ADPOW APT65GP60L2DF2

APT65GP60L2DF2
TYPICAL PERFORMANCE CURVES
APT65GP60L2DF2
600V
POWER MOS 7 IGBT
®
TO-264
Max
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 400V, 54A
• Low Gate Charge
• 50 kHz operation @ 400V, 76A
• Ultrafast Tail Current shutoff
• SSOA rated
G
C
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT65GP60L2DF2
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
7
UNIT
Volts
100
@ TC = 25°C
96
Amps
250
@ TC = 150°C
250A@600V
Safe Switching Operating Area @ TJ = 150°C
833
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1250µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 2.5mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
2
1250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
5500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
8-2004
MIN
Rev C
Characteristic / Test Conditions
050-7440
Symbol
APT65GP60L2DF2
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
TYP
Capacitance
7400
VGE = 0V, VCE = 25V
580
Reverse Transfer Capacitance
f = 1 MHz
35
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
210
VCE = 300V
50
65
Cies
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qg
MIN
Total Gate Charge
3
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 65A
SSOA
Safe Switching Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
250
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Eon1
Eon2
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy
90
Turn-on Delay Time
55
I C = 65A
605
TJ = +25°C
5
1410
6
Inductive Switching (125°C)
VCC = 400V
30
VGE = 15V
130
Turn-off Delay Time
55
I C = 65A
Current Fall Time
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
5
ns
90
R G = 5Ω
4
Turn-on Switching Energy
µJ
895
Current Rise Time
Eon1
ns
65
R G = 5Ω
4
Turn-on Switching Energy (Diode)
td(on)
tf
VGE = 15V
Current Fall Time
Turn-off Switching Energy
td(off)
30
Turn-off Delay Time
Eoff
tr
Inductive Switching (25°C)
VCC = 400V
605
TJ = +125°C
1925
6
µJ
1470
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.15
RΘJC
Junction to Case (DIODE)
.67
WT
Package Weight
6.10
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JEDS24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
050-7440
Rev C
8-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
90
60
50
40
30
TC=-55°C
TC=25°C
20
TC=125°C
50
40
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
TJ = -55°C
100
TJ = 25°C
50
TJ = 125°C
0
2
3
4 5
6 7
8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
3
IC =130A
2.5
IC = 65A
2
IC = 32.5A
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
1.10
VCE=120V
12
VCE=300V
10
8
VCE=480V
6
4
2
0
50
100
150
200
GATE CHARGE (nC)
FIGURE 4, Gate Charge
250
3
IC =130A
2.5
IC = 65A
2
IC = 32.5A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
300
1.2
1.15
IC = 65A
TJ = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
FIGURE 2, Output Characteristics (VGE = 10V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
150
TC=-55°C
TC=125°C
20
0
200
TC=25°C
30
10
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC, COLLECTOR CURRENT (A)
60
0
FIGURE 1, Output Characteristics(VGE = 15V)
250
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
70
10
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
80
250
200
150
100
50
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
8-2004
70
APT65GP60L2DF2
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
Rev C
80
IC, COLLECTOR CURRENT (A)
90
IC, COLLECTOR CURRENT (A)
100
050-7440
100
50
VGE= 10V
40
VGE= 15V
30
20
VCE = 400V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 µH
10
VGE =15V,TJ=25°C
60
VGE =10V,TJ=25°C
40
20
120
tf, FALL TIME (ns)
tr, RISE TIME (ns)
80
VCE = 400V
RG = 5Ω
L = 100 µH
140
TJ = 25 or 125°C,VGE = 10V
100
80
60
TJ = 25 or 125°C,VGE = 15V
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
5000
VCE = 400V
L = 100 µH
RG = 5 Ω
80
60
40
5000
TJ =125°C, VGE=15V
4500
TJ =125°C,VGE=10V
4000
3500
3000
2500
TJ = 25°C, VGE=15V
2000
1500
1000
500
TJ = 25°C, VGE=10V
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
9000
VCE = 400V
VGE = +15V
TJ = 125°C
8000
TJ = 25°C, VGE = 10V or 15V
6000
5000
Eoff 130A
4000
Eon2 65A
3000
2000
Eoff 65A
1000
Eon2 32.5A
Eoff32.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
VCE = 400V
L = 100 µH
RG = 5 Ω
4000
TJ = 125°C, VGE = 10V or 15V
3000
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
Eon2 130A
7000
0
100
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
5500
TJ = 125°C, VGE = 10V or 15V
0
SWITCHING ENERGY LOSSES (µJ)
6000
RG =5Ω, L = 100µH, VCE = 400V
20
RG =5Ω, L = 100µH, VCE = 400V
EON2, TURN ON ENERGY LOSS (µJ)
VGE =10V,TJ=125°C
160
20
SWITCHING ENERGY LOSSES (µJ)
100
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
40
8-2004
120
0
120
Rev C
VGE =15V,TJ=125°C
140
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
140
050-7440
APT65GP60L2DF2
160
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
60
5000
VCE = 400V
VGE = +15V
RG = 5 Ω
Eon2 130A
Eoff 130A
4000
3000
2000
Eon2 65A
Eoff 65A
1000
Eon2 32.5A
0
-50
Eoff 32.5A
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
10,000
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
5,000
1,000
Coes
500
100
50
APT65GP60L2DF2
300
Cres
250
200
150
100
50
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.16
0.9
0.12
0.7
0.10
0.08
0.5
Note:
PDM
0.06
0.3
0.04
0
t1
t2
Duty Factor D = t1/t2
0.1
0.02
0.05
10
-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10
10
10
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
-4
-3
-2
1.0
187
0.0822
0.256F
Case temperature(°C)
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
10
10
30
50
70
90
110
130
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
8-2004
0.0217F
Rev C
0.0683
Power
(watts)
100
050-7440
RC MODEL
Junction
temp (°C)
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.14
APT65GP60L2DF2
APT30DF60
Gate Voltage
IC
V CC
TJ = 125 C
td(on)
V CE
Collector Current
tr
90%
A
D.U.T.
