TYPICAL PERFORMANCE CURVES APT50GN60B APT50GN60B_S(G) APT50GN60S APT50GN60B(G) APT50GN60S(G) 600V *G Denotes RoHS Compliant, Pb Free Terminal Finish. (B) Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive design and minimizes losses. TO -2 D3PAK 47 (S) C G G C E E • 600V Field Stop • • • • Trench Gate: Low VCE(on) Easy Paralleling 6µs Short Circuit Capability 175°C Rated C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT50GN60B(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 8 @ TC = 25°C UNIT Volts 107 64 Amps 150 @ TC = 175°C 150A @ 600V Switching Safe Operating Area @ TJ = 175°C Total Power Dissipation 366 Operating and Storage Junction Temperature Range Watts -55 to 175 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) (VCE = VGE, I C = 800µA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) I CES I GES RG(int) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) TYP MAX 5.0 5.8 6.5 1.05 1.45 1.85 25 2 600 N/A CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com µA TBD Gate-Emitter Leakage Current (VGE = ±20V) Intergrated Gate Resistor Volts 1.7 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) Units nA Ω 7-2009 MIN Rev C Characteristic / Test Conditions 050-7612 Symbol DYNAMIC CHARACTERISTICS Symbol APT50GN60B_S(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Qgc SSOA SCSOA td(on) tr td(off) tf Eon1 Total Gate Charge 3200 VGE = 0V, VCE = 25V 125 f = 1 MHz 100 Gate Charge 9.0 VGE = 15V 325 VCE = 300V 25 I C = 50A Gate-Collector ("Miller ") Charge TJ = 175°C, R G = 4.3Ω Switching Safe Operating Area VGE = VCC = 360V, VGE = 15V, TJ = 150°C, R G = 4.3Ω 7 Current Rise Time 25 Turn-off Delay Time VGE = 15V 230 I C = 50A 100 RG = 4.3Ω 7 1185 TJ = +25°C 1275 Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Inductive Switching (125°C) 20 tr Current Rise Time VCC = 400V 25 td(off) Turn-off Delay Time VGE = 15V 260 I C = 50A RG = 4.3Ω 7 140 1205 TJ = +125°C 1850 tf 6 44 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy ns µJ 1565 Current Fall Time Eon1 nC µs 20 5 V 6 VCC = 400V 4 pF A Inductive Switching (25°C) Turn-on Switching Energy UNIT 150 Turn-on Delay Time Current Fall Time MAX 175 7, 15V, L = 100µH,VCE = 600V Short Circuit Safe Operating Area TYP Capacitance 3 Gate-Emitter Charge MIN 55 66 ns µJ 2125 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .41 RθJC Junction to Case (DIODE) N/A WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 050-7612 Rev C 7-2009 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452) 8 Continuous current limited by package lead temperature. Microsemi reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT50GN60B_S(G) 200 160 = 15V TJ = 175°C 100 TJ = 125°C 80 TJ = 25°C 60 40 TJ = -55°C IC, COLLECTOR CURRENT (A) 12V 120 11V 100 80 10V 60 9V 40 0 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 8V 250µs PULSE TEST<0.5 % DUTY CYCLE 140 TJ = -55°C TJ = 25°C 120 TJ = 125°C 100 TJ = 175°C 80 60 40 20 0 7V 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 160 IC, COLLECTOR CURRENT (A) 140 20 0 0 13V 160 J VCE = 120V 12 VCE = 300V 10 VCE =480V 8 6 4 2 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 50A C T = 25°C 14 0 50 3.0 IC = 100A 2.5 2.0 IC = 50A 1.5 IC = 25A 1.0 0.5 0 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 8 1.05 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 150 175 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 3.0 2.5 IC = 100A 2.0 IC = 50A 1.5 IC = 25A 1.0 0.5 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 175 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 140 1.10 IC, DC COLLECTOR CURRENT(A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.5 100 150 200 250 300 350 400 GATE CHARGE (nC) 120 100 80 Lead Temperature Limited 60 40 20 0 -50 -25 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 7-2009 IC, COLLECTOR CURRENT (A) 120 20 15V 180 Rev C GE 050-7612 V 140 APT50GN60B_S(G) 350 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 VGE = 15V 20 15 10 5 VCE = 400V TJ = 25°C, 125°C 0 RG = 4.3Ω L = 100 µH 250 VGE =15V,TJ=125°C 200 VGE =15V,TJ=25°C 150 100 50 VCE = 400V RG = 4.3Ω L = 100 µH 0 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 120 300 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 160 RG = 4.3Ω, L = 100µH, VCE = 400V RG = 4.3Ω, L = 100µH, VCE = 400V 140 100 tf, FALL TIME (ns) tr, RISE TIME (ns) 120 80 60 40 TJ = 125°C, VGE = 15V 100 80 TJ = 25°C, VGE = 15V 60 40 20 20 TJ = 25 or 125°C,VGE = 15V 0 0 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 4000 V = 400V CE V = +15V GE R = 4.3Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 6000 G 5000 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C 4000 3000 2000 1000 TJ = 25°C 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current Eon2,100A 12000 10000 Eoff,100A 6000 Eon2,50A 4000 Eoff,50A 2000 0 Eoff,25A Eon2,25A 0 TJ = 125°C 3000 2500 2000 1500 TJ = 25°C 1000 500 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 7-2009 Rev C 050-7612 J 8000 G 6000 V = 400V CE V = +15V GE T = 125°C 14000 3500 0 0 16000 V = 400V CE V = +15V GE R = 4.3Ω V = 400V CE V = +15V GE R = 4.3Ω Eon2,100A G 5000 4000 Eoff,100A 3000 Eoff,50A 2000 Eon2,50A 1000 Eoff,25A 0 0 Eon2,25A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT50GN60B_S(G) 160 IC, COLLECTOR CURRENT (A) Cies 1,000 P C, CAPACITANCE ( F) 5,000 500 C0es 100 Cres 50 140 120 100 80 60 40 20 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.45 D = 0.9 0.35 0.7 0.30 0.25 0.5 0.20 Note: 0.15 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.40 0.3 0.10 SINGLE PULSE t2 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 0.05 t1 0.05 0 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 50 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 10 6 T = 125°C J T = 75°C C D = 50 % = 400V V CE R = 4.3Ω f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC G 20 30 40 50 60 70 80 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Rev C 7-2009 10 050-7612 FMAX, OPERATING FREQUENCY (kHz) 110 APT50GN60B_S(G) 10% APT40DQ60 Gate Voltage TJ = 125°C td(on) Collector Current V CE IC V CC 90% tr 5% 5% 10% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) 90% Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions 3 TO-247 Package Outline D PAK Package Outline e1 SAC: Tin, Silver, Copper 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Heat Sink) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) e3 SAC: Tin, Silver, Copper 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Gate Collector Emitter 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated Emitter Collector Gate Dimensions in Millimeters (Inches) 050-7612 Rev C 7-2009 13.41 (.528) 13.51(.532) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.