APT68GA60LD40 600V High Speed PT IGBT POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT68GA60LD40 poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. Combi (IGBT and Diode) ® FEATURES TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 600 V IC1 Continuous Collector Current @ TC = 25°C 121 IC2 Continuous Collector Current @ TC = 100°C 68 ICM Pulsed Collector Current 1 202 VGE Gate-Emitter Voltage ±30 V PD Total Power Dissipation @ TC = 25°C 520 W 2 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range TL Symbol 202A @ 600V -55 to 150 Lead Temperature for Soldering: 0.063" from Case for 10 Seconds Static Characteristics A °C 300 TJ = 25°C unless otherwise specified Parameter VBR(CES) Collector-Emitter Breakdown Voltage VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage Test Conditions Min VGE = 0V, IC = 250μA 600 Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 2.5 VGE = 15V, TJ = 25°C 2.0 IC = 40A TJ = 125°C 1.9 VGE =VCE , IC = 1mA ICES Typ 3 4.5 TJ = 25°C 275 VGE = 0V TJ = 125°C 3000 Microsemi Website - http://www.microsemi.com V 6 VCE = 600V, VGS = ±30V Unit ±100 μA nA 6 - 2009 Vces Parameter 052-6341 Rev D Symbol Dynamic Characteristics Symbol Parameter Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg3 Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf APT68GA60LD40 TJ = 25°C unless otherwise specified Test Conditions VGE = 0V, VCE = 25V 526 f = 1MHz 59 Gate Charge 198 VGE = 15V 32 IC = 40A A 21 VCC = 400V 27 Turn-Off Delay Time VGE = 15V 133 IC = 40A 88 Eon2 Turn-On Switching Energy RG = 4.7Ω4 715 Eoff6 Turn-Off Switching Energy TJ = +25°C 607 td(on) Turn-On Delay Time Inductive Switching (125°C) 20 tr td(off) Current Rise Time VCC = 400V 26 Turn-Off Delay Time VGE = 15V 175 IC = 40A 129 Eon2 Turn-On Switching Energy RG = 4.7Ω4 1117 Eoff6 Turn-Off Switching Energy TJ = +125°C 1025 tf Current Fall Time nC L= 100uH, VCE = 600V Inductive Switching (25°C) Unit pF 202 Current Rise Time Current Fall Time Max 66 TJ = 150°C, RG = 4.7Ω4, VGE = 15V, Turn-On Delay Time Typ 5230 VCE= 300V Gate- Collector Charge Switching Safe Operating Area Min Capacitance ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic RθJC Junction to Case Thermal Resistance (IGBT) RθJC Junction to Case Thermal Resistance (Diode) WT Torque Package Weight Mounting Torque (TO-264 Package), 4-40 or M3 screw Min Typ Max - - .24 .67 - 6.1 Unit °C/W - g 10 in·lbf 052-6341 Rev D 6 - 2009 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. 3 See Mil-Std-750 Method 3471. 4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves 120 V TJ= 125°C 100 TJ= 25°C 60 40 20 0 1 2 3 4 5 120 80 TJ= 25°C 40 TJ= -55°C TJ= 125°C 0 2 4 6 8 10 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 3 IC = 80A IC = 40A 2 IC = 20A 1 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 50 6V 5V 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) I = 40A C T = 25°C J 15 VCE = 120V VCE = 300V 10 VCE = 480V 5 0 40 80 120 160 GATE CHARGE (nC) FIGURE 4, Gate charge 200 5 4 3 IC = 80A IC = 40A 2 IC = 20A 1 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 140 1.10 120 1.05 1.00 0.95 0.90 0.85 0.80 0.75 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 100 80 60 6 - 2009 IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.15 0.70 7V 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6341 Rev D 0 100 0 12 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 8V 150 20 250μs PULSE TEST<0.5 % DUTY CYCLE 160 0 9V 200 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 200 10V 250 0 6 VGE, GATE-TO-EMITTER VOLTAGE (V) 240 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) TJ= 55°C 80 15V 13V 300 TJ= 150°C 0 IC, COLLECTOR CURRENT (A) = 15V VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) GE APT68GA60LD40 350 Typical Performance Curves 25 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) VCE = 400V TJ = 25°C, or 125°C RG = 4.7Ω L = 100μH VGE = 15V 20 15 10 5 0 0 20 40 60 VCE = 400V RG = 4.7Ω L = 100μH 0 10 20 30 40 50 60 70 80 60 140 120 TJ = 125°C, VGE = 15V 100 tr, FALL TIME (ns) tr, RISE TIME (ns) VGE =15V,TJ=25°C 50 0 40 30 20 TJ = 25 or 125°C,VGE = 15V 0 10 20 30 40 50 60 70 TJ = 125°C 1000 TJ = 25°C 10 J 5000 Eoff,80A 4000 3000 Eon2,40A 2000 Eoff,40A Eon2,20A 2500 50 60 70 80 2000 TJ = 125°C 1500 1000 500 TJ = 25°C V = 400V CE V = +15V GE R = 4.7Ω 2500 Eon2,80A G Eoff,80A 2000 1500 Eon2,40A 1000 Eoff,40A Eon2,20A 500 Eoff,20A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance 40 G Eoff,20A 0 30 0 10 20 30 40 50 60 70 80 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) Eon2,80A 20 V = 400V CE V = +15V GE R = 4.7Ω 3000 V = 400V CE V = +15V GE T = 125°C 6000 0 0 0 0 10 20 30 40 50 60 70 80 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 1000 RG = 4.7Ω, L = 100μH, VCE = 400V 3000 0 7000 