5%
10%
5%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
90%
Gate Voltage
*DRIVER SAME TYPE AS D.U.T.
TJ = 125 C
Collector Voltage
A
td(off)
tf
V CE
90%
100uH
IC
V CLAMP
0
10%
Switching Energy
Collector Current
050-7440
Rev C
8-2004
Figure 23, Turn-off Switching Waveforms and Definitions
B
A
DRIVER*
Figure 24, EON1 Test Circuit
D.U.T.
TYPICAL PERFORMANCE CURVES
APT65GP60L2DF2
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT65GP60L2DF2
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 99°C, Duty Cycle = 0.5)
30
RMS Forward Current (Square wave, 50% duty)
49
UNIT
Amps
320
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
MIN
Forward Voltage
TYP
IF = 65A
2.82
IF = 130A
3.60
IF = 65A, TJ = 125°C
2.22
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
21
trr
Reverse Recovery Time
-
60
Qrr
Reverse Recovery Charge
-
65
-
3
-
115
ns
-
410
nC
-
7
-
49
ns
-
705
nC
-
22
Amps
IRRM
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
VR = 400V, TC = 25°C
IF = 30A, diF/dt = -200A/µs
Maximum Reverse Recovery Current
trr
IRRM
IF = 30A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
IF = 30A, diF/dt = -1000A/µs
Maximum Reverse Recovery Current
VR = 400V, TC = 125°C
ns
nC
-
-
Amps
Amps
0.9
0.60
0.50
0.7
0.40
0.5
Note:
0.30
PDM
0.3
0.20
t1
t2
0.10
0.1
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
Junction
temp (°C)
0.378 °C/W
0.00232 J/°C
0.291 °C/W
0.110 J/°C
Power
(watts)
Case temperature (°C)
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
8-2004
10-5
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
Rev C
0
SINGLE PULSE
050-7440
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.70
140
APT65GP60L2DF2
120
TJ = 125°C
VR = 400V
100
TJ = 150°C
80
TJ = 125°C
60
TJ = 25°C
40
TJ = -55°C
20
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 26. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
900
60A
700
30A
600
500
15A
400
300
200
100
0
0
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Charge vs. Current Rate of Change
CJ, JUNCTION CAPACITANCE
(pF)
TJ = 125°C
VR = 400V
60A
20
15
30A
10
15A
5
0
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 29. Reverse Recovery Current vs. Current Rate of Change
Duty cycle = 0.5
TJ = 150°C
50
40
trr
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.0
0.8
IRRM
0.6
Qrr
0.4
30
20
10
0
250
8-2004
20
trr
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 30. Dynamic Parameters vs. Junction Temperature
Rev C
40
0
Qrr
0.2
050-7440
60
60
1.2
200
150
100
50
0
15A
0
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 27. Reverse Recovery Time vs. Current Rate of Change
1.4
0.0
30A
80
25
TJ = 125°C
VR = 400V
800
100
0
0
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
120
trr, REVERSE RECOVERY TIME
(ns)
60A
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 32. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
Case Temperature (°C)
Figure 31. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT65GP60L2DF2
Vr
diF /dt Adjust
+18V
APT6017LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 33. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 34, Diode Reverse Recovery Waveform and Definitions
TO-264 MAXTM(L2) Package Outline
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
19.51 (.768)
20.50 (.807)
Collector
(Cathode)
5.79 (.228)
6.20 (.244)
25.48 (1.003)
26.49 (1.043)
0.76 (.030)
1.30 (.051)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
8-2004
0.48 (.019)
0.84 (.033)
2.59 (.102)
3.00 (.118)
Gate
Collector
(Cathode)
Emitter
(Anode)
Rev C
19.81 (.780)
21.39 (.842)
2.29 (.090)
2.69 (.106)
050-7440
2.29 (.090)
2.69 (.106)