APT15GN120BDQ1(G) 1200V TYPICAL PERFORMANCE CURVES APT15GN120BDQ1 APT15GN120BDQ1G* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive design and minimizes losses. TO -2 47 G C • 1200V Field Stop E • Trench Gate: Low VCE(on) • Easy Paralleling C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT15GN120BDQ1(G) VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 45 I C2 Continuous Collector Current @ TC = 110°C 22 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 45 Switching Safe Operating Area @ TJ = 150°C 45A @ 1200V Total Power Dissipation 195 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 0.5mA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) Gate-Emitter Leakage Current (VGE = ±20V) RGINT Intergrated Gate Resistor 5.0 5.8 6.5 1.4 1.7 2.1 Units Volts 2.0 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) I GES MAX 1200 (VCE = VGE, I C = 600µA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 200 2 120 N/A CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA TBD nA Ω 10-2005 V(BR)CES MIN Rev B Characteristic / Test Conditions 050-7598 Symbol APT15GN120BDQ1(G) DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge td(on) tr td(off) tf Eon2 Turn-on Switching Energy (Diode) tf A ns 410 µJ 730 950 Inductive Switching (125°C) 10 VCC = 800V 9 VGE = 15V 170 RG = 4.3Ω 7 185 475 I C = 15A Current Fall Time Turn-off Switching Energy nC 110 TJ = +25°C Turn-off Delay Time Turn-on Switching Energy (Diode) V 150 RG = 4.3Ω 7 Current Rise Time Turn-on Switching Energy pF 45 6 Eon2 UNIT 55 9 5 MAX 5 VCC = 800V 4 Eon1 Eoff 90 I C = 15A Turn-on Switching Energy tr 9.0 VGE = 15V VGE = 15V Eon1 td(off) Gate Charge 10 Current Fall Time Turn-on Delay Time 50 Inductive Switching (25°C) Turn-off Delay Time td(on) 65 f = 1 MHz 15V, L = 100µH,VCE = 1200V Current Rise Time Turn-off Switching Energy VGE = 0V, VCE = 25V TJ = 150°C, R G = 4.3Ω 7, VGE = Turn-on Delay Time Eoff 1200 I C = 15A Switching Safe Operating Area TYP Capacitance VCE = 600V Qge SSOA MIN 44 55 TJ = +125°C ns µJ 1310 66 1300 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic RθJC Junction to Case (IGBT) RθJC Junction to Case (DIODE) WT Package Weight MIN TYP MAX .64 1.18 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7598 Rev B 10-2005 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES V GE = 15V 15V 50 IC, COLLECTOR CURRENT (A) APT15GN120BDQ1(G) 60 40 TJ = 125°C 30 TJ = 25°C 20 TJ = -55°C 10 IC, COLLECTOR CURRENT (A) 60 50 13V 40 12V 30 11V 10V 20 9V 10 8V 7V 0 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 2 4 6 8 10 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) VGE, GATE-TO-EMITTER VOLTAGE (V) 30 20 10 0 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.0 IC = 30A 2.5 2.0 IC = 15A 1.5 IC = 7.5A 1.0 0.5 0 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 8 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 8 VCE =960V 6 4 2 0 20 40 60 80 GATE CHARGE (nC) 100 FIGURE 4, Gate Charge 1.10 1.05 VCE = 600V 10 0 4 8 12 16 20 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE = 240V 12 3.0 2.5 IC = 30A 2.0 IC = 15A 1.5 IC = 7.5A 1.0 0.5 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 10-2005 TJ = 125°C J Rev B TJ = 25°C 40 I = 15A C T = 25°C 14 050-7598 TJ = -55°C 50 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 60 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 70 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 80 10 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) APT15GN120BDQ1(G) 200 12 VGE = 15V 8 6 4 VCE = 800V 2 T = 25°C, T =125°C J J RG = 4.3Ω L = 100 µH 0 160 140 VGE =15V,TJ=125°C 120 VGE =15V,TJ=25°C 100 80 60 40 VCE = 800V RG = 4.3Ω L = 100 µH 20 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 16 180 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 300 RG = 4.3Ω, L = 100µH, VCE = 800V 14 RG = 4.3Ω, L = 100µH, VCE = 800V 250 tf, FALL TIME (ns) tr, RISE TIME (ns) 12 10 8 TJ = 25 or 125°C,VGE = 15V 6 200 TJ = 125°C, VGE = 15V 150 100 TJ = 25°C, VGE = 15V 4 50 2 0 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3500 V = 800V CE V = +15V GE R = 4.3Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 3000 G 2500 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C 2000 1500 1000 500 TJ = 25°C 050-7598 SWITCHING ENERGY LOSSES (µJ) 3000 G TJ = 125°C 2500 2000 1500 1000 TJ = 25°C 500 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 5000 3500 = 800V V CE = +15V V GE T = 125°C 4500 J 4000 Eon2,30A Eoff,30A 3500 3000 2500 Eon2,15A 2000 1500 500 0 Eon2,7.5A Eoff,15A 1000 Eoff,7.