MICROSEMI APT50GT120B2RDQ2G

APT50GT120B2RDQ2G
1200V, 50A, VCE(ON) = 3.2V Typical
Thunderbolt IGBT®
The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using
Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed.
Features
• Low Forward Voltage Drop
• Low Tail Current
• RBSOA and SCSOA Rated • High Frequency Switching to 50KHz
• RoHS Compliant
• Ultra Low Leakage Current
Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is made with two parallel
IGBT die. It is intended for switch-mode operation. It is not suitable for linear mode operation.
Maximum Ratings All Ratings: TC = 25°C unless otherwise specified.
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
IC1
Continuous Collector Current @ TC = 25°C
94
IC2
Continuous Collector Current @ TC = 100°C
50
SSOA
PD
TJ, TSTG
TL
Pulsed Collector Current
Volts
Amps
150
150A @ 1200V
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
625
Operating and Storage Junction Temperature Range
Watts
-55 to 150
Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec.
Static Electrical Characteristics °C
300
Symbol Characteristic / Test Conditions
Min
Typ
Max
1200
-
-
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 3mA)
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 2mA, Tj = 25°C)
4.5
5.5
6.5
Collector Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 25°C)
2.7
3.2
3.7
Collector Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 125°C)
-
4.0
-
-
-
300
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
-
-
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
-
-
300
VCE(ON)
ICES
IGES
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Unit
Volts
μA
nA
052-6289 Rev B 6-2008
ICM
1
Unit
Dynamic Characteristic
Symbol
Cies
APT50GT120B2RDQ2R
Characteristic
Test Conditions
Min
Typ
Max
-
1650
-
-
250
-
-
110
-
Gate Charge
-
10.5
-
Input Capacitance
VGE = 0V, VCE = 25V
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
f = 1MHz
Qg
Total Gate Charge
VGE = 15V
-
340
-
Qge
Gate-Emitter Charge
VCE= 600V
-
40
-
IC = 50A
-
210
-
Qgc
Gate-Collector Charge
TJ = 150°C, RG = 1.0Ω , VGE = 15V,
Unit
pF
V
nC
7
SSOA
td(on)
tr
td(off)
tf
Switching Safe Operating Area
L = 100μH, VCE= 1200V
Turn-On Delay Time
150
A
-
24
-
Inductive Switching (25°C)
-
53
-
Turn-Off Delay Time
VCC = 800V
-
230
-
Current Fall Time
VGE = 15V
-
26
-
RG = 4.7Ω
-
TBD
-
TJ = +25°C
-
5330
-
Current Rise Time
ns
IC = 50A
Turn-On Switching Energy
4
Eon2
Turn-On Switching Energy
5
Eoff
Turn-Off Switching Energy 6
-
2033
-
td(on)
Turn-On Delay Time
-
24
-
Inductive Switching (125°C)
-
53
-
Turn-Off Delay Time
VCC = 800V
-
255
-
Current Fall Time
VGE = 15V
-
48
-
Turn-On Switching Energy
4
IC = 50A
TBD
-
Turn-On Switching Energy
RG = 4.7Ω
-
5
-
5670
-
Turn-Off Switching Energy
6
-
2850
-
Eon1
tr
td(off)
tf
Eon1
Eon2
Eoff
Current Rise Time
TJ = 125°C
Thermal and Mechanical Characteristics
θJC
R
θJC
WT
ns
µJ
Symbol Characteristic / Test Conditions
R
µJ
Max
Unit
Junction to Case (IGBT)
0.20
°C/W
Junction to Case (DIODE)
0.80
Package Weight
Min
Typ
6.2
g
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages.
052-6289 Rev B 6-2008
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
GE
= 15V
125
TJ= 55°C
100
75
TJ= 125°C
50
TJ= 150°C
25
0
1
2
3
4
5
6
7
8
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
100
75
TJ= -55°C
TJ= 25°C
TJ= 125°C
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
0
6
IC = 100A
4
3
IC = 50A
2
IC = 25A
1
0
8
9
10 11 12 13 14 15 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
1.05
1.00
0.95
0.90
0.85
0.80
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
8V
25
7V
6V
I = 50A
C
T = 25°C
14
VCE = 240V
J
VCE = 600V
12
10
VCE = 960V
8
6
4
2
0
7
50
100 150 200 250 300
GATE CHARGE (nC)
FIGURE 4, Gate charge
350
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
6
IC = 100A
5
4
IC = 50A
IC = 25A
3
2
1
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
1.10
0.75
-.50 -.25
9V
50
0
10
12
14
2
4
6
8
VCE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
10V
75
0
10
15
20
25
30
5
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
125
25
11V
100
16
250µs PULSE
TEST<0.5 % DUTY
CYCLE
50
125
0
0
150
15V
13V
TJ= 25°C
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6289 Rev A 9-2007
V
APT50GT120B2RDQ2G
150
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
150
Typical Performance Curves
APT50GT120B2RDQ2G
300
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
35
30
VGE = 15V
25
20
15
10
VCE = 800V
TJ = 25°C, or 125°C
RG = 1.0Ω
L = 100µH
5
0
250
200
VGE =15V,TJ=25°C
150
100
VCE = 800V
RG = 1.0Ω
L = 100µH
50
0
0
20
40
60
80
100 120
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
0
20
40
60
80
100
120
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
160
VGE =15V,TJ=125°C
60
RG = 1.0Ω, L = 100µH, VCE = 800V
140
RG = 1.0Ω, L = 100µH, VCE = 800V
50
100
tr, FALL TIME (ns)
tr, RISE TIME (ns)
120
80
60
40
TJ = 25 or 125°C,VGE = 15V
TJ = 125°C
10,000
5,000
TJ = 25°C
0
50,000
40,000
30,000
20,000
