APT65GP60L2DF2 TYPICAL PERFORMANCE CURVES APT65GP60L2DF2 600V POWER MOS 7 IGBT ® TO-264 Max The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 400V, 54A • Low Gate Charge • 50 kHz operation @ 400V, 76A • Ultrafast Tail Current shutoff • SSOA rated G C E C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT65GP60L2DF2 VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 7 UNIT Volts 100 @ TC = 25°C 96 Amps 250 @ TC = 150°C 250A@600V Safe Switching Operating Area @ TJ = 150°C 833 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1250µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 2.5mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 1250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 5500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 8-2004 MIN Rev C Characteristic / Test Conditions 050-7440 Symbol APT65GP60L2DF2 DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions TYP Capacitance 7400 VGE = 0V, VCE = 25V 580 Reverse Transfer Capacitance f = 1 MHz 35 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 210 VCE = 300V 50 65 Cies Input Capacitance Coes Output Capacitance Cres VGEP Qg MIN Total Gate Charge 3 Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 65A SSOA Safe Switching Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 250 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Eon1 Eon2 Turn-on Delay Time Current Rise Time Turn-on Switching Energy 90 Turn-on Delay Time 55 I C = 65A 605 TJ = +25°C 5 1410 6 Inductive Switching (125°C) VCC = 400V 30 VGE = 15V 130 Turn-off Delay Time 55 I C = 65A Current Fall Time Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy 5 ns 90 R G = 5Ω 4 Turn-on Switching Energy µJ 895 Current Rise Time Eon1 ns 65 R G = 5Ω 4 Turn-on Switching Energy (Diode) td(on) tf VGE = 15V Current Fall Time Turn-off Switching Energy td(off) 30 Turn-off Delay Time Eoff tr Inductive Switching (25°C) VCC = 400V 605 TJ = +125°C 1925 6 µJ 1470 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .15 RΘJC Junction to Case (DIODE) .67 WT Package Weight 6.10 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JEDS24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. 050-7440 Rev C 8-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 90 60 50 40 30 TC=-55°C TC=25°C 20 TC=125°C 50 40 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) TJ = -55°C 100 TJ = 25°C 50 TJ = 125°C 0 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 3 IC =130A 2.5 IC = 65A 2 IC = 32.5A 1.5 1 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.05 1.0 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 1.10 VCE=120V 12 VCE=300V 10 8 VCE=480V 6 4 2 0 50 100 150 200 GATE CHARGE (nC) FIGURE 4, Gate Charge 250 3 IC =130A 2.5 IC = 65A 2 IC = 32.5A 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 300 1.2 1.15 IC = 65A TJ = 25°C 14 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 150 TC=-55°C TC=125°C 20 0 200 TC=25°C 30 10 250µs PULSE TEST <0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 60 0 FIGURE 1, Output Characteristics(VGE = 15V) 250 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 70 10 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 80 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 8-2004 70 APT65GP60L2DF2 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE Rev C 80 IC, COLLECTOR CURRENT (A) 90 IC, COLLECTOR CURRENT (A) 100 050-7440 100 50 VGE= 10V 40 VGE= 15V 30 20 VCE = 400V TJ = 25°C or 125°C RG = 5Ω L = 100 µH 10 VGE =15V,TJ=25°C 60 VGE =10V,TJ=25°C 40 20 120 tf, FALL TIME (ns) tr, RISE TIME (ns) 80 VCE = 400V RG = 5Ω L = 100 µH 140 TJ = 25 or 125°C,VGE = 10V 100 80 60 TJ = 25 or 125°C,VGE = 15V 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 5000 VCE = 400V L = 100 µH RG = 5 Ω 80 60 40 5000 TJ =125°C, VGE=15V 4500 TJ =125°C,VGE=10V 4000 3500 3000 2500 TJ = 25°C, VGE=15V 2000 1500 1000 500 TJ = 25°C, VGE=10V 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 9000 VCE = 400V VGE = +15V TJ = 125°C 8000 TJ = 25°C, VGE = 10V or 15V 6000 5000 Eoff 130A 4000 Eon2 65A 3000 2000 Eoff 65A 1000 Eon2 32.5A Eoff32.