DATA SHEET PHOTOCOUPLER PS9634,PS9634L POWER TRANSISTOR DRIVING BASE AMPLIFIER BUILT-IN TYPE PHOTOCOUPLER DESCRIPTION The PS9634 and PS9634L are optical linkage devices mounting a GaAs infrared ray LED on the light emitting side (input side) and a photo diode and a signal processing circuit on the light receiving side (output side) on one chip. They can directly drive a power transistor of 15 to 20 A class used for such as an inverter control air conditioner or general purpose inverter. The PS9634L has a surface mount type lead. FEATURES • High instantaneous common mode rejection voltage (CMH = –1 000 V/µs MIN., CML = 1 000 V/µs MIN.) • High supply voltage (VCC = 18 V) • High-speed response (tPHL, tPLH = 5 µs MAX.) • High output current (IO1 = 0.5 A (DC), IO1P = 1.0 A (pulse) ) • Taping product name (PS9634L-E3, E4) APPLICATIONS • Inverter control air conditioner • General purpose inverter The information in this document is subject to change without notice. Document No. P12686EJ4V0DS00 (4th edition) Date Published February 1998 NS CP(K) Printed in Japan The mark • shows major revised points. © 1992 PS9634,PS9634L PACKAGE DIMENSIONS (in millimeters) PS9634 TOP VIEW 10.16 MAX. Signal processing circuit 8 7 6 Tr.1 1 2 5 1. Anode 2. Cathode 3. NC 4. NC 5. Output (O1) 6. Output (O2) 7. GND 8. VCC Tr.2 3 4 7.62 3.8 MAX. 0.65 2.8 MIN. 4.55 MAX. 6.5±0.5 1.27 MAX. 0.50±0.10 0 to 15˚ 2.54 0.25 M 1.34 PS9634L TOP VIEW 10.16 MAX. Signal processing circuit 8 7 6 Tr.1 1 2 5 1. Anode 2. Cathode 3. NC 4. NC 5. Output (O1) 6. Output (O2) 7. GND 8. VCC Tr.2 3 4 3.8 MAX. 6.5±0.5 1.27 MAX. 1.34±0.10 0.25 M 2 2.54 0.9±0.25 9.60±0.4 0.05 to 0.2 7.62 PS9634,PS9634L ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified) Parameter Symbol Ratings Unit IF 30 mA VR 6.0 V IFM 1 A Supply Voltage VCC 18 V Output Current (O1) IO1 0.5 A Peak Output Current (O1) IO1P 1.0 Output Current (O2) IO2 0.8 Peak Output Current (O2) IO2P 2.0 Output Voltage (O1) VO1 18 V Power Dissipation PO 500 mW BV 5 000 Vr.m.s. Total Power Dissipation PT 550 mW Operating Ambient Temperature TA −20 to +80 °C Storage Temperature Tstg −55 to +150 °C Diode Forward Current (DC) Reverse Voltage Peak Forward Current Detector Isolation Voltage *1 *2 *1 PW = 100 µs, Duty Cycle = 1 % *2 AC voltage for 1 minute at TA = 25 °C, RH = 60 % between input and output RECOMMENDED OPERATING CONDITIONS Parameter TRUTH TABLE Symbol MIN. TYP. MAX. Unit Input On Current IFLH 6 8 10 mA Supply Voltage VCC 5.4 15 V Output Current (O1) IO1 0.1 0.2 0.3 A Output Current (O2) IO2 Operating Ambient Temperature TA 0 25 50 °C LED ON OFF Tr. 1 ON OFF Tr. 2 OFF ON 3 PS9634,PS9634L ELECTRICAL CHARACTERISTICS (TA = −20 to +80 °C, unless otherwise specified) Parameter Diode Detector Symbol Conditions Forward Voltage VF IF = 5 mA, TA = 25 °C Reverse Current IR VR = 5 V, TA = 25 °C Terminal Capacitance Ct V = 0 V, f = 1.0 MHz, TA = 25 °C Supply Voltage VCC Low Level Output Voltage (O1) VO1L VCC = 6 V, IO1 = 0.4 A, RL2 = 10 Ω, IF = 5 mA High Level Output Voltage (O2) VO2H VCC = 6 V, IO2 = −0.4 A, IF = 5 mA Low Level Output Voltage (O2) VO2L VCC = 6 V, IO2 = 0.5 A, IF = 0 mA Leakage Current (O1) IO1L Leakage Current (O2) IO2L High Level Supply Current ICCH MIN. TYP. MAX. Unit 1.1 1.4 V 5 µA 30 5.4 0.25 4.5 ICCL Input On Current (L → H) IFLH 0.40 V 1 V 2 VCC = 13 V, IF = 0 mA 100 µA 3 VCC = 13 V, IF = 5 mA 100 µA 4 12 mA TA = 25 °C 8 16 TA = 25 °C TA = 25 °C VCC = 6 V, RL1 = 5 Ω, RL2 = 10 Ω 4 V V 15 VCC = 6 V, IF = 0 mA Coupled 15 0.40 VCC = 6 V, IF = 5 mA Low Level Supply Current pF 5.0 0.25 Fig. Isolation Resistance RI-O RH = 40 to 60 %, TA = 25 °C Propagation Delay Time (L → H) tPLH VCC = 6 V, IF = 5 mA, TA = 25 °C RL1 = 5 Ω, RL2 = 10 Ω Propagation Delay Time (H → L) tPHL Instantaneous Common Mode Rejection Voltage (Output: High) CMH Instantaneous Common Mode Rejection Voltage (Output: Low) CML TA = 25 °C, VCM = 600 V (peak), IF = 5 mA, RL1 = 470 Ω, RL2 = 1 kΩ, ∆V02H = 2 V TA = 25 °C, VCM = 600 V (peak), IF = 0 mA, RL1 = 470 Ω, RL2 = 1 kΩ, ∆V02L = 0.5 V 18 mA 22 0.3 1.5 0.2 3.0 mA 5 5.0 Ω 11 10 µs 6 −1 000 V/µs 7 1 000 V/µs 3 5 PS9634,PS9634L MEASUREMENT CIRCUITS FOR ELECTRICAL CHARACTERISTICS Fig. 1 VO1L Fig. 4 IO2L IF IF 1 8 2 7 3 6 4 5 1 8 2 7 3 6 4 5 VCC VCC RL2 = 10 Ω – V VO1L + A IO2L IO1 Fig. 2 VO2H Fig. 5 IFLH IF IF variable 1 8 2 7 1 8 2 7 VCC 3 VCC – V VO2H + 6 IO2 3 5 4 (tr, tf = 0.01 µs) VIN 1 IF 8 V VO2 + RL1 =5Ω Fig. 6 tPLH, tPHL 8 2 7 3 6 4 5 7 51 Ω 3 6 4 5 A 6V VCC VCC 2 RL2 = 10 Ω 5 4 Fig. 3 IO1L 1 6 – RL2 = 10 Ω VOUT IO1L RL1 = 5 Ω VIN 50 % VOUT 50 % tPLH tPHL Fig. 7 CMH, CML IF 1 8 SW 600 V VCC VCM 7 2 GND RL2 = 1 kΩ 3 6 5 4 + CMH (IF = 5 mA) 2V VO2 VO2 RL1 = 470 Ω 0.5 V CML (IF = 0 mA) – VCM 5 PS9634,PS9634L TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise specified) MAXIMUM FORWARD CURRENT vs. AMBIENT TEMPERATURE POWER DISSIPATION vs. AMBIENT TEMPERATURE Power Dissipation PO (mW) 600 30 20 10 25 400 300 200 100 25 0 7580 50 Ambient Temperature TA (˚C) TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE FORWARD CURRENT vs. FORWARD VOLTAGE 600 550 500 100 100 400 300 200 TA = +100 ˚C +75 ˚C +50 ˚C 10 +25 ˚C 0 ˚C –25 ˚C –55 ˚C 1 0.1 100 25 7580 50 0.01 0.6 100 0.8 1.0 1.2 1.4 1.6 Ambient Temperature TA (˚C) Forward Voltage VF (V) NORMALIZED INPUT ON CURRENT vs. SUPPLY VOLTAGE NORMALIZED INPUT ON CURRENT vs. AMBIENT TEMPERATURE 1.5 1.3 VCC = 6 V 1.0 0.5 0.0 2 4 6 8 10 12 14 Supply Voltage VCC (V) 6 100 500 Ambient Temperature TA (˚C) 0 Normalized Input On Current IFLH 7580 50 Forward Current IF (mA) Total Power Dissipation PT (mW) 0 Normalized Input On Current IFLH Maximum Forward Current IF (mA) 40 16 18 1.2 Normalized to 1.0 at TA = 25 ˚C, VCC = 6 V 1.1 1.0 0.9 0.8 –20 0 20 40 60 Ambient Temperature TA (˚C) 80 PS9634,PS9634L LOW LEVEL SUPPLY CURRENT vs. SUPPLY VOLTAGE HIGH LEVEL SUPPLY CURRENT vs. SUPPLY VOLTAGE 22.5 +25 ˚C 10 +80 ˚C 5 6 8 10 12 14 16 +25 ˚C 17.5 +80 ˚C 15.0 12.5 10.0 6 8 10 12 14 16 18 Supply Voltege VCC (V) LOW LEVEL OUTPUT VOLTAGE (O1) vs. OUTPUT CURRENT (O1) LOW LEVEL OUTPUT VOLTAGE (O1) vs. AMBIENT TEMPERATURE VCC = 6 V 10–1 10–2 10–2 10–1 100 0.35 VCC = 6 V IO1 = 0.5 A 0.30 0.25 0.3 A 0.20 0.15 0.10 0.1 A 0.05 0.00 –20 0 20 40 60 80 Output Current (O1) IO1 (A) Ambient Temperature TA (˚C) LOW LEVEL OUTPUT VOLTAGE (O2) vs. OUTPUT