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) Rev B 10-2005 0 = 800V V CE = +15V V GE R = 4.3Ω = 800V V CE = +15V V GE R = 4.3Ω 3000 Eoff,30A G 2500 2000 Eon2,30A 1500 1000 Eon2,15A 500 0 Eoff,15A Eon2,7.5A 0 Eoff,7.5A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 500 P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 1,000 100 Coes 50 APT15GN120BDQ1(G) 50 2,000 45 40 35 30 25 20 15 Cres 10 5 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.60 0.50 0.7 0.40 0.5 Note: 0.30 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.70 0.3 0.20 t2 SINGLE PULSE 0.10 0 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 0.05 10-5 t1 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.258 0.0600 0.0312 0.389 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 50 F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 4.3Ω 10 6 max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 0 5 10 15 20 25 30 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 10-2005 Power (watts) 0.00192 Rev B 0.323 100 050-7598 Junction temp. (°C) RC MODEL FMAX, OPERATING FREQUENCY (kHz) 140 APT15GN120BDQ1(G) 10% APT15DQ120 Gate Voltage TJ = 125°C td(on) IC V CC V CE 90% tr 5% Collector Current 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage td(off) 90% tf Collector Voltage 10% 0 Collector Current Switching Energy 050-7598 Rev B 10-2005 Figure 23, Turn-off Switching Waveforms and Definitions TJ = 125°C TYPICAL PERFORMANCE CURVES APT15GN120BDQ1(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT15GN120BDQ1(G) Characteristic / Test Conditions Maximum Average Forward Current (TC = 127°C, Duty Cycle = 0.5) 15 RMS Forward Current (Square wave, 50% duty) 29 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 110 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions MIN Forward Voltage TYP IF = 15A 2.8 IF = 30A 2.4 IF = 15A, TJ = 125°C MAX UNIT Volts 2.45 DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 21 trr Reverse Recovery Time - 240 Qrr Reverse Recovery Charge - 260 - 3 - 290 ns - 960 nC - 6 - 130 ns - 1340 nC - 19 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 15A, diF/dt = -200A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 800V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 15A, diF/dt = -200A/µs IF = 15A, diF/dt = -1000A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps D = 0.9 1.00 0.7 0.80 0.60 0.5 0.40 0.3 Note: PDM t1 t2 0.20 0.1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION RC MODEL Junction temp. (°C) 0.676 0.00147 0.504 0.0440 Power (watts) Case temperature. (°C) FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 10-2005 10-5 Rev B 0 SINGLE PULSE 050-7598 ZθJC, THERMAL IMPEDANCE (°C/W) 1.20 trr, REVERSE RECOVERY TIME (ns) TJ = 175°C 50 TJ = 125°C 40 TJ = 25°C 30 TJ = -55°C 20 10 1 2 3 4 5 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage 0 Qrr, REVERSE RECOVERY CHARGE (nC) 2500 T = 125°C J V = 800V R 30A 2000 1500 15A 1000 7.5A 500 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 trr 1.0 trr 0.8 Qrr CJ, JUNCTION CAPACITANCE (pF) 7.5A 150 100 25 T = 125°C J V = 800V 30A R 20 15 15A 10 7.5A 5 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change 35 Duty cycle = 0.5 T = 175°C J 30 20 15 5 0 80 10-2005 15A 200 10 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature Rev B 250 25 0.2 050-7598 30A 300 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change IRRM 0.4 70 60 50 40 30 20 10 0 R 0 Qrr 0.6 0.0 T = 125°C J V = 800V 350 50 IRRM, REVERSE RECOVERY CURRENT (A) 0 APT15GN120BDQ1(G) 400 IF(AV) (A) IF, FORWARD CURRENT (A) 60 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT15GN120BDQ1(G) Vr diF /dt Adjust +18V APT10078BLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) 20.80 (.819) 21.46 (.845) 3.55 (.138) 3.81 (.150) 2.21 (.087) 2.59 (.102) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 10-2005 19.81 (.780) 20.32 (.800) Rev B 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123) 050-7598 4.50 (.177) Max.