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance VCE = 400V L = 100 µH RG = 5 Ω 4000 TJ = 125°C, VGE = 10V or 15V 3000 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 6000 Eon2 130A 7000 0 100 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) 5500 TJ = 125°C, VGE = 10V or 15V 0 SWITCHING ENERGY LOSSES (µJ) 6000 RG =5Ω, L = 100µH, VCE = 400V 20 RG =5Ω, L = 100µH, VCE = 400V EON2, TURN ON ENERGY LOSS (µJ) VGE =10V,TJ=125°C 160 20 SWITCHING ENERGY LOSSES (µJ) 100 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 40 8-2004 120 0 120 Rev C VGE =15V,TJ=125°C 140 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 140 050-7440 APT65GP60L2DF2 160 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 60 5000 VCE = 400V VGE = +15V RG = 5 Ω Eon2 130A Eoff 130A 4000 3000 2000 Eon2 65A Eoff 65A 1000 Eon2 32.5A 0 -50 Eoff 32.5A -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 10,000 P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 5,000 1,000 Coes 500 100 50 APT65GP60L2DF2 300 Cres 250 200 150 100 50 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.16 0.9 0.12 0.7 0.10 0.08 0.5 Note: PDM 0.06 0.3 0.04 0 t1 t2 Duty Factor D = t1/t2 0.1 0.02 0.05 10 -5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10 10 10 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration -4 -3 -2 1.0 187 0.0822 0.256F Case temperature(°C) FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL 50 TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 10 10 30 50 70 90 110 130 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 8-2004 0.0217F Rev C 0.0683 Power (watts) 100 050-7440 RC MODEL Junction temp (°C) FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) 0.14 APT65GP60L2DF2 APT30DF60 Gate Voltage IC V CC TJ = 125 C td(on) V CE Collector Current tr 90% A D.U.T. 5% 10% 5% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST 90% Gate Voltage *DRIVER SAME TYPE AS D.U.T. TJ = 125 C Collector Voltage A td(off) tf V CE 90% 100uH IC V CLAMP 0 10% Switching Energy Collector Current 050-7440 Rev C 8-2004 Figure 23, Turn-off Switching Waveforms and Definitions B A DRIVER* Figure 24, EON1 Test Circuit D.U.T. TYPICAL PERFORMANCE CURVES APT65GP60L2DF2 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT65GP60L2DF2 Characteristic / Test Conditions Maximum Average Forward Current (TC = 99°C, Duty Cycle = 0.5) 30 RMS Forward Current (Square wave, 50% duty) 49 UNIT Amps 320 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions MIN Forward Voltage TYP IF = 65A 2.82 IF = 130A 3.60 IF = 65A, TJ = 125°C 2.22 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 21 trr Reverse Recovery Time - 60 Qrr Reverse Recovery Charge - 65 - 3 - 115 ns - 410 nC - 7 - 49 ns - 705 nC - 22 Amps IRRM Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Time Qrr Reverse Recovery Charge VR = 400V, TC = 25°C IF = 30A, diF/dt = -200A/µs Maximum Reverse Recovery Current trr IRRM IF = 30A, diF/dt = -200A/µs VR = 400V, TC = 125°C IF = 30A, diF/dt = -1000A/µs Maximum Reverse Recovery Current VR = 400V, TC = 125°C ns nC - - Amps Amps 0.9 0.60 0.50 0.7 0.40 0.5 Note: 0.30 PDM 0.3 0.20 t1 t2 0.10 0.1 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION RC MODEL Junction temp (°C) 0.378 °C/W 0.00232 J/°C 0.291 °C/W 0.110 J/°C Power (watts) Case temperature (°C) FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL 8-2004 10-5 Duty Factor D = t1/t2 Peak TJ = PDM x ZθJC + TC Rev C 0 SINGLE PULSE 050-7440 Z JC, THERMAL IMPEDANCE (°C/W) θ 0.70 140 APT65GP60L2DF2 120 TJ = 125°C VR = 400V 100 TJ = 150°C 80 TJ = 125°C 60 TJ = 25°C 40 TJ = -55°C 20 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 26. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 900 60A 700 30A 600 500 15A 400 300 200 100 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Charge vs. Current Rate of Change CJ, JUNCTION CAPACITANCE (pF) TJ = 125°C VR = 400V 60A 20 15 30A 10 15A 5 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 29. Reverse Recovery Current vs. Current Rate of Change Duty cycle = 0.5 TJ = 150°C 50 40 trr IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.0 0.8 IRRM 0.6 Qrr 0.4 30 20 10 0 250 8-2004 20 trr 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 30. Dynamic Parameters vs. Junction Temperature Rev C 40 0 Qrr 0.2 050-7440 60 60 1.2 200 150 100 50 0 15A 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 27. Reverse Recovery Time vs. Current Rate of Change 1.4 0.0 30A 80 25 TJ = 125°C VR = 400V 800 100 0 0 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 120 trr, REVERSE RECOVERY TIME (ns) 60A 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 32. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 Case Temperature (°C) Figure 31. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT65GP60L2DF2 Vr diF /dt Adjust +18V APT6017LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 33. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 34, Diode Reverse Recovery Waveform and Definitions TO-264 MAXTM(L2) Package Outline 4.60 (.181) 5.21 (.205) 1.80 (.071) 2.01 (.079) 19.51 (.768) 20.50 (.807) Collector (Cathode) 5.79 (.228) 6.20 (.244) 25.48 (1.003) 26.49 (1.043) 0.76 (.030) 1.30 (.051) 2.79 (.110) 3.18 (.125) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 8-2004 0.48 (.019) 0.84 (.033) 2.59 (.102) 3.00 (.118) Gate Collector (Cathode) Emitter (Anode) Rev C 19.81 (.780) 21.39 (.842) 2.29 (.090) 2.69 (.106) 050-7440 2.29 (.090) 2.69 (.106)