10,000
0
Eon2,50A
0
Eoff,100A
Eoff,50A
Eon2,25A
Eoff,25A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
5,000
G
TJ = 125°C
4,000
3,000
2,000
TJ = 25°C
1,000
20,000
Eon2,100A
J
V
= 800V
CE
V
= +15V
GE
R = 1.0Ω
10
30
50
70
90
110
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6289 Rev A 9-2007
V
= 800V
CE
V
= +15V
GE
T = 125°C
TJ = 25°C, VGE = 15V
0
10
30
50
70
90
110
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
60,000
20
10
30
50
70
90
110
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
6,000
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
10
30
50
70
90
110
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
20,000
G
30
0
0
15,000
TJ = 125°C, VGE = 15V
10
20
V
= 800V
CE
V
= +15V
GE
R = 1.0Ω
40
V
= 800V
CE
V
= +15V
GE
R = 1.0Ω
Eon2,100A
G
15,000
10,000
Eon2,50A
5,000
Eoff,100A
Eoff,50A
Eon2,25A
0
Eoff,25A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT50GT120B2RDQ2G
5000
160
140
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
1000
Coes
100
Cres
10
120
100
80
60
40
20
0
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0
100
200
300
400
500 600
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
0. 2
D = 0.9
0.15
0.7
0. 1
0.5
Note:
0.3
PDM
t1
t2
0.05
t
0.1
0
0.05
10
-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
TC (°C)
0.0487
0.151
Dissipated Power
(Watts)
0.00909
ZEXT
TJ (°C)
0.389
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
120
1.0
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 1.0Ω
100
G
80
F
60
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
75°C
40
100°C
20
0
10
20
30
40
50
60
70
80
90
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6289 Rev A 9-2007
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT50GT120B2RDQ2G
10%
Gate Voltage
TJ = 125°C
td(on)
APT30DQ120
90%
Collector Current
tr
IC
V CC
V CE
5%
5%
10%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
TJ = 125°C
90%
Gate Voltage
td(off)
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6289 Rev A 9-2007
Figure 23, Turn-off Switching Waveforms and Definitions
Typical Performance Curves
APT50GT120B2RDQ2G
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT50GT120B2RDQ2G
Maximum Average Forward Current (TC = 103°C, Duty Cycle = 0.5)
30
RMS Forward Current (Square wave, 50% duty)
43
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
210
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
VF
Min
Type
Max
IF = 30A
2.8
3.3
IF = 60A
3.4
IF = 30A, TJ = 125°C
2.1
Forward Voltage
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Typ
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
26
-
-
320
-
-
545
-
nC
-
4
-
Amps
-
435
-
ns
-
2100
-
nC
-
9
-
Amps
-
180
-
ns
-
2975
-
nC
-
28
-
Amps
IF = 30A, diF/dt = -200A/µs
VR = 667V, TC = 25°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 30A, diF/dt = -200A/µs
VR = 667V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
IF = 30A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
Unit
ns
0.80
D = 0.9
0.70
0.60
0.7
0.50
0.5
0.40
0.30
Note:
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.90
0.3
t2
0.20`
0
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.1
0.10
0.05
10-5
t1
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TJ (°C)
TC (°C)
0.570
0.231
Dissipated Power
(Watts)
0.00241
0.210
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
052-6289 Rev A 9-2007
IRRM
Min
ZEXT
IRRM
Test Conditions
APT50GT120B2RDQ2G
200
600
TJ = 175°C
120
100
80
TJ = 25°C
TJ = 125°C
60
TJ = -55°C
20
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
T = 125°C
J
V = 800V
R
60A
4000
3000
30A
2000
15A
1000
0
0
200 400 600 800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
0.8
trr
30A
300
15A
200
100
35
30
T = 125°C
J
V = 800V
R
60A
25
30A
20
15
15A
10
5
0
200 400 600 800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
50
Qrr
Duty cycle = 0.5
T = 175°C
45
J
40
IRRM
35
IF(AV) (A) Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.0
400
0
0.6
30
25
20
0.4
15
Qrr
10
0.2
5
0.0
25
50
75
100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
0
0
75
100 125 150 175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
180
160
140
120
100
80
60
40
20
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
CJ, JUNCTION CAPACITANCE
(pF)
200
052-6289 Rev A 9-2007
trr
60A
0
200 400 600 800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
IRRM, REVERSE RECOVERY CURRENT
(A)
1
2
3
4
5
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
5000
R
500
0
0
1.2
trr, REVERSE RECOVERY TIME (ns)
140
40
160
T = 125°C
J
V = 800V
IF, FORWARD CURRENT
(A)
180
25
50
APT50GT120B2RDQ2G
Vr
diF /dt Adjust
+18V
APT10078BLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
T-MAX® Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
20.80 (.819)
21.46 (.845)
4.50
(.177) Max.
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
Gate
Collector (Cathode)
Emitter (Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6289 Rev A 9-2007
Collector (Cathode)
5.38 (.212)
6.20 (.244)