AOSMD AOD4106

AOD4106
N-Channel Enhancement Mode Field Effect Transistor
General Description
Features
The AOD4106 uses advanced trench technology to
provide excellent RDS(ON), low gate charge.This device is
suitable for use as a low side switch in SMPS and
general purpose applications. Standard Product
AOD4106 is Pb-free (meets ROHS & Sony 259
specifications). AOD4106L is a Green Product ordering
option. AOD4106 and AOD4106L are electrically
identical.
VDS (V) = 25V
ID = 50A (VGS = 20V)
RDS(ON) < 5mΩ (VGS = 20V)
RDS(ON) < 6.5mΩ (VGS = 12V)
RDS(ON) < 8.1mΩ (VGS = 10V)
UIS Tested
Rg,Ciss,Coss,Crss Tested
TO-252
D-PAK
D
Top View
Drain Connected to
Tab
G
D
G
S
S
Absolute Maximum Ratings T A=25°C unless otherwise noted
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current G
C
Avalanche Current C
Repetitive avalanche energy L=0.3mH
C
TC=25°C
Power Dissipation B
A
Junction and Storage Temperature Range
Alpha & Omega Semiconductor, Ltd.
V
A
50
180
IAR
30
A
EAR
135
mJ
75
6.25
W
4
TJ, TSTG
-55 to 175
Symbol
t ≤ 10s
Steady-State
Steady-State
W
38
PDSM
TA=70°C
Thermal Characteristics
Parameter
A,D
Maximum Junction-to-Ambient
A,D
Maximum Junction-to-Ambient
B
Maximum Junction-to-Case
±30
ID
IDM
PD
TC=100°C
TA=25°C
Power Dissipation
Units
V
50
TC=100°C
Pulsed Drain Current
Maximum
25
RθJA
RθJC
Typ
15
41
1.5
°C
Max
20
50
2.0
Units
°C/W
°C/W
°C/W
AOD4106
Electrical Characteristics (T J=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
Conditions
Min
ID=250µA, VGS=0V
TJ=55°C
5
VDS=0V, VGS= ±30V
Gate Threshold Voltage
VDS=VGS ID=250µA
2
On state drain current
VGS=12V, VDS=5V
180
VGS=20V, ID=20A
Reverse Transfer Capacitance
Gate resistance
SWITCHING PARAMETERS
Qg(12V) Total Gate Charge
Qg(10V) Total Gate Charge
Qgs
Gate Source Charge
V
A
5.0
6.5
mΩ
6.5
mΩ
8.1
mΩ
1
V
50
A
1875
pF
VDS=5V, ID=20A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Rg
4
5.4
IS=1A,VGS=0V
Diode Forward Voltage
Maximum Body-Diode Continuous Current G
Crss
nA
6.6
Forward Transconductance
Output Capacitance
100
VGS=10V, ID=20A
VSD
Coss
uA
VGS=12V, ID=20A
gFS
IS
3
4.1
TJ=125°C
Units
V
1
VGS(th)
Static Drain-Source On-Resistance
Max
25
VDS=20V, VGS=0V
ID(ON)
RDS(ON)
Typ
26
0.7
1561
VGS=0V, VDS=12.5V, f=1MHz
S
642
pF
323
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=12.5V, ID=20A
pF
2.5
3.8
Ω
26.5
33
nC
22.5
nC
8.3
nC
Qgd
Gate Drain Charge
10
nC
tD(on)
Turn-On DelayTime
12
ns
tr
Turn-On Rise Time
19
ns
tD(off)
Turn-Off DelayTime
17
ns
VGS=10V, VDS=12.5V, RL=0.63Ω,
RGEN=3Ω
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=100A/µs
32
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=100A/µs
24
9.5
ns
40
ns
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with
T A =25°C. The Power dissipation PDSM is based on t<10s R θJA and the maximum allowed junction temperature of 150°C. The value in any given
application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 us pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C.
Re0: Sept. 2006
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AOD4106
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
180
60
20V
15V
150
VGS=10V
12V
120
40
ID(A)
ID (A)
VDS=5V
50
90
Vgs=8V
60
125°C
30
20
Vgs=7V
30
25°C
-40°C
10
0
0
0
1
2
3
4
5
3
4
VDS (Volts)
Figure 1: On-Region Characteristics
5
6
7
10
9
10
1.6
VGS=12V
8
Normalized On-Resistance
ID=20A
RDS(ON) (mΩ)
8
VGS(Volts)
Figure 2: Transfer Characteristics
VGS=10V
6
VGS=12V
VGS=20V
4
VGS=20V
1.4
1.2
VGS=10V
1
0.8
2
0
5
10
15
20
25
0.6
30
-50
ID (A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
0
25
50
75
100 125 150 175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
15
1.0E+02
1.0E+01
12
ID=20A
125°C
1.0E+00
25°C
9
125°C
IS (A)
RDS(ON) (mΩ)
-25
6
1.0E-01
1.0E-02
-40°C
1.0E-03
3
25°C
1.0E-04
0
1.0E-05
6
8
10
12
14
16
18
20
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.0
0.2
0.4
0.6
0.8
VSD (Volts)
Figure 6: Body-Diode Characteristics
1.0
AOD4106
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
2500
14
12
Capacitance (pF)
VGS (Volts)
2000
VDS=12.5V
ID=20A
10
8
6
4
Ciss
1500
1000
Coss
500
2
0
0
5
10
15
20
25
30
35
Crss
0
40
0
Qg (nC)
Figure 7: Gate-Charge Characteristics
1000.0
10
15
20
25
VDS (Volts)
Figure 8: Capacitance Characteristics
30
220
RDS(ON)
limited
10.0
DC
10µs
200
100µs
180
1ms
160
10ms
1.0
TJ(Max)=175°C
TC=25°C
0.1
0.0
0.01
Power (W)
100.0
ID (Amps)
5
TJ(Max)=175°C
TC=25°C
140
120
100
80
60
0.1
1
VDS (Volts)
10
100
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJc.RθJc
RθJC=2°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
PD
0.1
Ton
T
Single Pulse
0.01
0.00001
0.0001
0.001
0.01
0.1
1
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
10
100
AOD4106
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
80
120
TA=25°C
100
80
60
70
Power Dissipation (W)
ID(A), Peak Avalanche Current
140
TA=150°C
40
60
50
40
30
20
20
10
0
0
1.00E-06
1.00E-05
1.00E-04
0
1.00E-03
25
140
50
120
40
100
Power (W)
Current rating ID(A)
60
20
75
100
125
150
175
TCASE (°C)
Figure 13: Power De-rating (Note B)
Time in avalanche, tA (s)
Figure 12: Single Pulse Avalanche capability
30
50
TJ(max)=150°C
TA=25°C
80
60
40
10
20
0
0
25
50
75
100
125
150
0
0.01
175
TCASE (°C)
Figure 14: Current De-rating (Note B)
0.1
1
10
100
1000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
ZθJA Normalized Transient
Thermal Resistance
10
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
0.01
0.001
0.00001
Single Pulse
0.0001
0.001
PD
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=50°C/W
0.01
0.1
Ton
1
T
10
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
100
1000