TYPICAL PERFORMANCE CURVES APT20GN60K(G) 600V APT20GN60K APT20GN60KG* *G Denotes RoHS Compliant, Pb Free Terminal Finish. Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive design and minimizes losses. TO-220 • 600V Field Stop • • • • Trench Gate: Low VCE(on) Easy Paralleling 6µs Short Circuit Capability 175°C Rated C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT20GN60K(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 40 I C2 Continuous Collector Current @ TC = 110°C 24 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 @ TC = 175°C UNIT Volts Amps 60 Switching Safe Operating Area @ TJ = 175°C 60A @ 600V Total Power Dissipation Watts 136 Operating and Storage Junction Temperature Range -55 to 175 °C Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) (VCE = VGE, I C = 290µA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 125°C) I CES I GES Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) TYP MAX 5.0 5.8 6.5 1.1 1.5 1.9 Gate-Emitter Leakage Current (VGE = ±20V) µA 1000 300 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Volts 1.7 25 2 Units nA 7-2008 MIN Rev A Characteristic / Test Conditions 052-6295 Symbol APT20GN60K(G) DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Qgc SSOA SCSOA Total Gate Charge 3 Gate-Emitter Charge MIN Capacitance 1110 VGE = 0V, VCE = 25V 50 f = 1 MHz 35 Gate Charge 9.5 VGE = 15V 120 VCE = 300V 10 I C = 20A Gate-Collector ("Miller ") Charge TJ = 175°C, R G = 4.3Ω Switching Safe Operating Area VGE = VCC = 360V, VGE = 15V, TJ = 150°C, R G = 4.3Ω 7 tr Current Rise Time VCC = 400V 10 td(off) Turn-off Delay Time VGE = 15V 140 I C = 20A 95 RG = 4.3Ω 7 230 TJ = +25°C 260 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) 5 Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Inductive Switching (125°C) 9 tr Current Rise Time VCC = 400V 10 td(off) Turn-off Delay Time VGE = 15V 160 I C = 20A RG = 4.3Ω 7 130 250 TJ = +125°C 450 tf 6 44 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy ns µJ 580 Current Fall Time Eon1 nC µs 9 Eon1 V 6 Inductive Switching (25°C) 4 pF A Turn-on Delay Time Current Fall Time UNIT 60 td(on) tf MAX 70 7, 15V, L = 100µH,VCE = 600V Short Circuit Safe Operating Area TYP 55 66 ns µJ 750 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) 1.1 RθJC Junction to Case (DIODE) N/A WT Package Weight 1.2 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 052-6295 Rev A 7-2008 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452) Microsemi reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT20GN60K(G) 90 40 15V = 15V IC, COLLECTOR CURRENT (A) 30 25 TJ = 125°C 20 15 TJ = 175°C 10 TJ = -55°C 5 FIGURE 1, Output Characteristics(TJ = 25°C) 30 10V 20 9V TJ = -55°C TJ = 25°C 40 TJ = 125°C TJ = 175°C 30 20 10 0 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE IC = 40A 2.0 IC = 20A 1.5 IC = 10A 1.0 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0.5 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.10 1.00 0.90 0.80 -50 -25 0 25 50 75 100 125 150 175 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature VCE = 120V 12 VCE = 300V 10 VCE = 480V 8 6 4 2 0 20 40 60 80 100 GATE CHARGE (nC) 120 140 3.0 2.5 IC = 40A 2.0 IC = 20A 1.5 IC = 10A 1.0 0.5 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 175 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 IC, DC COLLECTOR CURRENT(A) 1.20 J FIGURE 4, Gate Charge 1.40 1.30 I = 20A C T = 25°C 14 0 5 10 15 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.0 2.5 8V FIGURE 2, Output Characteristics (TJ = 125°C) VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 50 IC, COLLECTOR CURRENT (A) 11V 40 16 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 60 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 12V 50 0 0 0.5 1.0 1.5 2.0 2.5 3.0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 60 10 0 0 13V 70 50 40 30 20 7-2008 IC, COLLECTOR CURRENT (A) TJ = 25°C 0 14V 80 10 0 -50 -25 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev A GE 052-6295 V 35 APT20GN60K(G) 250 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 12 VGE = 15V 10 8 6 4 VCE = 400V 2 T = 25°C, T =125°C J J RG = 4.3Ω L = 100 µH 0 200 150 VGE =15V,TJ=125°C 100 VGE =15V,TJ=25°C 50 VCE = 400V RG = 4.3Ω L = 100 µH 0 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 25 140 RG = 4.3Ω, L = 100µH, VCE = 400V 120 TJ = 125°C, VGE = 15V tf, FALL TIME (ns) tr, RISE TIME (ns) 20 15 10 100 80 TJ = 25°C, VGE = 15V 60 40 TJ = 25 or 125°C,VGE = 15V 5 20 0 0 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 1400 V = 400V CE V = +15V GE R = 4.3Ω 1200 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 1400 G 1000 TJ = 125°C 800 600 400 200 TJ = 25°C 1200 G TJ = 125°C 1000 800 600 TJ = 25°C 400 200 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 3500 1400 V = 400V CE V = +15V GE T = 125°C 3000 J Eon2,40A 2500 2000 Eoff,40A 1500 1000 500 0 Eoff,20A Eon2,20A Eoff,10A Eon2,10A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 7-2008 Rev A V = 400V CE V = +15V GE R = 4.3Ω 0 0 052-6295 RG = 4.3Ω, L = 100µH, VCE = 400V 5 V = 400V CE V = +15V GE R = 4.3Ω 1200 Eon2,40A G Eoff,40A 1000 800 600 Eoff,20A 400 Eoff,10A Eon2,20A 200 Eon2,10A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies 500 P C, CAPACITANCE ( F) 1,000 100 Coes 50 APT20GN60K(G) 70 2,000 60 50 40 30 20 10 Cres 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 1.00 D = 0.9 0.80 0.7 0.60 0.5 Note: 0.40 0.3 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 1.20 SINGLE PULSE t1 t2 0.20 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 0 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.324 0.323 0.00288 0.0501 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 50 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 10 7 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 4.3Ω f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC G 5 10 15 20 25 30 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 7-2008 Power (watts) 0.00078 Rev A 0.451 100 052-6295 Junction temp. (°C) RC MODEL FMAX, OPERATING FREQUENCY (kHz) 140 APT20GN60K(G) APT15DQ60 Gate Voltage 10% TJ = 125°C td(on) IC V CC tr V CE Collector Current 90% 5% 5% 10% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) Collector Voltage 90% tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions TO-220 Package Outline e1 SAC: Tin, Silver, Copper 2.80 (.110) 2.60 (.102) 12.192 (.480)9.912 (.390) 3.40 (.133) Dia. 3.10 (.123) 3.70 (.145) 2.20 (.126) 10.66 (.420) 9.66 (.380) 5.33 (.210) 4.83 (.190) 7.10 (.280) 6.70 (.263) 3.683 (.145)MAX.- 0.48 (.019) 0.44 (.017) 052-6295 Rev A 7-2008 2.85 (.112) 2.65 (.104) 4.80 (.189) 4.60 (.181) 14.73 (.580) 12.70 (.500) 1.01 (.040) 3-Plcs. .83 (.033) 2.79 (.110) 2.29 (.090) 5.33 (.210) 4.83 (.190) Gate Collector Drain Source Emitter 1.77 (.070) 3-Plcs. 1.15 (.045) Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.