APT15GP60BDL(G) 600V, 15A, VCE(ON) = 2.2V Typical Resonant Mode Combi IGBT® The POWER MOS 7® IGBT used in this resonant mode combi is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. Features TO -2 47 Typical Applications • Low Conduction Loss • SSOA Rated • Induction Heating • Low Gate Charge • RoHS Compliant • Welding G E C • Ultrafast Tail Current shutoff • Medical • Low forward Diode Voltage (VF) • High Power Telecom • Ultrasoft Recovery Diode • Resonant Mode Phase Shifted Bridge G E All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol C Parameter VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 56 I C2 Continuous Collector Current @ TC = 110°C 27 I CM Pulsed Collector Current SSOA PD 1 Switching Safe Operating Area @ TJ = 150°C Amps 65A @ 600V Watts 250 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. TL Volts 65 @ TC = 25°C Total Power Dissipation TJ,TSTG UNIT Ratings °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.0mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 275 2 Gate-Emitter Leakage Current (VGE = ±20V) 2750 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com UNIT Volts μA nA 11-2008 MIN Rev B Characteristic / Test Conditions 052-6356 Symbol APT15GP60BDL(G) DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 MIN TYP Capacitance 1685 VGE = 0V, VCE = 25V 210 f = 1 MHz 15 Gate Charge 7.5 VGE = 15V 55 VCE = 300V 12 15 Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 15A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω,VGE = MAX UNIT pF V nC 65 A 15V, L = 100μH,VCE = 600V Inductive Switching (25°C) 8 Current Rise Time VCC = 400V 12 Turn-off Delay Time VGE = 15V 29 Current Fall Time I C = 15A 58 Eon1 Turn-on Switching Energy RG = 5Ω 130 Eon2 Turn-on Switching Energy (With Diode) TJ = +25°C 152 Eoff Turn-off Switching Energy td(on) Turn-on Delay Time td(on) tr td(off) tf tr td(off) tf Turn-on Delay Time 4 6 8 Current Rise Time VCC = 400V 12 Turn-off Delay Time VGE = 15V 69 I C = 15A 88 RG = 5Ω 130 TJ = +125°C 267 Current Fall Time 44 Turn-on Switching Energy Eon2 Turn-on Switching Energy (With Diode) Turn-off Switching Energy μJ 121 Inductive Switching (125°C) Eon1 Eoff 5 ns 55 66 ns μJ 268 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) RθJC Junction to Case (DIODE) 1.00 Package Weight 5.90 WT .50 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and diode leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 052-6356 Rev B 11-2008 Microsemi reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES TC=25°C 10 5 TC=-55°C TC=125°C 0 40 TJ = 25°C 20 TJ = 125°C TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 3 IC =30A 2.5 IC = 15A 2 IC = 7.5A 1.5 1 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature VCE = 480V 6 4 2 0 10 20 30 40 50 GATE CHARGE (nC) FIGURE 4, Gate Charge 60 3.5 3 IC =30A 2.5 IC = 15A 2 IC = 7.5A 1.5 1 0.5 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 70 0.95 VCE = 300V 8 1.15 1.0 VCE = 120V 10 80 1.05 J 12 1.2 1.10 I = 15A C T = 25°C 14 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 3.5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VGE, GATE-TO-EMITTER VOLTAGE (V) 60 TC=-55°C TC=125°C 5 FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 80 TC=25°C 10 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 100 TJ = -55°C 15 0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250μs PULSE TEST <0.5 % DUTY CYCLE 20 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 11-2008 15 25 APT15GP60BDL(G) VGE = 10V. 250μs PULSE TEST <0.5 % DUTY CYCLE Rev B 20 IC, COLLECTOR CURRENT (A) VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 25 IC, COLLECTOR CURRENT (A) 30 052-6356 30 APT15GP60BDL(G) 80 16 14 VGE= 10V 12 VGE= 15V 10 8 6 4 VCE = 400V TJ = 25°C or 125°C RG = 5Ω L = 100 μH 2 0 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 18 tf, FALL TIME (ns) tr, RISE TIME (ns) 20 15 10 RG =5Ω, L = 100μH, VCE = 400V VGE =10V,TJ=25°C VCE = 400V RG = 5Ω L = 100 μH 10 TJ = 125°C, VGE = 10V or 15V 60 TJ = 25°C, VGE = 10V or 15V 40 0 5 RG =5Ω, L = 100μH, VCE = 400V 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 5 700 V = 400V CE L = 100 μH R =5Ω TJ =125°C, VGE=15V G 500 TJ =125°C,VGE=10V 400 300 200 TJ = 25°C, VGE=15V 100 TJ = 25°C, VGE=10V 0 EOFF, TURN OFF ENERGY LOSS (μJ) EON2, TURN ON ENERGY LOSS (μJ) 20 20 TJ = 25 or 125°C,VGE = 15V 700 600 V = 400V CE L = 100 μH R =5Ω TJ = 125°C, VGE = 10V or 15V G 500 400 300 200 100 TJ = 25°C, VGE = 10V or 15V 0 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 700 V = 400V CE V = +15V GE TJ = 125°C 800 Eon2 30A 700 Eoff 30A 600 500 400 Eon2 15A 300 Eoff 15A 200 Eon2 7.5A 100 Eoff 7.5A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (μJ) 900 SWITCHING ENERGY LOSSES (μJ) VGE =15V,TJ=25°C 30 80 