ADPOW APT75GN60B

APT75GN60B(G)
600V
TYPICAL PERFORMANCE CURVES
APT75GN60B
APT75GN60BG*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and
a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures
extremely reliable operation, even in the event of a short circuit fault. Low gate charge
simplifies gate drive design and minimizes losses.
TO
-2
47
G
C
E
• 600V Field Stop
•
•
•
•
Trench Gate: Low VCE(on)
Easy Paralleling
6µs Short Circuit Capability
Intergrated Gate Resistor: Low EMI, High Reliability
C
G
E
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT75GN60B(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
8
@ TC = 25°C
UNIT
Volts
155
93
1
Amps
225
225A @ 600V
Switching Safe Operating Area @ TJ = 175°C
536
Total Power Dissipation
Operating and Storage Junction Temperature Range
Watts
-55 to 175
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
RG(int)
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
TYP
MAX
5.0
5.8
6.5
1.05
1.45
1.85
25
2
600
4
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
Volts
1.87
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
Units
nA
Ω
9-2005
MIN
Rev A
Characteristic / Test Conditions
050-7619
Symbol
APT75GN60B(G)
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
SCSOA
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
150
Gate Charge
9.5
VGE = 15V
485
VGE =
µs
VCC = 400V
48
38
RG = 1.0Ω 7
2500
TJ = +25°C
2140
Turn-on Delay Time
Inductive Switching (125°C)
47
VCC = 400V
48
Current Rise Time
Turn-off Delay Time
VGE = 15V
430
RG = 1.0Ω 7
55
2600
I C = 75A
Current Fall Time
44
Turn-on Switching Energy (Diode)
µJ
3725
6
Turn-on Switching Energy
ns
385
I C = 75A
Eon2
nC
6
VGE = 15V
Turn-on Switching Energy (Diode)
V
A
47
5
pF
225
Inductive Switching (25°C)
4
UNIT
270
7,
VCC = 600V, VGE = 15V,
Current Fall Time
MAX
30
TJ = 125°C, R G = 4.3Ω 7
Turn-off Delay Time
Turn-off Switching Energy
370
f = 1 MHz
15V, L = 100µH,VCE = 600V
Current Rise Time
Eon1
Eoff
VGE = 0V, VCE = 25V
TJ = 175°C, R G = 4.3Ω
Turn-on Delay Time
Turn-off Switching Energy
4500
I C = 75A
Short Circuit Safe Operating Area
TYP
Capacitance
VCE = 300V
Switching Safe Operating Area
Turn-on Switching Energy
MIN
55
TJ = +125°C
ns
4525
66
µJ
2585
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.28
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7619
Rev A
9-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
8 Continuous current limited by package pin temperature to 100A.
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
12V
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
120
100
TJ = 25°C
80
TJ = 125°C
60
TJ = 175°C
40
TJ = -55°C
20
0
IC, COLLECTOR CURRENT (A)
TJ = -55°C
120
TJ = 25°C
100
TJ = 125°C
80
60
40
TJ = 175°C
20
0
0
10V
100
9V
50
8V
7V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
11V
150
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
140
200
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
160
I = 75A
C
T = 25°C
J
14
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
0
100
2.0
IC = 75A
1.5
IC = 37.5A
1.0
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
3.0
2.0
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.85
IC = 37.5A
1.0
0.5
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75
100 125 150 175
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
180
0.90
IC = 75A
1.5
1.10
0.95
IC = 150A
2.5
200
1.00
500
3.5
1.15
1.05
200
300
400
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 150A
2.5
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.0
13 & 15V
0
160
140
120
100
80
60
Lead Temperature
Limited
40
20
0
-50 -25
0 25 50 75 100 125 150 175
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
9-2005
GE
140
Rev A
V
APT75GN60B(G)
250
050-7619
160
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
50
40
30
20
VCE = 400V
10 T = 25°C, or =125°C
J
0
RG = 1.0Ω
L = 100 µH
tf, FALL TIME (ns)
tr, RISE TIME (ns)
120
100
80
60
RG = 1.0Ω, L = 100µH, VCE = 400V
16
12
TJ = 125°C
8
6
4
2
TJ = 25°C
0
30
25
20
15
Eon2,75A
Eoff,150A
5
Eoff,75A
Eon2,37.5A
Eoff,37.5A
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
G
5
TJ = 125°C
4
3
2
TJ = 25°C
1
25 45 65 85 105 125 145 165
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (mJ)
Eon2,150A
J
10
TJ = 25°C, VGE = 15V
16
= 400V
V
CE
= +15V
V
GE
T = 125°C
35
30
0
25 45 65 85 105 125 145 165
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
40
40
25 45 65 85 105 125 145 165
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (mJ)
G
10
50
6
V
= 400V
CE
V
= +15V
GE
R = 1.0Ω
14
TJ = 125°C, VGE = 15V
60
0
25 45 65 85 105 125 145 165
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EON2, TURN ON ENERGY LOSS (mJ)
L = 100µH
5
10
0
SWITCHING ENERGY LOSSES (mJ)
100 VCE = 400V
RG = 1.0Ω
20
TJ = 25 or 125°C,VGE = 15V
20
9-2005
200
70
140
40
Rev A
VGE =15V,TJ=25°C
80
160
050-7619
VGE =15V,TJ=125°C
300
90
RG = 1.0Ω, L = 100µH, VCE = 400V
180
400
25 45 65 85 105 125 145 165
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
5
200
500
0
25 45 65 85 105 125 145 165
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
APT75GN60B(G)
600
60
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
14
Eon2,150A
G
12
10
8
6 Eon2,75A
4
Eoff,75A
2
0
Eoff,150A
Eon2,37.5A
Eoff,37.5A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
APT75GN60B(G)
250
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
7,000
1,000
500
Coes
200
150
100
50
Cres
100
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.25
0.7
0.20
0.5
0.15
Note:
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
0.3
t2
SINGLE PULSE
0.05
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
0
10-5
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.181
0.153
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
5
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 1.0Ω
1
10
G
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
30
50
70
90
110
130
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
9-2005
0.00438
F
10
Rev A
0.0998
Power
(watts)
50
050-7619
RC MODEL
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
100
APT75GN60B(G)
Gate Voltage
10%
APT75DQ60
TJ = 125°C
td(on)
tr
V CE
IC
V CC
Collector Current
5%
90%
10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
tf
Collector Voltage
90%
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
Rev A
9-2005
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
050-7619
5.38 (.212)
6.20 (.244)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.