Information Table 23 and Table 24 provide vendor details for socket-headers and burn-in sockets for the GW80314. This is neither an endorsement nor a warranty of the performance of any of the listed products and/or companies. 3.3.1 Socket-Header Vendor Table 23. Socket-Header Vendor Company Advanced Interconnections Factory Representative TBD Phone/Fax # TBD BGA 544-Pin Socket Carrier Socket: FHSB1025-716GG Carrier: FHAX1025-715G Ironwood 66 TBD TBD SG-BGA-6035 Datasheet Intel® GW80314 I/O Companion Chip Package Information 3.3.2 Burn-in Socket Vendor Table 24. Burn-in Socket Vendor Factory Representative Company TBD TBD 3.3.3 Shipping Tray Vendor Table 25. Shipping Tray Vendor Company PEAK 2136A Rutland Drive Austin, Texas 78758 Datasheet Factory Representative TBD Phone # TBD Burn-in Socket Part # TBD Phone # Shipping Tray Part # 512-339-4684 NXBG40402.503076REV.E 67 Intel® GW80314 I/O Companion Chip Electrical Specifications 4.0 Electrical Specifications 4.1 Absolute Maximum Ratings Table 26. Maximum Temperature and Voltage Ratings Parameter Maximum Rating Storage Temperature TSTG –40°C to +125°C Case Temperature Under Bias TC 0°C to + 85°C Supply Voltage VCC33 with regard to VSS –0.5 V to +4.1 V (3.3 VDC) Supply Voltage VCC25 with regard to VSS –0.5 V to +3.6 V (2.5 VDC) Supply Voltage VCC12 with regard to VSS –0.5 V to +2.0 V (1.2 VDC) WARNING:Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage. These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability. Table 27. Operating Conditions Symbol Parameter Min. Max. Units Pvcc33 3.3 V Supply Power 756 1710 mW Pvcc25 2.5 V Supply Power 270 609 mW Pvcc12 1.2 V Supply Power 1430 1907 mW VCC33 3.3 V Supply Power 3.0 3.6 V VCC25 2.5 V Supply Power 2.3 2.7 V VCC12 1.2 V Supply Power 1.08 1.32 V VPLL PLL Analog Supply Voltage 3.0 3.6 V IPLL PLL Analog Supply Current – 10 mA Notes WARNING:Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage. These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability. 68 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications 4.2 PLL Supply Pin Requirements Package balls of the supply pins for the four Phase Lock Loops (PLLs) used on the GW80314 should be isolated and decoupled externally in order to provide the cleanest possible supply environment. The following pins are used as PLL supplies in the GW80314: XS_PLL_AVCC, SD_PLL_AVCC, P1_PLL_AVCC, and P2_PLL_AVCC. The recommended decoupling network for these pins is shown in Figure 5. In order to minimize the transient IR drops across the leads from the isolation network and the PLL supply device pins, the trace routes must be kept short. It is preferred that the Cripple capacitor used in Figure 5 be placed as close to the device pins as possible, on the backside of the board underneath the device, when possible. Figure 5. Intel® GW80314 I/O Processor PLL Supply Decoupling Network Note: The trace routing and the RDC of the inductor accounts for this resistance, and should be in the range shown Lfilter Note: The trace