MICROSEMI APT20GN60K

TYPICAL PERFORMANCE CURVES
APT20GN60K(G)
600V
APT20GN60K
APT20GN60KG*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and a
slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive
design and minimizes losses.
TO-220
• 600V Field Stop
•
•
•
•
Trench Gate: Low VCE(on)
Easy Paralleling
6µs Short Circuit Capability
175°C Rated
C
G
E
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT20GN60K(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
40
I C2
Continuous Collector Current @ TC = 110°C
24
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
@ TC = 175°C
UNIT
Volts
Amps
60
Switching Safe Operating Area @ TJ = 175°C
60A @ 600V
Total Power Dissipation
Watts
136
Operating and Storage Junction Temperature Range
-55 to 175
°C
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
(VCE = VGE, I C = 290µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 125°C)
I CES
I GES
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
TYP
MAX
5.0
5.8
6.5
1.1
1.5
1.9
Gate-Emitter Leakage Current (VGE = ±20V)
µA
1000
300
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Volts
1.7
25
2
Units
nA
7-2008
MIN
Rev A
Characteristic / Test Conditions
052-6295
Symbol
APT20GN60K(G)
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
SSOA
SCSOA
Total Gate Charge
3
Gate-Emitter Charge
MIN
Capacitance
1110
VGE = 0V, VCE = 25V
50
f = 1 MHz
35
Gate Charge
9.5
VGE = 15V
120
VCE = 300V
10
I C = 20A
Gate-Collector ("Miller ") Charge
TJ = 175°C, R G = 4.3Ω
Switching Safe Operating Area
VGE =
VCC = 360V, VGE = 15V,
TJ = 150°C, R G = 4.3Ω 7
tr
Current Rise Time
VCC = 400V
10
td(off)
Turn-off Delay Time
VGE = 15V
140
I C = 20A
95
RG = 4.3Ω 7
230
TJ = +25°C
260
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
5
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Inductive Switching (125°C)
9
tr
Current Rise Time
VCC = 400V
10
td(off)
Turn-off Delay Time
VGE = 15V
160
I C = 20A
RG = 4.3Ω 7
130
250
TJ = +125°C
450
tf
6
44
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
ns
µJ
580
Current Fall Time
Eon1
nC
µs
9
Eon1
V
6
Inductive Switching (25°C)
4
pF
A
Turn-on Delay Time
Current Fall Time
UNIT
60
td(on)
tf
MAX
70
7,
15V, L = 100µH,VCE = 600V
Short Circuit Safe Operating Area
TYP
55
66
ns
µJ
750
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
1.1
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
1.2
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
052-6295
Rev A
7-2008
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT20GN60K(G)
90
40
15V
= 15V
IC, COLLECTOR CURRENT (A)
30
25
TJ = 125°C
20
15
TJ = 175°C
10
TJ = -55°C
5
FIGURE 1, Output Characteristics(TJ = 25°C)
30
10V
20
9V
TJ = -55°C
TJ = 25°C
40
TJ = 125°C
TJ = 175°C
30
20
10
0
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 40A
2.0
IC = 20A
1.5
IC = 10A
1.0
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0.5
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.10
1.00
0.90
0.80
-50 -25 0 25 50 75 100 125 150 175
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
20
40
60
80 100
GATE CHARGE (nC)
120
140
3.0
2.5
IC = 40A
2.0
IC = 20A
1.5
IC = 10A
1.0
0.5
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75 100 125 150 175
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
IC, DC COLLECTOR CURRENT(A)
1.20
J
FIGURE 4, Gate Charge
1.40
1.30
I = 20A
C
T = 25°C
14
0
5
10
15
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.0
2.5
8V
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
50
IC, COLLECTOR CURRENT (A)
11V
40
16
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
60
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
12V
50
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
60
10
0
0
13V
70
50
40
30
20
7-2008
IC, COLLECTOR CURRENT (A)
TJ = 25°C
0
14V
80
10
0
-50 -25
0 25 50 75 100 125 150 175
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev A
GE
052-6295
V
35
APT20GN60K(G)
250
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
12
VGE = 15V
10
8
6
4
VCE = 400V
2 T = 25°C, T =125°C
J
J
RG = 4.3Ω
L = 100 µH
0
200
150
VGE =15V,TJ=125°C
100
VGE =15V,TJ=25°C
50
VCE = 400V
RG = 4.3Ω
L = 100 µH
0
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
25
140
RG = 4.3Ω, L = 100µH, VCE = 400V
120
TJ = 125°C, VGE = 15V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
20
15
10
100
80
TJ = 25°C, VGE = 15V
60
40
TJ = 25 or 125°C,VGE = 15V
5
20
0
0
5
10
15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
1400
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
1200
10 15
20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
1400
G
1000
TJ = 125°C
800
600
400
200
TJ = 25°C
1200
G
TJ = 125°C
1000
800
600
TJ = 25°C
400
200
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
3500
1400
V
= 400V
CE
V
= +15V
GE
T = 125°C
3000
J
Eon2,40A
2500
2000
Eoff,40A
1500
1000
500
0
Eoff,20A
Eon2,20A
Eoff,10A
Eon2,10A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
7-2008
Rev A
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
0
0
052-6295
RG = 4.3Ω, L = 100µH, VCE = 400V
5
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
1200
Eon2,40A
G
Eoff,40A
1000
800
600
Eoff,20A
400
Eoff,10A
Eon2,20A
200
Eon2,10A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
500
P
C, CAPACITANCE ( F)
1,000
100
Coes
50
APT20GN60K(G)
70
2,000
60
50
40
30
20
10
Cres
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
1.00
D = 0.9
0.80
0.7
0.60
0.5
Note:
0.40
0.3
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
1.20
SINGLE PULSE
t1
t2
0.20
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
0
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.324
0.323
0.00288
0.0501
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
50
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
10
7
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 4.3Ω
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
7-2008
Power
(watts)
0.00078
Rev A
0.451
100
052-6295
Junction
temp. (°C)
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
140
APT20GN60K(G)
APT15DQ60
Gate Voltage
10%
TJ = 125°C
td(on)
IC
V CC
tr
V CE
Collector Current
90%
5%
5%
10%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
Collector Voltage
90%
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-220 Package Outline
e1 SAC: Tin, Silver, Copper
2.80 (.110)
2.60 (.102)
12.192 (.480)9.912 (.390)
3.40 (.133) Dia.
3.10 (.123)
3.70 (.145)
2.20 (.126)
10.66 (.420)
9.66 (.380)
5.33 (.210)
4.83 (.190)
7.10 (.280)
6.70 (.263)
3.683 (.145)MAX.-
0.48 (.019)
0.44 (.017)
052-6295
Rev A
7-2008
2.85 (.112)
2.65 (.104)
4.80 (.189)
4.60 (.181)
14.73 (.580)
12.70 (.500)
1.01 (.040) 3-Plcs.
.83 (.033)
2.79 (.110)
2.29 (.090)
5.33 (.210)
4.83 (.190)
Gate
Collector
Drain
Source
Emitter
1.77 (.070) 3-Plcs.
1.15 (.045)
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.