MICROSEMI APT68GA60LD40

APT68GA60LD40
600V
High Speed PT IGBT
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
APT68GA60LD40
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
Combi (IGBT and Diode)
®
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
600
V
IC1
Continuous Collector Current @ TC = 25°C
121
IC2
Continuous Collector Current @ TC = 100°C
68
ICM
Pulsed Collector Current 1
202
VGE
Gate-Emitter Voltage
±30
V
PD
Total Power Dissipation @ TC = 25°C
520
W
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
Symbol
202A @ 600V
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
A
°C
300
TJ = 25°C unless otherwise specified
Parameter
VBR(CES)
Collector-Emitter Breakdown Voltage
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
Test Conditions
Min
VGE = 0V, IC = 250μA
600
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
2.5
VGE = 15V,
TJ = 25°C
2.0
IC = 40A
TJ = 125°C
1.9
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
TJ = 25°C
275
VGE = 0V
TJ = 125°C
3000
Microsemi Website - http://www.microsemi.com
V
6
VCE = 600V,
VGS = ±30V
Unit
±100
μA
nA
6 - 2009
Vces
Parameter
052-6341 Rev D
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg3
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
APT68GA60LD40
TJ = 25°C unless otherwise specified
Test Conditions
VGE = 0V, VCE = 25V
526
f = 1MHz
59
Gate Charge
198
VGE = 15V
32
IC = 40A
A
21
VCC = 400V
27
Turn-Off Delay Time
VGE = 15V
133
IC = 40A
88
Eon2
Turn-On Switching Energy
RG = 4.7Ω4
715
Eoff6
Turn-Off Switching Energy
TJ = +25°C
607
td(on)
Turn-On Delay Time
Inductive Switching (125°C)
20
tr
td(off)
Current Rise Time
VCC = 400V
26
Turn-Off Delay Time
VGE = 15V
175
IC = 40A
129
Eon2
Turn-On Switching Energy
RG = 4.7Ω4
1117
Eoff6
Turn-Off Switching Energy
TJ = +125°C
1025
tf
Current Fall Time
nC
L= 100uH, VCE = 600V
Inductive Switching (25°C)
Unit
pF
202
Current Rise Time
Current Fall Time
Max
66
TJ = 150°C, RG = 4.7Ω4, VGE = 15V,
Turn-On Delay Time
Typ
5230
VCE= 300V
Gate- Collector Charge
Switching Safe Operating Area
Min
Capacitance
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol
Characteristic
RθJC
Junction to Case Thermal Resistance (IGBT)
RθJC
Junction to Case Thermal Resistance (Diode)
WT
Torque
Package Weight
Mounting Torque (TO-264 Package), 4-40 or M3 screw
Min
Typ
Max
-
-
.24
.67
-
6.1
Unit
°C/W
-
g
10
in·lbf
052-6341 Rev D
6 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471.
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
120
V
TJ= 125°C
100
TJ= 25°C
60
40
20
0
1
2
3
4
5
120
80
TJ= 25°C
40
TJ= -55°C
TJ= 125°C
0
2
4
6
8
10
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
3
IC = 80A
IC = 40A
2
IC = 20A
1
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
50
6V
5V
0
4
8
12 16
20 24 28
32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
I = 40A
C
T = 25°C
J
15
VCE = 120V
VCE = 300V
10
VCE = 480V
5
0
40
80
120
160
GATE CHARGE (nC)
FIGURE 4, Gate charge
200
5
4
3
IC = 80A
IC = 40A
2
IC = 20A
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
1.10
120
1.05
1.00
0.95
0.90
0.85
0.80
0.75
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
100
80
60
6 - 2009
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.15
0.70
7V
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6341 Rev D
0
100
0
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
8V
150
20
250μs PULSE
TEST<0.5 % DUTY
CYCLE
160
0
9V
200
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
200
10V
250
0
6
VGE, GATE-TO-EMITTER VOLTAGE (V)
240
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
TJ= 55°C
80
15V
13V
300
TJ= 150°C
0
IC, COLLECTOR CURRENT (A)
= 15V
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
GE
APT68GA60LD40
350
Typical Performance Curves
25
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VCE = 400V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
VGE = 15V
20
15
10
5
0
0
20
40
60
VCE = 400V
RG = 4.7Ω
L = 100μH
0
10
20
30
40
50
60
70
80
60
140
120
TJ = 125°C, VGE = 15V
100
tr, FALL TIME (ns)
tr, RISE TIME (ns)
VGE =15V,TJ=25°C
50
0
40
30
20
TJ = 25 or 125°C,VGE = 15V
0
10
20
30
40
50
60
70
TJ = 125°C
1000
TJ = 25°C
10
J
5000
Eoff,80A
4000
3000
Eon2,40A
2000
Eoff,40A
Eon2,20A
2500
50
60
70
80
2000
TJ = 125°C
1500
1000
500
TJ = 25°C
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
2500
Eon2,80A
G
Eoff,80A
2000
1500
Eon2,40A
1000
Eoff,40A
Eon2,20A
500
Eoff,20A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
40
G
Eoff,20A
0
30
0
10 20
30 40 50 60
70
80
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
Eon2,80A
20
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
3000
V
= 400V
CE
V
= +15V
GE
T = 125°C
6000
0
0
0
0
10 20 30
40 50 60
70 80
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
1000
RG = 4.7Ω, L = 100μH, VCE = 400V
3000
0
7000
40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (μJ)