routing resistance must be less than 0.1Ω to Cripple 0.5Ω (Min) 4Ω (Max) PLL_AVCC AVCC 470µH (Min) 4.7µH (Max) (RF SMT) Note: Lfilter must be a high SRF SMT Wire wound RF indicator Note: Ofilter must be a low ESR Tantalum SMT capacitor Ofilter 4.7µF (Min) 3.3µF (Max) Cripple 0.1µF DEVICE PLL_AVSS Note: The VCC to VSS 0.1 µF decoupling cap needs to be as close to the device pins as possible. Capacitors should be Low ESR (High Frequency) Ceramic chip capacitors B1331-01 Datasheet 69 Intel® GW80314 I/O Companion Chip Electrical Specifications 4.3 Targeted DC Specifications Table 28. DC Characteristics Symbol Parameter Minimum Maximum Units V Notes VIL1 SDRAM Input Low Voltage -0.3 VREF - 0.12 VIH1 SDRAM Input High Voltage VREF + 0.12 VCC25 + 0.3 V - VIL2 Misc. Input Low Voltage -0.3 0.8 V 1 VIH2 Misc. Input High Voltage 2.0 VCC33 + 0.5 V 1 VIL3 GigE Input Low Voltage -0.3 0.8 V VIH3 GigE Input High Voltage 2.0 VCC33 + 0.5 V 4 VIL4 PCI-X Input Low Voltage -0.5 0.35*VCC33 V 2 VIH4 PCI-X/PCI Input High Voltage 0.5*VCC33 VCC33 + 0.5 V 2 VIL5 PCI Input Low Voltage -0.5 0.3*VCC33 V 2 - VOL1 Misc. Output Low Voltage - 0.4 V IOL = 6mA, 1, 5 VOH1 Misc. Output High Voltage VCC33min - 0.5 - V IOL = -6mA, 1, 5 VOL2 SDRAM Output Low Voltage - 0.54 V IOL = 7.6mA VOH2 SDRAM Output High Voltage VCC25 - 0.54 - V IOL = -7.6mA V IOL = 8mA, 5 ® VOL3 Intel XScale Output Low Voltage - 0.4 VOH3 Intel XScale® Output High Voltage VCC33min - 0.5 - VOL4 PCI-X Output Low Voltage - 0.1*VCC33 V IOL = 1500µA, 2 VOH4 PCI-X Output High Voltage 0.9*VCC33 - V IOL = -500µA, 2 VOL5 GigE Output Low Voltage - 0.4 V IOL = 12mA, 5 VOH5 GigE Output High Voltage VCC33min - 0.5 - V IOL = -12mA,4, 5 IOL = -8mA, 4, 5 CIN Input Pin Capacitance - 8 pF 2, 3 CCLK Clock Pin Capacitance 5 8 pF 2, 3 LPIN Ball Inductance - 22 nH 2, 3 NOTES: 1. Miscellaneous signals include all signals that are not PCI, GigE, Intel XScale®, or SDRAM signals. 2. As required by the PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0a. 3. Not tested. 4. I/O Power Supply 5. VCC12min. = 1.08 V, VCC33min = 3.0 V. 70 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications 4.4 Targeted AC Specifications The following section details the AC specifications for GW80314 signal interfaces. 4.4.1 PCI/X Clock Signal Timings Table 29. PCI/X Clock Timings PCI-X Symbol PCI Parameter Min. Max. Min. Max. Units Notes TF1 PCI clock Frequency 50 133 25 66 MHz 1,2 TC1 PCI clock Cycle Time 7.5 20 15 40 ns 1,3 TCH1 PCI clock High Time 3 - 6 - ns TCL1 PCI clock Low Time 3 - 6 - ns TSR1 PCI clock Slew Rate 1 6 1 6 V/ns 4 Spread Spectrum Requirements fMOD PCI clock modulation frequency 30 33 30 33 kHz fspread PCI clock frequency spread -1 0 -1 0 % NOTES: 1. The clock frequency may not change beyond the spread-spectrum limits except while SFN_RST# is asserted. 2. The PCI output clock is limited to SFN_CLK, SFN_CLK/2, SFN_CLK/4. 3. The minimum clock period must not be violated for any single clock cycle, i.e., accounting for all system jitter. 4. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform. Table 30. DDR SDRAM Clock Timings PC 266 Symbol Units Min. Max. TF2 DDR SDRAM clock Frequency 66 100 MHz TC2 DDR SDRAM clock Cycle Time 10 - ns TCH2 DDR SDRAM clock High Time 4.5 5.5 ns TCL2 DDR SDRAM clock Low Time 4.5 5.5 ns TCS2 DDR SDRAM clock Period Stability - +/-90 ps DDR SDRAM clock skew for SD_CLK[2:0] and SD_CLK#[3:0] - 240 ps Tskew2 Datasheet Parameter 71 Intel® GW80314 I/O Companion Chip Electrical Specifications Table 31. Intel XScale® Microprocessor Clock Timings XS 100 Symbol XS 75 Parameter Units Min. Max. Min. Max. - 100 - 75 MHz TF3 Intel XScale® microprocessor clock Frequency TC3 Intel XScale® microprocessor clock Cycle Time 10 - 13 - ns TCH3 Intel XScale® microprocessor clock High Time TCL3 TCS3 3 - 5 - ns ® 3 - 5 - ns ® - +/-175 - +/-175 ps Max. Units Intel XScale microprocessor clock Low Time Intel XScale microprocessor clock Period Stability 4.4.2 Dual-Gigabit Ethernet (GigE) Interface Signal Timings Table 32. AC Specifications for MII Management Interface Symbol Parameter Condition Min. TPERMDC Period of MDC MII Management CLock Output - 60 ns TPWMDC Pulse width of MDC Output - 16 ns TPDMDIO Propagation delay of MDIO output from rising edge of MDC - TSUMDIO Input Setup Time of MDIO to rising edge of MDC - 4 ns THMDIO Input Hold Time of MDIO after rising edge of MDC - 3 ns 7.5 ns NOTE: MDC MII Management Interface Clock period is equal to one of the following: SFN_CLK/8, SFN_CLK/16, SFN_CLK/28, SFN_CLK/40, SFN_CLK/56. 72 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications Table 33 lists the AC specifications for the G/MII interface of the dual GigE Controller. For propagation delays, the AC loads are assumed to be transmission lines, so numbers quoted in the specifications assume driving a 50 Ohm load connected to a voltage source = VCCIO/2. Table 33. Symbol AC Specifications for G/MII and TBI Interface Parameter TCTXCLK Period of E[x]_TXCLK inputs TCGTXCLK Period of GTX_CLK input TPWTXCLK Pulse width of E[x]_TXCLK inputs Condition Min. Max. Units 10Mb/s mode 399.98 400.02 ns 100Mb/s mode 39.998 40.002 ns 1000Mb/s mode 7.9992 8.0008 ns 10Mb/s mode 180 220 ns 100Mb/s mode 18 22 ns TPWGTXCLK Pulse width of GTX_CLK input 1000Mb/s mode 3.2 4.8 ns TCRXCLK Period of E[x]_RXCLK inputs 10Mb/s mode 399.98 400.02 ns 100Mb/s mode 39.998 40.002 ns 1000Mb/s mode 7.9992 8.0008 ns 1000Mb/s mode 15.9984 16.0016 ns 10Mb/s mode 180 220 ns 100Mb/s mode 18 22 ns 1000Mb/s mode 3.2 4.8 ns TCPMARCLK Period of PMA_CLK[x] input TPWRXCLK Pulse width of E[x]_RXCLK input TPWPMARCLK TSKPMA Pulse width of PMA_CLK[x] input 1000Mb/s mode 6.4 9.6 ns Skew between PMA_CLK[x] inputs 1000Mb/s mode 7.5 8.5 ns 10Mb/s or 100Mb/s mode - 12 ns 5 ns TPDTX Propagation delay of E[x]_TCG after rising edge of E[x]_TXCLK TPDGTX Propagation delay of E[x]_TXG after rising edge of GTX_CLK 1000Mb/s mode - TSURX Setup time for E[x]_RCG to rising edge of E[x]_RXCLK 10,100,1000Mb/s modes 2 ns THRX Hold time for E[x]_RCG to rising edge of E[x]_RXCLK G/MII modes 