APT50GT120B2RDQ2G 1200V, 50A, VCE(ON) = 3.2V Typical Thunderbolt IGBT® The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. Features • Low Forward Voltage Drop • Low Tail Current • RBSOA and SCSOA Rated • High Frequency Switching to 50KHz • RoHS Compliant • Ultra Low Leakage Current Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is made with two parallel IGBT die. It is intended for switch-mode operation. It is not suitable for linear mode operation. Maximum Ratings All Ratings: TC = 25°C unless otherwise specified. Symbol Parameter Ratings VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 IC1 Continuous Collector Current @ TC = 25°C 94 IC2 Continuous Collector Current @ TC = 100°C 50 SSOA PD TJ, TSTG TL Pulsed Collector Current Volts Amps 150 150A @ 1200V Switching Safe Operating Area @ TJ = 150°C Total Power Dissipation 625 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec. Static Electrical Characteristics °C 300 Symbol Characteristic / Test Conditions Min Typ Max 1200 - - V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 3mA) VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 2mA, Tj = 25°C) 4.5 5.5 6.5 Collector Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 25°C) 2.7 3.2 3.7 Collector Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 125°C) - 4.0 - - - 300 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2 - - TBD Gate-Emitter Leakage Current (VGE = ±20V) - - 300 VCE(ON) ICES IGES Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Unit Volts μA nA 052-6289 Rev B 6-2008 ICM 1 Unit Dynamic Characteristic Symbol Cies APT50GT120B2RDQ2R Characteristic Test Conditions Min Typ Max - 1650 - - 250 - - 110 - Gate Charge - 10.5 - Input Capacitance VGE = 0V, VCE = 25V Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage f = 1MHz Qg Total Gate Charge VGE = 15V - 340 - Qge Gate-Emitter Charge VCE= 600V - 40 - IC = 50A - 210 - Qgc Gate-Collector Charge TJ = 150°C, RG = 1.0Ω , VGE = 15V, Unit pF V nC 7 SSOA td(on) tr td(off) tf Switching Safe Operating Area L = 100μH, VCE= 1200V Turn-On Delay Time 150 A - 24 - Inductive Switching (25°C) - 53 - Turn-Off Delay Time VCC = 800V - 230 - Current Fall Time VGE = 15V - 26 - RG = 4.7Ω - TBD - TJ = +25°C - 5330 - Current Rise Time ns IC = 50A Turn-On Switching Energy 4 Eon2 Turn-On Switching Energy 5 Eoff Turn-Off Switching Energy 6 - 2033 - td(on) Turn-On Delay Time - 24 - Inductive Switching (125°C) - 53 - Turn-Off Delay Time VCC = 800V - 255 - Current Fall Time VGE = 15V - 48 - Turn-On Switching Energy 4 IC = 50A TBD - Turn-On Switching Energy RG = 4.7Ω - 5 - 5670 - Turn-Off Switching Energy 6 - 2850 - Eon1 tr td(off) tf Eon1 Eon2 Eoff Current Rise Time TJ = 125°C Thermal and Mechanical Characteristics θJC R θJC WT ns µJ Symbol Characteristic / Test Conditions R µJ Max Unit Junction to Case (IGBT) 0.20 °C/W Junction to Case (DIODE) 0.80 Package Weight Min Typ 6.2 g 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages. 052-6289 Rev B 6-2008 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves GE = 15V 125 TJ= 55°C 100 75 TJ= 125°C 50 TJ= 150°C 25 0 1 2 3 4 5 6 7 8 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) VGE, GATE-TO-EMITTER VOLTAGE (V) 100 75 TJ= -55°C TJ= 25°C TJ= 125°C VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 0 6 IC = 100A 4 3 IC = 50A 2 IC = 25A 1 0 8 9 10 11 12 13 14 15 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 1.05 1.00 0.95 0.90 0.85 0.80 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 8V 25 7V 6V I = 50A C T = 25°C 14 VCE = 240V J VCE = 600V 12 10 VCE = 960V 8 6 4 2 0 7 50 100 150 200 250 300 GATE CHARGE (nC) FIGURE 4, Gate charge 350 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 6 IC = 100A 5 4 IC = 50A IC = 25A 3 2 1 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 1.10 0.75 -.50 -.25 9V 50 0 10 12 14 2 4 6 8 VCE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 5 10V 75 0 10 15 20 25 30 5 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 125 25 11V 100 16 250µs PULSE TEST<0.5 % DUTY CYCLE 50 125 0 0 150 15V 13V TJ= 25°C 80 60 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6289 Rev A 9-2007 V APT50GT120B2RDQ2G 150 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 150 Typical Performance Curves APT50GT120B2RDQ2G 300 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 35 30 VGE = 15V 25 20 15 10 VCE = 800V TJ = 25°C, or 125°C RG = 1.0Ω L = 100µH 5 0 250 200 VGE =15V,TJ=25°C 150 100 VCE = 800V RG = 1.0Ω L = 100µH 50 0 0 20 40 60 80 100 120 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 0 20 40 60 80 100 120 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 160 VGE =15V,TJ=125°C 60 RG = 1.0Ω, L = 100µH, VCE = 800V 140 RG = 1.0Ω, L = 100µH, VCE = 800V 50 100 tr, FALL TIME (ns) tr, RISE TIME (ns) 120 80 60 40 TJ = 25 or 125°C,VGE = 15V TJ = 125°C 10,000 5,000 TJ = 25°C 0 50,000 40,000 30,000 20,000 10,000 0 Eon2,50A 