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (μJ) G 8000 TJ = 25°C, VGE = 15V 60 0 80 V = 400V CE V = +15V GE R =4.7Ω 2000 80 20 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3000 Eon2, TURN ON ENERGY LOSS (μJ) 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 160 0 SWITCHING ENERGY LOSSES (μJ) VGE =15V,TJ=125°C 150 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 70 RG = 4.7Ω, L = 100μH, VCE = 400V 10 6 - 2009 200 80 50 052-6341 Rev D APT68GA60LD40 250 30 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT68GA60LD40 1000 Cies IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) 10000 1000 Coes 100 Cres 10 100 10 1 0.1 1 10 100 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0 100 200 300 400 500 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 0.25 D = 0.9 0.20 0.7 0.15 0.5 0.10 Note: PDM 0.3 t1 t2 0.05 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 SINGLE PULSE 0.05 0 10 -5 10-4 10-3 10-2 0.1 1 6 - 2009 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 052-6341 Rev D ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 APT68GA60LD40 10% Gate Voltage TJ = 125°C td(on) 90% APT30DQ60 tr IC V CC V CE 5% 10% Collector Current 5% Collector Voltage Switching Energy A D.U.T. Figure 20, Inductive Switching Test Circuit Figure 21, Turn-on Switching Waveforms and Definitions TJ = 125°C 90% Gate Voltage td(off) Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6341 Rev D 6 - 2009 Figure 22, Turn-off Switching Waveforms and Definitions ULTRAFAST SOFT RECOVERY RECTIFIER DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM Unit APT68GA60LD40 Maximum Average Forward Current (TC = 111°C, Duty Cycle = 0.5) 40 RMS Forward Current (Square wave, 50% duty) 63 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 320 Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Min IF = 40A 2.0 IF = 80A 2.5 IF = 40A, TJ = 125°C 1.7 Forward Voltage VF Type Max Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge Maximum Reverse Recovery Current IRRM trr Reverse Recovery Time Qrr Reverse Recovery Charge Maximum Reverse Recovery Current IRRM trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current Test Conditions Min Typ Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 22 - IF = 40A, diF/dt = -200A/µs VR = 400V, TC = 25°C IF = 40A, diF/dt = -200A/µs VR = 400V, TC = 125°C IF = 40A, diF/dt = -1000A/µs VR = 400V, TC = 125°C Unit ns - 25 - - 35 - nC - 3 - Amps - 160 - ns - 480 - nC - 6 - Amps - 85 - ns - 920 - nC - 20 - Amps D = 0.9 0.60 0.50 0.7 0.40 0.5 Note: 0.30 PDM 0.3 0.20 t1 t2 t 0.1 SINGLE PULSE 0.05 0 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION l 6 - 2009 0.10 052-6341 Rev D ZθJC, THERMAL IMPEDANCE (°C/W) 0.70 Dynamic Characteristics TJ = 25°C unless otherwise specified 180 100 80 60 TJ = 125°C 40 TJ = 175°C 20 TJ = 25°C trr, REVERSE RECOVERY TIME (ns) IF, FORWARD CURRENT (A) 120 0.5 1 1.5 2 2.5 3 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 2. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 1400 T = 125°C J V = 400V R 1200 80A 1000 800 40A 600 400 20A 200 0 80 60 40 25 T = 125°C J V = 400V R 15 20A 5 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 5. Reverse Recovery Current vs. Current Rate of Change Qrr trr IRRM 0.8 0.6 trr 0.4 Duty cycle = 0.5 T = 175°C J 60 50 40 30 Qrr 20 10 0 200 180 160 140 120 100 80 60 40 20 0 40A 10 1.2 1.0 80A 20 70 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 6. Dynamic Parameters vs. Junction Temperature CJ, JUNCTION CAPACITANCE (pF) 20A 100 80 0.0 6 - 2009 40A 120 1.4 0.2 052-6341 Rev D 140 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 3. Reverse Recovery Time vs. Current Rate of Change IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 4. Reverse Recovery Charge vs. Current Rate of Change R 80A 0 IRRM, REVERSE RECOVERY CURRENT (A) 0 T = 125°C J V = 400V 160 20 TJ = -55°C 0 APT68GA60LD40 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 8. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 7. Maximum Average Forward Current vs. CaseTemperature Dynamic Characteristics TJ = 25°C unless otherwise specified APT68GA60LD40 Vr diF /dt Adjust +18V 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 9. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 10, Diode Reverse Recovery Waveform and Definitions TO-264 (L) Package Outline 4.60 (.181) 5.21 (.205) 1.80 (.071) 2.01 (.079) 19.51 (.768) 20.50 (.807) 3.10 (.122) 3.48 (.137) Collector (Cathode) 5.79 (.228) 6.20 (.244) 25.48 (1.003) 26.49 (1.043) 2.29 (.090) 2.69 (.106) 19.81 (.780) 21.39 (.842) 2.29 (.090) 2.69 (.106) Gate Collector (Cathode) 0.76 (.030) 1.30 (.051) 2.79 (.110) 3.18 (.125) 5.45 (.215) BSC 2-Plcs. 6 - 2009 Emitter (Anode) 0.48 (.019) 0.84 (.033) 2.59 (.102) 3.00 (.118) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6341 Rev D Dimensions in Millimeters and (Inches)