0 ns NOTES: 1. All parameters are valid for both ports of GigE interface (i.e., E[x] = E0 or E1). Datasheet 73 Intel® GW80314 I/O Companion Chip Electrical Specifications 4.4.3 PCI/X Interface Signal Timings Table 34. AC Specifications for PCI/X Interface PCI-X 133 Symbol PCI-X 66 PCI 66 PCI 33 Parameter Min. Max. Min. Max. Min. Max. Min. Max. Units Notes TOV1 Clock to Output Valid Delay for bused signals 0.7 3.8 0.7 3.8 1 6 2 11 ns 1,2,3 TOV2 Clock to Output Valid Delay for point to point signals 0.7 3.8 0.7 3.8 2 6 2 12 ns 1,2,3 TOF Clock to Output Float Delay - 7 - 7 - 14 - 28 ns 1,7 TIS1 Input Setup to clock for bused signals 1.2 - 1.7 - 3 - 7 - ns 3,4,8 TIS2 Input Setup to clock for point to point signals 1.2 - 1.7 - 5 - 10,12 - ns 3,4 TIH1 Input Hold time from clock 0.5 - 0.5 - 0 - 0 - ns 4 TRST Reset Active Time 1 - 1 - 1 - 1 - ms TRF Reset Active to output float delay - 40 - 40 - 40 - 40 ns TIS3 P[x]_REQ64# to Reset setup time 10 - 10 - 10 - 10 - clocks TIH2 Reset to P[x]_REQ64# hold time -0.6 50 -0.6 50 -0.6 50 -0.6 50 ns TIS4 PCI-X initialization pattern to Reset setup time 10 - 10 - - - - - clocks TIH3 Reset to PCI-X initialization pattern hold time -0.6 50 -0.6 50 - - - - ns 20 ns/V TSRST Assertion of reset slew rate for battery backup entry 20 20 20 5,6 9 NOTES: 1. See the timing measurement conditions in Figure 10. 2. See Figure 15, Figure 16 and Figure 17. 3. Setup time for point-to-point signals applies to P[x]_REQ# and P[x]_GNT# only. All other signals are bused. 4. See the timing measurement conditions in Figure 9. 5. SFN_RST# is asserted and deasserted asynchronously with respect to SFN_CLK. 6. All output drivers must be floated when SFN_RST# is active. 7. For purposes of Active/Float timing measurements, the HI-Z or “off” state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification. 8. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the same time. 9. Relevant reset input pin depends on power-on configuration and may be P1_RST#, P2_RST#, or SFN_RST#. This specification does not apply to systems that do not implement battery backup. Per PCI/X specifications reset slew rate is only specified for the de-assertion edge at 20ns/V. 74 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications 4.4.4 DDR SDRAM Interface Signal Timings Table 35. AC Specifications for DDR SDRAM Interface Symbol Parameter Min. Max. Units Notes TVB1 SD_DQS output valid time before SD_CLK - 0.9 ns 1 TVA1 SD_DQS output valid time after SD_CLK - 0.9 ns 1 TVB2 Address and Control write output valid before SD_CLK 3.9 - ns 1 TVA2 Address and Control write output valid after SD_CLK 4.3 - ns 1 TVB3 SD_DQS read input valid time before SD_ DQ - 0.9 ns 2 TVA3 SD_DQS read input valid time after SD_DQ - 0.9 ns 2 TVB4 SD_DQS write input valid time before SD_ DQ 1.7 - ns 1 TVA4 SD_DQS write input valid time after SD_DQ 1.7 - ns 1 NOTES: 1. See Figure 12. 2. See Figure 13. 