AOD4106 N-Channel Enhancement Mode Field Effect Transistor General Description Features The AOD4106 uses advanced trench technology to provide excellent RDS(ON), low gate charge.This device is suitable for use as a low side switch in SMPS and general purpose applications. Standard Product AOD4106 is Pb-free (meets ROHS & Sony 259 specifications). AOD4106L is a Green Product ordering option. AOD4106 and AOD4106L are electrically identical. VDS (V) = 25V ID = 50A (VGS = 20V) RDS(ON) < 5mΩ (VGS = 20V) RDS(ON) < 6.5mΩ (VGS = 12V) RDS(ON) < 8.1mΩ (VGS = 10V) UIS Tested Rg,Ciss,Coss,Crss Tested TO-252 D-PAK D Top View Drain Connected to Tab G D G S S Absolute Maximum Ratings T A=25°C unless otherwise noted Parameter Symbol VDS Drain-Source Voltage VGS Gate-Source Voltage TC=25°C Continuous Drain Current G C Avalanche Current C Repetitive avalanche energy L=0.3mH C TC=25°C Power Dissipation B A Junction and Storage Temperature Range Alpha & Omega Semiconductor, Ltd. V A 50 180 IAR 30 A EAR 135 mJ 75 6.25 W 4 TJ, TSTG -55 to 175 Symbol t ≤ 10s Steady-State Steady-State W 38 PDSM TA=70°C Thermal Characteristics Parameter A,D Maximum Junction-to-Ambient A,D Maximum Junction-to-Ambient B Maximum Junction-to-Case ±30 ID IDM PD TC=100°C TA=25°C Power Dissipation Units V 50 TC=100°C Pulsed Drain Current Maximum 25 RθJA RθJC Typ 15 41 1.5 °C Max 20 50 2.0 Units °C/W °C/W °C/W AOD4106 Electrical Characteristics (T J=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current Conditions Min ID=250µA, VGS=0V TJ=55°C 5 VDS=0V, VGS= ±30V Gate Threshold Voltage VDS=VGS ID=250µA 2 On state drain current VGS=12V, VDS=5V 180 VGS=20V, ID=20A Reverse Transfer Capacitance Gate resistance SWITCHING PARAMETERS Qg(12V) Total Gate Charge Qg(10V) Total Gate Charge Qgs Gate Source Charge V A 5.0 6.5 mΩ 6.5 mΩ 8.1 mΩ 1 V 50 A 1875 pF VDS=5V, ID=20A DYNAMIC PARAMETERS Ciss Input Capacitance Rg 4 5.4 IS=1A,VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current G Crss nA 6.6 Forward Transconductance Output Capacitance 100 VGS=10V, ID=20A VSD Coss uA VGS=12V, ID=20A gFS IS 3 4.1 TJ=125°C Units V 1 VGS(th) Static Drain-Source On-Resistance Max 25 VDS=20V, VGS=0V ID(ON) RDS(ON) Typ 26 0.7 1561 VGS=0V, VDS=12.5V, f=1MHz S 642 pF 323 VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=12.5V, ID=20A pF 2.5 3.8 Ω 26.5 33 nC 22.5 nC 8.3 nC Qgd Gate Drain Charge 10 nC tD(on) Turn-On DelayTime 12 ns tr Turn-On Rise Time 19 ns tD(off) Turn-Off DelayTime 17 ns VGS=10V, VDS=12.5V, RL=0.63Ω, RGEN=3Ω tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time IF=20A, dI/dt=100A/µs 32 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=100A/µs 24 9.5 ns 40 ns nC A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The Power dissipation PDSM is based on t<10s R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 us pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. Re0: Sept. 2006 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Alpha & Omega Semiconductor, Ltd. AOD4106 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 180 60 20V 15V 150 VGS=10V 12V 120 40 ID(A) ID (A) VDS=5V 50 90 Vgs=8V 60 125°C 30 20 Vgs=7V 30 25°C -40°C 10 0 0 0 1 2 3 4 5 3 4 VDS (Volts) Figure 1: On-Region Characteristics 5 6 7 10 9 10 1.6 VGS=12V 8 Normalized On-Resistance ID=20A RDS(ON) (mΩ) 8 VGS(Volts) Figure 2: Transfer Characteristics VGS=10V 6 VGS=12V VGS=20V 4 VGS=20V 1.4 1.2 VGS=10V 1 0.8 2 0 5 10 15 20 25 0.6 30 -50 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 0 25 50 75 100 125 150 175 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 15 1.0E+02 1.0E+01 12 ID=20A 125°C 1.0E+00 25°C 9 125°C IS (A) RDS(ON) (mΩ) -25 6 1.0E-01 1.0E-02 -40°C 1.0E-03 3 25°C 1.0E-04 0 1.0E-05 6 8 10 12 14 16 18 20 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage Alpha & Omega Semiconductor, Ltd. 0.0 0.2 0.4 0.6 0.8 VSD (Volts) Figure 6: Body-Diode Characteristics 1.0 AOD4106 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 2500 14 12 Capacitance (pF) VGS (Volts) 2000 VDS=12.5V ID=20A 10 8 6 4 Ciss 1500 1000 Coss 500 2 0 0 5 10 15 20 25 30 35 Crss 0 40 0 Qg (nC) Figure 7: Gate-Charge Characteristics 1000.0 10 15 20 25 VDS (Volts) Figure 8: Capacitance Characteristics 30 220 RDS(ON) limited 10.0 DC 10µs 200 100µs 180 1ms 160 10ms 1.0 TJ(Max)=175°C TC=25°C 0.1 0.0 0.01 Power (W) 100.0 ID (Amps) 5 TJ(Max)=175°C TC=25°C 140 120 100 80 60 0.1 1 VDS (Volts) 10 100 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) ZθJC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJc.RθJc RθJC=2°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 PD 0.1 Ton T Single Pulse 0.01 0.00001 0.0001 0.001 0.01 0.1 1 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Alpha & Omega Semiconductor, Ltd. 10 100 AOD4106 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 80 120 TA=25°C 100 80 60 70 Power Dissipation (W) ID(A), Peak Avalanche Current 140 TA=150°C 40 60 50 40 30 20 20 10 0 0 1.00E-06 1.00E-05 1.00E-04 0 1.00E-03 25 140 50 120 40 100 Power (W) Current rating ID(A) 60 20 75 100 125 150 175 TCASE (°C) Figure 13: Power De-rating (Note B) Time in avalanche, tA (s) Figure 12: Single Pulse Avalanche capability 30 50 TJ(max)=150°C TA=25°C 80 60 40 10 20 0 0 25 50 75 100 125 150 0 0.01 175 TCASE (°C) Figure 14: Current De-rating (Note B) 0.1 1 10 100 1000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) ZθJA Normalized Transient Thermal Resistance 10 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 0.01 0.001 0.00001 Single Pulse 0.0001 0.001 PD D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA RθJA=50°C/W 0.01 0.1 Ton 1 T 10 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Alpha & Omega Semiconductor, Ltd. 100 1000