MICROSEMI APT50GN60BG

TYPICAL PERFORMANCE CURVES
APT50GN60B APT50GN60B_S(G)
APT50GN60S
APT50GN60B(G) APT50GN60S(G)
600V
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
(B)
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and a
slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive
design and minimizes losses.
TO
-2
D3PAK
47
(S)
C
G
G
C
E
E
• 600V Field Stop
•
•
•
•
Trench Gate: Low VCE(on)
Easy Paralleling
6µs Short Circuit Capability
175°C Rated
C
G
E
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT50GN60B(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
8
@ TC = 25°C
UNIT
Volts
107
64
Amps
150
@ TC = 175°C
150A @ 600V
Switching Safe Operating Area @ TJ = 175°C
Total Power Dissipation
366
Operating and Storage Junction Temperature Range
Watts
-55 to 175
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
(VCE = VGE, I C = 800µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C)
I CES
I GES
RG(int)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
TYP
MAX
5.0
5.8
6.5
1.05
1.45
1.85
25
2
600
N/A
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
µA
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
Volts
1.7
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
Units
nA
Ω
7-2009
MIN
Rev C
Characteristic / Test Conditions
050-7612
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT50GN60B_S(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
SSOA
SCSOA
td(on)
tr
td(off)
tf
Eon1
Total Gate Charge
3200
VGE = 0V, VCE = 25V
125
f = 1 MHz
100
Gate Charge
9.0
VGE = 15V
325
VCE = 300V
25
I C = 50A
Gate-Collector ("Miller ") Charge
TJ = 175°C, R G = 4.3Ω
Switching Safe Operating Area
VGE =
VCC = 360V, VGE = 15V,
TJ = 150°C, R G = 4.3Ω 7
Current Rise Time
25
Turn-off Delay Time
VGE = 15V
230
I C = 50A
100
RG = 4.3Ω 7
1185
TJ = +25°C
1275
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Inductive Switching (125°C)
20
tr
Current Rise Time
VCC = 400V
25
td(off)
Turn-off Delay Time
VGE = 15V
260
I C = 50A
RG = 4.3Ω 7
140
1205
TJ = +125°C
1850
tf
6
44
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
ns
µJ
1565
Current Fall Time
Eon1
nC
µs
20
5
V
6
VCC = 400V
4
pF
A
Inductive Switching (25°C)
Turn-on Switching Energy
UNIT
150
Turn-on Delay Time
Current Fall Time
MAX
175
7,
15V, L = 100µH,VCE = 600V
Short Circuit Safe Operating Area
TYP
Capacitance
3
Gate-Emitter Charge
MIN
55
66
ns
µJ
2125
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.41
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
050-7612
Rev C
7-2009
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
8 Continuous current limited by package lead temperature.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT50GN60B_S(G)
200
160
= 15V
TJ = 175°C
100
TJ = 125°C
80
TJ = 25°C
60
40
TJ = -55°C
IC, COLLECTOR CURRENT (A)
12V
120
11V
100
80
10V
60
9V
40
0
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
8V
250µs PULSE
TEST<0.5 % DUTY
CYCLE
140
TJ = -55°C
TJ = 25°C
120
TJ = 125°C
100
TJ = 175°C
80
60
40
20
0
7V
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
160
IC, COLLECTOR CURRENT (A)
140
20
0
0
13V
160
J
VCE = 120V
12
VCE = 300V
10
VCE =480V
8
6
4
2
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 50A
C
T = 25°C
14
0
50
3.0
IC = 100A
2.5
2.0
IC = 50A
1.5
IC = 25A
1.0
0.5
0
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
8
1.05
1.00
0.95
0.90
-50 -25 0 25 50 75 100 125 150 175
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
3.0
2.5
IC = 100A
2.0
IC = 50A
1.5
IC = 25A
1.0
0.5
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100 125 150 175
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
1.10
IC, DC COLLECTOR CURRENT(A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.5
100 150 200 250 300 350 400
GATE CHARGE (nC)
120
100
80
Lead Temperature
Limited
60
40
20
0
-50 -25
0 25 50 75 100 125 150 175
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
7-2009
IC, COLLECTOR CURRENT (A)
120
20
15V
180
Rev C
GE
050-7612
V
140
APT50GN60B_S(G)
350
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
VGE = 15V
20
15
10
5 VCE = 400V
TJ = 25°C, 125°C
0
RG = 4.3Ω
L = 100 µH
250
VGE =15V,TJ=125°C
200
VGE =15V,TJ=25°C
150
100
50 VCE = 400V
RG = 4.3Ω
L = 100 µH
0
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
120
300
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
160
RG = 4.3Ω, L = 100µH, VCE = 400V
RG = 4.3Ω, L = 100µH, VCE = 400V
140
100
tf, FALL TIME (ns)
tr, RISE TIME (ns)
120
80
60
40
TJ = 125°C, VGE = 15V
100
80
TJ = 25°C, VGE = 15V
60
40
20
20
TJ = 25 or 125°C,VGE = 15V
0
0
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
4000
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
6000
G
5000
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 125°C
4000
3000
2000
1000
TJ = 25°C
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
Eon2,100A
12000
10000
Eoff,100A
6000
Eon2,50A
4000
Eoff,50A
2000
0
Eoff,25A
Eon2,25A
0
TJ = 125°C
3000
2500
2000
1500
TJ = 25°C
1000
500
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
7-2009
Rev C
050-7612
J
8000
G
6000
V
= 400V
CE
V
= +15V
GE
T = 125°C
14000
3500
0
0
16000
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
Eon2,100A
G
5000
4000
Eoff,100A
3000
Eoff,50A
2000
Eon2,50A
1000
Eoff,25A
0
0
Eon2,25A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT50GN60B_S(G)
160
IC, COLLECTOR CURRENT (A)
Cies
1,000
P
C, CAPACITANCE ( F)
5,000
500
C0es
100
Cres
50
140
120
100
80
60
40
20
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.45
D = 0.9
0.35
0.7
0.30
0.25
0.5
0.20
Note:
0.15
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
0.3
0.10
SINGLE PULSE
t2
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.1
0.05
t1
0.05
0
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
50
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
10
6
T = 125°C
J
T = 75°C
C
D = 50 %
= 400V
V
CE
R = 4.3Ω
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
20
30
40
50
60
70
80
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Rev C
7-2009
10
050-7612
FMAX, OPERATING FREQUENCY (kHz)
110
APT50GN60B_S(G)
10%
APT40DQ60
Gate Voltage
TJ = 125°C
td(on)
Collector Current
V CE
IC
V CC
90%
tr
5%
5%
10%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
90%
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
3
TO-247 Package Outline
D PAK Package Outline
e1 SAC: Tin, Silver, Copper
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Heat Sink)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
e3 SAC: Tin, Silver, Copper
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
Emitter
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
050-7612
Rev C
7-2009
13.41 (.528)
13.51(.532)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.