4.4.5 Intel XScale® Microprocessor Interface Signal Timings Table 36. AC Specifications for Intel XScale® Microprocessor Interface Symbol Parameter Min. Max. Units Notes TOV1 Output Valid Delay from XS_CLK - XS_DQ[63:0] and XS_BE[7:0] 3.2 8.5 ns 1,3 TOV2 Output Valid Delay from XS_CLK - XS_DVALID and XS_ABORT 3.2 8.5 ns 1,3 TIS1 Input Setup to XS_CLK - XS_DQ[63:0] and XS_BE[7:0] 0.5 - ns 2 TIH1 Input Hold from XS_CLK - XS_DQ[63:0],XS_BE[7:0] 2.2 - ns 2 TIS2 Input Setup to XS_CLK - XS_A[15:0], XS_LEN[2:0] 0.5 - ns 2 TIH2 Input Hold from XS_CLK - XS_A[15:0],XS_LEN[2:0] 2.2 - ns 2 NOTES: 1. See Figure 10. 2. See Figure 9. 3. These output valid times are specified with 30 pF loading. Datasheet 75 Intel® GW80314 I/O Companion Chip Electrical Specifications 4.4.6 UART Interface Signal Timings Table 37. AC Specifications for UART Interface Symbol Parameter Minimum Max. Units Notes THDSR U[x]_DSR# Hold Time 0 - ns TSDSR U[x]_DSR# Setup Time 60 - ns TDRDSR U[x]_RTS# - U[x]_DSR# Delay Time 30 - ns TDWDSR U[x]_CTS# - U[x]_DSR# Delay Time 30 - ns THRX U[x]_RX Hold Time 30 - ns TSRX U[x]_RX Setup Time 30 - ns TDTX U[x]_TX Transmit Cycle Delay Time 125 - ns THRTS U[x]_DSR# - U[x]_RTS# Hold Time 20 - ns TDRTS U[x]_RTS# - U[x]_TX Data Delay Time - 60 ns 1 TDFRTS U[x]_RTS# - U[x]_TX Floating Data Delay Time - 100 ns 1 TDRX U[x]_RX Receive Cycle Delay Time 150 - ns THCTS U[x]_DSR# - U[x]_CTS# Hold Time 20 - ns NOTES: 1. Output has external load of 100pF. Charge and discharge times determined by VOL, VOH, and external load. 76 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications 4.4.7 Peripheral Bus Interface (PBI) Signal Timings Table 38. PBI Interface Timing Parameter Timing Relationship Min. Max. Units ns Notes tSADLE Setup time from address valid to PBI_LE assertion -6.0 + w tHADLE Hold time from PBI_LE assertion to address release 7.5 + w 1 tSADCS Setup time from address valid to PBI_CS_B assertion -7.5 + w tDACSOE Delay time from PBI_CS_B assertion to PBI_OE_B assertion -1.0 + w tDACSWE Delay time from PBI_CS_B assertion to PBI_RW assertion 0.0 + w tHWDCS Hold time from PBI_CS_B deassertion to data release for write data tDDCSWE Delay time from PBI_CS_B deassertion to PBI_RW deassertion in handshaking mode -2.0 + w 0.0 + w ns 1 tDHWECS Delay time from PBI_RW deassertion to PBI_CS_B deassertion in non-handshaking mode 0.0 + w 2.0 + w ns 1 tDDCSOE Delay time from PBI_CS_B deassertion to PBI_OE_B deassertion -1.0 2.5 ns 2.1 + w ns 1, 2 ns 1 2.5 + w ns 1 2.0 + w ns 1 0.5 ns tVADRD Delay time from address valid to Read Data valid in latch mode tWVRD Data valid window 3.7 ns tVADWD Write Data valid after address is released in latch mode 4.5 ns tVCSWD Write Data valid after PBI_CS_B assertion in non-latch mode 7.5 ns 1, 3 NOTES: 1. Can be programmed to multiple integer SFN clock cycles. Assuming programmed to least amount of integer clock cycles. Note that “+w” indicates programmable wait states. 