G
8000
TJ = 25°C, VGE = 15V
60
0
80
V
= 400V
CE
V
= +15V
GE
R =4.7Ω
2000
80
20
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3000
Eon2, TURN ON ENERGY LOSS (μJ)
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
160
0
SWITCHING ENERGY LOSSES (μJ)
VGE =15V,TJ=125°C
150
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
70
RG = 4.7Ω, L = 100μH, VCE = 400V
10
6 - 2009
200
80
50
052-6341 Rev D
APT68GA60LD40
250
30
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT68GA60LD40
1000
Cies
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
10000
1000
Coes
100
Cres
10
100
10
1
0.1
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0
100
200
300
400
500
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
0.25
D = 0.9
0.20
0.7
0.15
0.5
0.10
Note:
PDM
0.3
t1
t2
0.05
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.1
SINGLE PULSE
0.05
0
10
-5
10-4
10-3
10-2
0.1
1
6 - 2009
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
052-6341 Rev D
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
APT68GA60LD40
10%
Gate Voltage
TJ = 125°C
td(on)
90%
APT30DQ60
tr
IC
V CC
V CE
5%
10%
Collector Current
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
Gate Voltage
td(off)
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6341 Rev D
6 - 2009
Figure 22, Turn-off Switching Waveforms and Definitions
ULTRAFAST SOFT RECOVERY RECTIFIER DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
Unit
APT68GA60LD40
Maximum Average Forward Current (TC = 111°C, Duty Cycle = 0.5)
40
RMS Forward Current (Square wave, 50% duty)
63
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
320
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
Min
IF = 40A
2.0
IF = 80A
2.5
IF = 40A, TJ = 125°C
1.7
Forward Voltage
VF
Type
Max
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Maximum Reverse Recovery Current
IRRM
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Maximum Reverse Recovery Current
IRRM
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
Test Conditions
Min
Typ
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
22
-
IF = 40A, diF/dt = -200A/µs
VR = 400V, TC = 25°C
IF = 40A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
IF = 40A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Unit
ns
-
25
-
-
35
-
nC
-
3
-
Amps
-
160
-
ns
-
480
-
nC
-
6
-
Amps
-
85
-
ns
-
920
-
nC
-
20
-
Amps
D = 0.9
0.60
0.50
0.7
0.40
0.5
Note:
0.30
PDM
0.3
0.20
t1
t2
t
0.1
SINGLE PULSE
0.05
0
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
l
6 - 2009
0.10
052-6341 Rev D
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
Dynamic Characteristics
TJ = 25°C unless otherwise specified
180
100
80
60
TJ = 125°C
40
TJ = 175°C
20
TJ = 25°C
trr, REVERSE RECOVERY TIME
(ns)
IF, FORWARD CURRENT
(A)
120
0.5
1
1.5
2
2.5
3
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 2. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
1400
T = 125°C
J
V = 400V
R
1200
80A
1000
800
40A
600
400
20A
200
0
80
60
40
25
T = 125°C
J
V = 400V
R
15
20A
5
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 5. Reverse Recovery Current vs. Current Rate of Change
Qrr
trr
IRRM
0.8
0.6
trr
0.4
Duty cycle = 0.5
T = 175°C
J
60
50
40
30
Qrr
20
10
0
200
180
160
140
120
100
80
60
40
20
0
40A
10
1.2
1.0
80A
20
70
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 6. Dynamic Parameters vs. Junction Temperature
CJ, JUNCTION CAPACITANCE
(pF)
20A
100
80
0.0
6 - 2009
40A
120
1.4
0.2
052-6341 Rev D
140
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 3. Reverse Recovery Time vs. Current Rate of Change
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 4. Reverse Recovery Charge vs. Current Rate of Change
R
80A
0
IRRM, REVERSE RECOVERY CURRENT
(A)
0
T = 125°C
J
V = 400V
160
20
TJ = -55°C
0
APT68GA60LD40
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 8. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 7. Maximum Average Forward Current vs. CaseTemperature
Dynamic Characteristics
TJ = 25°C unless otherwise specified
APT68GA60LD40
Vr
diF /dt Adjust
+18V
0V
D.U.T.
30μH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 9. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
0.25 IRRM
3
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 10, Diode Reverse Recovery Waveform and Definitions
TO-264 (L) Package Outline
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
19.51 (.768)
20.50 (.807)
3.10 (.122)
3.48 (.137)
Collector
(Cathode)
5.79 (.228)
6.20 (.244)
25.48 (1.003)
26.49 (1.043)
2.29 (.090)
2.69 (.106)
19.81 (.780)
21.39 (.842)
2.29 (.090)
2.69 (.106)
Gate
Collector (Cathode)
0.76 (.030)
1.30 (.051)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
6 - 2009
Emitter (Anode)
0.48 (.019)
0.84 (.033)
2.59 (.102)
3.00 (.118)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6341 Rev D
Dimensions in Millimeters and (Inches)