MICROSEMI APT25GN120B

TYPICAL PERFORMANCE CURVES
1200V APT25GN120B_S(G)
APT25GN120B
APT25GN120S
APT25GN120BG* APT25GN120SG*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and
a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures
extremely reliable operation, even in the event of a short circuit fault. Low gate charge
simplifies gate drive design and minimizes losses.
(B)
TO
-2
D3PAK
47
(S)
C
G
G
C
E
E
• 1200V Field Stop
• Trench Gate: Low VCE(on)
• Easy Paralleling
• Integrated Gate Resistor: Low EMI, High Reliability
C
G
E
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT25GN120B(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
67
I C2
Continuous Collector Current @ TC = 110°C
33
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
75
Switching Safe Operating Area @ TJ = 150°C
75A @ 1200V
Total Power Dissipation
272
Operating and Storage Junction Temperature Range
Watts
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 150µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
(VCE = VGE, I C = 1mA, Tj = 25°C)
I GES
RG(int)
5
5.8
6.5
1.4
1.7
2.1
Units
Volts
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
MAX
1200
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
I CES
TYP
1.9
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
100
2
Gate-Emitter Leakage Current (VGE = ±20V)
600
8
Integrated Gate Resistor
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
µA
TBD
nA
Ω
9-2009
V(BR)CES
MIN
Rev E
Characteristic / Test Conditions
050-7600
Symbol
APT25GN120B_S(G)
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
SSOA
Total Gate Charge
3
Gate-Emitter Charge
TYP
Capacitance
1800
VGE = 0V, VCE = 25V
105
f = 1 MHz
85
Gate Charge
9.5
VGE = 15V
155
VCE = 600V
10
I C = 25A
85
Gate-Collector ("Miller ") Charge
TJ = 150°C, R G = 4.3Ω 7, VGE =
Switching Safe Operating Area
MIN
15V, L = 100µH,VCE = 1200V
Inductive Switching (25°C)
22
tr
Current Rise Time
VCC = 800V
17
td(off)
Turn-off Delay Time
VGE = 15V
280
I C = 25A
135
RG = 1.0Ω 7
TBD
Eon1
Eon2
Turn-on Switching Energy
4
Turn-on Switching Energy (Diode)
TJ = +25°C
5
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Inductive Switching (125°C)
22
tr
Current Rise Time
VCC = 800V
17
Turn-off Delay Time
VGE = 15V
335
I C = 25A
RG = 1.0Ω 7
225
TBD
TJ = +125°C
2390
tf
44
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
ns
mJ
2150
Current Fall Time
Eon1
nC
1490
6
Eoff
td(off)
V
A
Turn-on Delay Time
Current Fall Time
UNIT
pF
75
td(on)
tf
MAX
55
66
ns
mJ
3075
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.46
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
050-7600
Rev E
9-2009
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
Microsemi Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT25GN120B_S(G)
80
80
70
IC, COLLECTOR CURRENT (A)
12V
60
11V
50
40
10V
30
9V
20
8V
10
9V
20
0
8V
0
5
10
15
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 125°C)
16
250µs PULSE
TEST<0.5 % DUTY
CYCLE
60
TJ = 125°C
45
TJ = 25°C
30
TJ = -55°C
15
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 25A
C
T = 25°C
J
14
VCE = 240V
12
VCE = 600V
10
VCE = 960V
8
6
4
2
0
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
0
20
3.5
IC = 50A
3
2.5
IC = 25A
2
1.5
IC = 12.5A
1.0
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
3
IC = 50A
2.5
2
IC = 25A
1.5
IC = 12.5A
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75 100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
90
1.10
1.05
60 80 100 120 140 160 180
GATE CHARGE (nC)
FIGURE 4, Gate Charge
IC, DC COLLECTOR CURRENT(A)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
40
80
70
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
9-2009
IC, COLLECTOR CURRENT (A)
10V
30
7V
7V
FIGURE 1, Output Characteristics(TJ = 25°C)
0
11V
40
10
0
5
10
15
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
75
12V
50
Rev E
0
60
050-7600
IC, COLLECTOR CURRENT (A)
15V
15V
70
APT25GN120B_S(G)
350
25
VGE = 15V
20
15
10
VCE = 800V
TJ = 25°C, or 125°C
RG = 4.3Ω
L = 100µH
5
0
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
300
VGE =15V,TJ=125°C
250
VGE =15V,TJ=25°C
200
150
100
VCE = 800V
RG = 4.3Ω
L = 100µH
50
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
45
300
RG = 4.3Ω, L = 100µH, VCE = 800V
RG = 4.3Ω, L = 100µH, VCE = 800V
40
250
TJ = 125°C, VGE = 15V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
35
30
25
20
15
200
150
TJ = 25°C, VGE = 15V
100
TJ = 25 or 125°C,VGE = 15V
10
50
5
0
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
7000
V
= 800V
CE
V
= +15V
GE
R = 4.3Ω
6000
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
7000
G
TJ = 125°C
5000
10 15 20 25 30 35 40
45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
4000
3000
2000
1000
TJ = 25°C
0
10000
Eoff,50A
8000
6000
Eoff,25A
Eon2,25A
2000
0
Eoff,12.5A
Eon2,12.5A
0
TJ = 125°C
5000
4000
3000
2000
TJ = 25°C
1000
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
9-2009
Rev E
050-7600
Eon2,50A
J
4000
G
7000
V
= 800V
CE
V
= +15V
GE
T = 125°C
12000
6000
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
14000
V
= 800V
CE
V
= +15V
GE
R = 4.3Ω
V
= 800V
CE
V
= +15V
GE
R = 4.3Ω
6000
Eoff,50A
G
5000
4000
Eon2,50A
3000
Eoff,25A
2000
Eon2,25A
Eoff,12.5A
1000
0
Eon2,12.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
1,000
P
C, CAPACITANCE ( F)
APT25GN120B_S(G)
80
4,000
500
100
Coes
50
Cres
70
60
50
40
30
20
10
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.40
0.7
0.30
0.5
Note:
0.20
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.50
0.3
t2
0.10
SINGLE PULSE
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
0
t1
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.00826
0.169
0.353
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
T = 125°C
J
T = 75°C
C
D = 50 %
= 800V
V
CE
R = 4.3Ω
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
5
10
15 20 25
30 35 40 45
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
9-2009
0.0536
Power
(watts)
50
Rev E
Junction
temp. (°C)
100
050-7600
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
140
APT25GN120B_S(G)
Gate Voltage
10%
APT30DQ120
TJ = 125°C
td(on)
IC
V CC
90%
V CE
Collector Current
tr
5%
10%
5%
A
CollectorVoltage
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
CollectorVoltage
td(off)
90%
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
3
TO-247 Package Outline
D PAK Package Outline
e1 SAC: Tin, Silver, Copper
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
e3 100% Sn Plated
5.38 (.212)
6.20 (.244)
Collector
(Heat Sink)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
9-2009
4.50 (.177) Max.
Rev E
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
050-7600
13.41 (.528)
13.51(.532)
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
Emitter
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.