2. Calculation includes one SFN clock cycle with a period of 7.5 ns. 3. Calculation includes two SFN clock cycles. SFN clock cycle period is 7.5 ns. Datasheet 77 Intel® GW80314 I/O Companion Chip Electrical Specifications Figure 6. Address Window Signal Timing Diagram tSADLE PBI_LE tHADLE PBI_AD WRITE DATA VALID ADDRESS VALID tVADWD WRITE DATA VALID PBI_AD tSADCS tVCSWD PBI_CS_B tDACSOE PBI_OE_B tDACSWE PBI_RW NOTE: All timing relationships are independent of each other. 78 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications Figure 7. Data Window Signal Timing Diagram PBI_AD ADDRESS VALID PBI_AD WRITE DATA VALID tHWDCS PBI_CS_B tDHWECS tDDCSWE PBI_RW tDDCSOE PBI_OE_B Figure 8. Address to Read Data Timing Diagram tVADRD PBI_AD Datasheet ADDRESS VALID tWVRD DATA VALID 79 Intel® GW80314 I/O Companion Chip Electrical Specifications 4.4.8 I2C Interface Signal Timings Table 39 lists the AC specifications for GW80314 I2C interfaces. The specifications are valid for both the GPIO I2C interface and the I2C interface contained within the DDR SDRAM controller. Table 39. AC Specifications for I2C Interface Std. Mode Symbol Parameter FSCL SD_I2C_CLK/I2C_SCLK Clock Frequency TBUF Bus Free Time Between STOP and START Condition THDSTA Hold Time (repeated) START condition Units Notes Min. Max. 0 100 KHz 4.7 - µs 1 4 - µs 1,3 TLOW SD_I2C_CLK/I2C_SCLK Clock Low Time 4.7 - µs 1,2 THIGH SD_I2C_CLK/I2C_SCLK Clock High Time 4 - µs 1,2 TSUSTA Setup Time for a Repeated START condition 4.7 - µs 1 THDDAT Data Hold Time 0 3.45 µs 1 TSUDAT Data Setup Time 250 - ns 1 TSR SD_I2C_CLK, SD_I2C_SDA, I2C_SCLK, and I2C_SDA Rise Time - 1000 ns 1 TSF SD_I2C_CLK, SD_I2C_SDA, I2C_SCLK, and I2C_SDA Fall Time - 300 ns 1 Setup Time for STOP Condition 4 - µs 1 TSUSTO NOTES: 1. See Figure 11. 2. Not tested. 3. After this period, the first clock pulse in generated. 80 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications 4.4.9 Boundary Scan Test Signal Timings Table 40. Boundary Scan Test Signal Timings Symbol Parameter Min. Max. Units Notes TBSF TCK Frequency 0 10 MHz TBSCH TCK High Time 50 - ns Measured at 1.5V, 1 TBSCL TCK Low Time 50 - ns Measured at 1.5V, 1 TBSCR TCK Rise Time - 25 ns 0.8V to 2.0V, 1 TBSCF TCK Fall Time - 25 ns 2.0V to 0.8V, 1 TSIS1 Input Setup to TCK 10 - ns 4 TBSIH1 Input Hold from TCK 10 - ns 4 TBSOV1 TDO Output Valid Delay from falling edge of TCK. - 15 ns 2, 3 TOF1 TDO Output Float Delay from falling edge of TCK - 15 ns 2, 5 NOTES: 1. Not tested. 2. Outputs precharged to VCC5. 3. See Figure 10. 4. See Figure 9. 5. A float condition occurs when the output current becomes less than ILO. Float delay is not tested. See Figure 10. Datasheet 81 Intel® GW80314 I/O Companion Chip Electrical Specifications 4.5 AC Timing Waveforms Figure 9. Input Timing Measurement Waveforms Vth CLK Vtest Vtl TIH TIS Vth INPUT Vtest Valid Vtest Vmax Vtl Figure 10. Output Timing Measurement Waveforms Vth CLK Vtest Vtl TOV Vtfall OUTPUT DELAY FALL TOV OUTPUT DELAY RISE Vtrise TOF OUTPUT FLOAT 82 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications Figure 11. I2C Interface Signal Timings SDA TBUF TLOW TSR TSF THDSTA TSP SCL THDSTA Stop Figure 12. THDDAT TSUSTO THIGH TSUDAT TSUSTA Start Repeated