CURRENT (O2) LOW LEVEL OUTPUT VOLTAGE (O2) vs. AMBIENT TEMPERATURE 100 VCC = 6 V 10–1 10–2 10–3 20.0 C –20 ˚ Supply Voltage VCC (V) 100 10–3 TA = 7.5 4 18 Low Level Output Voltage (O1) VO1L (V) Low Level Output Voltage (O1) VO1L (V) Low Level Supply Current ICCL (mA) TA 0 4 Low Level Output Voltage (O2) VO2L (V) = –20 ˚C 10–2 10–1 Output Current (O2) IO2 (A) 100 Low Level Output Voltage (O2) VO2L (V) High Level Supply Current ICCH (mA) 15 0.5 VCC = 6 V IO2 = 0.6 A 0.4 0.3 0.4 A 0.2 0.1 0.0 –20 0.1 A 0 20 40 60 80 Ambient Temperature TA (˚C) 7 PS9634,PS9634L VCC = 6 V 5.0 4.5 4.0 0.0 –0.1 –0.2 –0.3 –0.4 –0.5 High Level Output Voltage (O2) VO2H (V) 5.5 HIGH LEVEL OUTPUT VOLTAGE (O2) vs. AMBIENT TEMPERATURE –0.6 5.3 VCC = 6 V 5.2 0.1 A IO2 = – 5.1 –0.4 A –0.6A 5.0 4.9 4.8 4.7 4.6 4.5 –20 0 20 40 60 Output Current (O2) IO2 (A) Ambient Temperature TA (˚C) PROPAGATION DELAY TIME vs. FORWARD CURRENT PROPAGATION DELAY TIME vs. AMBIENT TEMPERATURE 5 Propagation Delay Time tPLH/tPHL ( µ s) Propagation Delay Time tPLH/tPHL ( µ s) High Level Output Voltage (O2) VO2H (V) HIGH LEVEL OUTPUT VOLTAGE (O2) vs. OUTPUT CURRENT (O2) VCC = 6 V, RL1 = 5 Ω, RL2 = 10 Ω tPLH tPHL 4 TA = +80 ˚C 3 +25 ˚C –20 ˚C 2 0 5 10 15 20 25 30 Forward Current IF (mA) 5.0 VCC = 6 V, IF = 5 mA, RL1 = 5 Ω, RL2 = 10 Ω 4.5 4.0 tPHL 3.5 tPLH 3.0 2.5 2.0 –20 0 20 40 60 Ambient Temperature TA (˚C) SAFE OPERATING AREA (Tr.1) 5 IO2 MAX. (Pulse) 1 10 10 1 0 IO2 MAX. (DC) 0.5 DC 1 (T A 0.2 = DC 80 m s *1 m s *1 m s *1 s *1 *2 ˚C VCC MAX. Output Current (O2) IO2 (A) 10 2 ) *2 0.1 0.3 0.5 1 2 3 5 10 20 30 Output Voltage (O2) VO2 (V) *1 One pulse *2 On the epoxy board Remark The measurement of TYPICAL CHARACTERISTICS are only for reference, not guaranteed. 8 80 80 PS9634,PS9634L TAPING SPECIFICATIONS (in millimeters) 4.3±0.2 10.3±0.1 7.5±0.1 1.55±0.1 16.0±0.3 2.0±0.1 4.0±0.1 1.75±0.1 Outline and Dimensions (Tape) 0.3 10.4±0.1 1.55±0.1 12.0±0.1 Tape Direction PS9634L-E3 PS9634L-E4 Outline and Dimensions (Reel) φ 21.0±0.8 φ 80.0±5.0 R 1.0 φ 330 2.0±0.5 φ 13.0±0.5 16.4 +2.0 –0.0 Packing: 1 000 pcs/reel 9 PS9634,PS9634L RECOMMENDED SOLDERING CONDITIONS (1) Infrared reflow soldering • Peak reflow temperature 235 °C (package surface temperature) • Time of temperature higher than 210 °C 30 seconds or less • Number of reflows Three • Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.) Package Surface Temperature T (˚C) Recommended Temperature Profile of Infrared Reflow (heating) to 10 s 235 ˚C (peak temperature) 210 ˚C to 30 s 120 to 160 ˚C 60 to 90 s (preheating) Time (s) Caution Please avoid to removed the residual flux by water after the first reflow processes. Peak temperature 235 ˚C or below (2) Dip soldering • Temperature 260 °C or below (molten solder temperature) • Time 10 seconds or less • Number of times One • Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.) 10 PS9634,PS9634L APPLICATION EXAMPLE OF PHOTOCOUPLER (TO POWER TRANSISTOR MODULE) VCC PS9634, PS9634L 1 8 2 7 3 6 Load + VCC TTL or the like Input VIN IO 5 4 Power transistor module VIN 0 t 0 t IO IO1 IO2P 11 PS9634,PS9634L CAUTION Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5