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 11-2008 40 100 5 Rev B 50 TJ = 25 or 125°C,VGE = 10V 25 052-6356 VGE =10V,TJ=125°C 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 30 600 60 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 VGE =15V,TJ=125°C 70 600 V = 400V CE V = +15V GE R =5Ω G 500 Eon2 30A 400 Eoff 30A 300 200 Eon2 15A 100 0 -50 Eon2 7.5A Eoff 15A Eoff 7.5A -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 4,000 IC, COLLECTOR CURRENT (A) Cies 1,000 P C, CAPACITANCE ( F) APT15GP60BDL(G) 70 500 Coes 100 50 60 50 40 30 20 Cres 10 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.50 0.9 0.40 0.7 0.30 0.5 PDM Note: 0.20 0.3 t1 t2 0.10 Duty Factor D = t1/t2 0.1 0.05 0 10-5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.284 0.0060 0.161 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. 50 10 FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL T = 125°C J T = 75°C C D = 50 % V = 400V CE R =5W G 5 10 15 20 25 30 35 40 45 50 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 11-2008 0.216 Dissipated Power (Watts) 100 Rev B TC ( C) 052-6356 TJ ( C) FMAX, OPERATING FREQUENCY (kHz) 292 ZEXT Z JC, THERMAL IMPEDANCE (°C/W) q 0.60 APT15GP60BDL(G) APT30DL60 APT15DF60 Gate Voltage 10% TJ = 125 C td(on) V CE IC V CC Collector Current tr 90% A 10% 5% D.U.T. 5% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage TJ = 125 C Collector Voltage td(off) A tf V CE IC 90% 100uH V CLAMP 10% Switching Energy 0 Collector Current 052-6356 Rev B 11-2008 Figure 23, Turn-off Switching Waveforms and Definitions B A DRIVER* Figure 24, EON1 Test Circuit D.U.T. DYNAMIC CHARACTERISTICS APT15GP60BDL(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM APT15GP60BDL(G) Characteristic / Test Conditions Maximum Average Forward Current (TC = 126°C, Duty Cycle = 0.5) 30 RMS Forward Current (Square wave, 50% duty) 51 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 320 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions MIN Forward Voltage TYP MAX IF = 30A 1.25 1.6 IF = 60A 2.0 IF = 30A, TJ = 125°C UNIT Volts 1.25 DYNAMIC CHARACTERISTICS Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/μs, V = 30V, T = 25°C F F R J - 64 trr Reverse Recovery Time - 317 Qrr Reverse Recovery Charge - 962 - 7 - 561 ns - 2244 nC - 9 - 264 ns - 3191 nC - 26 Amps Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IF = 30A, diF/dt = -1000A/μs VR = 400V, TC = 125°C Maximum Reverse Recovery Current - - Amps Amps 1.2 1 0.8 0.6 Note: 0.4 PDM t2 0.2 0 t1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION TJ (°C) TC (°C) .112 .437 .450 .0005 .0016 0.263 Dissipated Power (Watts) ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL 11-2008 ZθJC, THERMAL IMPEDANCE (°C/W) IRRM IF =30A, diF/dt = -200A/μs nC Rev B IRRM VR = 400V, TC = 25°C ZEXT IRRM IF = 30A, diF/dt = -200A/μs ns 052-6356 Symbol TYPICAL PERFORMANCE CURVES 800 100 TJ= 125°C TJ= 150°C TJ= 55°C 70 60 TJ= 25°C 50 40 30 20 10 0 0 0.5 1.0 1.5 2.0 2.5 3.0 VF, ANODE-TO-CATHODE VOLTAGE (V) FIGURE 2, Forward Current vs. Forward Voltage 4500 T = 125°C 60A J V = 400V R 4000 3500 30A 3000 2500 15A 2000 1500 1000 500 0 CJ, JUNCTION CAPACITANCE (pF) 11-2008 100 T = 125°C J V = 400V 28 60A R 30A 24 15A 20 16 12 8 4 0 40 tRR 0.6 QRR 30 0.4 20 0.2 10 Duty cycle = 0.5 TJ = 126°C 0 25 50 75 100 125 150 300 Rev B 200 50 TJ, JUNCTION TEMPERATURE (°C) FIGURE 6, Dynamic Parameters vs Junction Temperature 052-6356 300 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 5, Reverse Recovery Current vs. Current Rate of Change 60 IRRM 0.8 250 200 150 100 50 0 15A 400 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 3, Reverse Recovery Time vs. Current Rate of Change 32 1 0 30A 500 0 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/μs) 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change 1.2 R 60A 600 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 80 T = 125°C J V = 400V 700 trr, COLLECTOR CURRENT (A) 90 Qrr, REVERSE RECOVERY CHARGE (nC) APT15GP60BDL(G) 1 10 100 400 VR, REVERSE VOLTAGE (V) FIGURE 8, Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) FIGURE 7, Maximum Average Forward Current vs. Case Temperature Vr diF /dt Adjust +18V 0V D.U.T. trr/Qrr Waveform CURRENT TRANSFORMER Figure 9. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 1 4 6 Zero 5 5 Qrr - Area Under the Curve Defined by IRRM and trr. 6 diM/dt - Maximum Rate of Current Increase During the Trailing Portion of trr. 3 2 0.25 IRRM Slope = diM/dt Figure 10, Diode Reverse Recovery Waveform and Definitions TO-247 (B) Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector (Cathode) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. Rev B 5.45 (.215) BSC 2-Plcs. 052-6356 2.21 (.087) 2.59 (.102) 11-2008 Emitter (Anode)