0 Eoff,100A Eoff,50A Eon2,25A Eoff,25A 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance 5,000 G TJ = 125°C 4,000 3,000 2,000 TJ = 25°C 1,000 20,000 Eon2,100A J V = 800V CE V = +15V GE R = 1.0Ω 10 30 50 70 90 110 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) 052-6289 Rev A 9-2007 V = 800V CE V = +15V GE T = 125°C TJ = 25°C, VGE = 15V 0 10 30 50 70 90 110 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 60,000 20 10 30 50 70 90 110 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 6,000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 10 30 50 70 90 110 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 20,000 G 30 0 0 15,000 TJ = 125°C, VGE = 15V 10 20 V = 800V CE V = +15V GE R = 1.0Ω 40 V = 800V CE V = +15V GE R = 1.0Ω Eon2,100A G 15,000 10,000 Eon2,50A 5,000 Eoff,100A Eoff,50A Eon2,25A 0 Eoff,25A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT50GT120B2RDQ2G 5000 160 140 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 1000 Coes 100 Cres 10 120 100 80 60 40 20 0 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0 100 200 300 400 500 600 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 0. 2 D = 0.9 0.15 0.7 0. 1 0.5 Note: 0.3 PDM t1 t2 0.05 t 0.1 0 0.05 10 -5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration TC (°C) 0.0487 0.151 Dissipated Power (Watts) 0.00909 ZEXT TJ (°C) 0.389 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) 120 1.0 T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 1.0Ω 100 G 80 F 60 = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 75°C 40 100°C 20 0 10 20 30 40 50 60 70 80 90 max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6289 Rev A 9-2007 ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT50GT120B2RDQ2G 10% Gate Voltage TJ = 125°C td(on) APT30DQ120 90% Collector Current tr IC V CC V CE 5% 5% 10% Collector Voltage Switching Energy A D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% TJ = 125°C 90% Gate Voltage td(off) Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6289 Rev A 9-2007 Figure 23, Turn-off Switching Waveforms and Definitions Typical Performance Curves APT50GT120B2RDQ2G ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified. Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT50GT120B2RDQ2G Maximum Average Forward Current (TC = 103°C, Duty Cycle = 0.5) 30 RMS Forward Current (Square wave, 50% duty) 43 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 210 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions VF Min Type Max IF = 30A 2.8 3.3 IF = 60A 3.4 IF = 30A, TJ = 125°C 2.1 Forward Voltage Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge Typ Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 26 - - 320 - - 545 - nC - 4 - Amps - 435 - ns - 2100 - nC - 9 - Amps - 180 - ns - 2975 - nC - 28 - Amps IF = 30A, diF/dt = -200A/µs VR = 667V, TC = 25°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IF = 30A, diF/dt = -200A/µs VR = 667V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current IF = 30A, diF/dt = -1000A/µs VR = 800V, TC = 125°C Unit ns 0.80 D = 0.9 0.70 0.60 0.7 0.50 0.5 0.40 0.30 Note: PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.90 0.3 t2 0.20` 0 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.1 0.10 0.05 10-5 t1 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION TJ (°C) TC (°C) 0.570 0.231 Dissipated Power (Watts) 0.00241 0.210 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 052-6289 Rev A 9-2007 IRRM Min ZEXT IRRM Test Conditions APT50GT120B2RDQ2G 200 600 TJ = 175°C 120 100 80 TJ = 25°C TJ = 125°C 60 TJ = -55°C 20 0 Qrr, REVERSE RECOVERY CHARGE (nC) T = 125°C J V = 800V R 60A 4000 3000 30A 2000 15A 1000 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change 0.8 trr 30A 300 15A 200 100 35 30 T = 125°C J V = 800V R 60A 25 30A 20 15 15A 10 5 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change 50 Qrr Duty cycle = 0.5 T = 175°C 45 J 40 IRRM 35 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.0 400 0 0.6 30 25 20 0.4 15 Qrr 10 0.2 5 0.0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature 0 0 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature 180 160 140 120 100 80 60 40 20 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage CJ, JUNCTION CAPACITANCE (pF) 200 052-6289 Rev A 9-2007 trr 60A 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change IRRM, REVERSE RECOVERY CURRENT (A) 1 2 3 4 5 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage 5000 R 500 0 0 1.2 trr, REVERSE RECOVERY TIME (ns) 140 40 160 T = 125°C J V = 800V IF, FORWARD CURRENT (A) 180 25 50 APT50GT120B2RDQ2G Vr diF /dt Adjust +18V APT10078BLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions T-MAX® Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 20.80 (.819) 21.46 (.845) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6289 Rev A 9-2007 Collector (Cathode) 5.38 (.212) 6.20 (.244)