Start Stop DDR SDRAM Write Timings ADDR/CTRL TVB2 TVA2 SD_CLK TVB1 TVA1 SD_DQS TVB4 TVA4 SD_DQ Datasheet 83 Intel® GW80314 I/O Companion Chip Electrical Specifications Figure 13. DDR SDRAM Read Timings SD_CLK SD_DQS TVB3 TVA3 SD_DQ 84 Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications 4.6 AC Test Conditions Table 41 and Figure 14 through Figure 17 summarize the AC test and measurement conditions to be used for the GW80314. Table 41. AC Measurement Conditions Symbol PCI-X PCI DDR Intel XScale® Microprocessor GigE Units Vtch 0.6*VCC33 0.6*VCC33 - 0.6*VCC33 0.6*VCC33 V Vtcl 0.2*VCC33 0.2*VCC33 - 0.2*VCC33 0.2*VCC33 V Vth 0.6*VCC33 0.6*VCC33 2.0 0.6*VCC33 0.6*VCC33 V Vtl 0.25*VCC33 0.2*VCC33 0.5 0.2*VCC33 0.2*VCC33 V Vtest 0.4*VCC33 0.4*VCC33 1.25 0.4*VCC33 0.4*VCC33 V Vtrise 0.285*VCC33 0.285*VCC33 1.25 0.285*VCC33 0.285*VCC33 V Vfall 0.615*VCC33 0.615*VCC33 1.25 0.615*VCC33 0.615*VCC33 V Vmax 0.4*VCC33 0.4*VCC33 1.5 0.4*VCC33 0.4*VCC33 V Slew Rate 1-6 1-6 1.5 1.5 1.5 V/ns Notes 1 NOTE: Input signal slew rate is measured between VIL and VIH. Figure 14. AC Test Load for all Signals Except PCI and DDR SDRAM Test Point Output 50pF Figure 15. PCI/PCI-X TOV(max) Rising Edge AC Test Load Test Point Output 25Ω Datasheet 10pF 85 Intel® GW80314 I/O Companion Chip Electrical Specifications Figure 16. PCI/PCI-X TOV(max) Falling Edge AC Test Load VCC33 Test Point 25Ω Output 10pF Figure 17. PCI/PCI-X TOV(min) AC Test Load VCC33 Test Point 1KΩ Output 1KΩ 86 10pF Datasheet Intel® GW80314 I/O Companion Chip Electrical Specifications 4.7 Power Sequencing The power-up and power-down sequences for the 1.2 V/2.5 V/3.3 V supply rails are specified below: • The 1.2 V rail can be ramped before the 2.5 V and/or 3.3 V rails. • Current transients can occur when the 1.2 V supply is ramped after the 2.5 V and/or 3.3 V supply rails. • The transients are acceptable when the 1.2 V lag is less than or equal to 20 ms. • Transient currents of up to 2 A/VDD2.5 and 4 A/VDD3.3 can occur on the supplies until VDD1.2 >= ~0.6 V. • The 1.2 V supply can power-down before 3.3 V/2.5 V by no more than 20 ms, or any time after. These requirements are illustrated in Figure 18. Figure 18. Correct Power Sequence for VDD33, VDD25, and VDD12 Vdd 3.3 and Vdd 2.5 in either order Volts 3.3 Vdd3.3 2.5 Vdd2.5 1.2 0.5 Vdd1.2 10mS max Time • Vdd 3.3 and Vdd 2.5 can come up in either order relative to each other • Vdd 1.2 can proceed V3.3 and Vdd 2.5 or lag up to 20mS max • If Vdd 1.2 lags Vdd 3.3 and/or Vdd 2.5 transient currents of up to 2A/Vdd 2.5 and 4A/Vdd 3.3 occur on the supplies until Vdd 1.2 >= ~0.6v • 1.2V can power down before 3.3V/2.5V by no more than 20ms or any time after 3.3V/2.5V. Power-sequencing rules must be applied for both power-up and power-down. While only power-up sequencing is described in the graphs and paragraphs below, power-down sequencing must comply with the same rules. Datasheet 87 Intel® GW80314 I/O Companion Chip Electrical Specifications THIS PAGE INTENTIONALLY LEFT BLANK 88 Datasheet