NEC PS9634L-E4

DATA SHEET
PHOTOCOUPLER
PS9634,PS9634L
POWER TRANSISTOR DRIVING
BASE AMPLIFIER BUILT-IN TYPE PHOTOCOUPLER
DESCRIPTION
The PS9634 and PS9634L are optical linkage devices mounting a GaAs infrared ray LED on the light emitting side
(input side) and a photo diode and a signal processing circuit on the light receiving side (output side) on one chip.
They can directly drive a power transistor of 15 to 20 A class used for such as an inverter control air conditioner or
general purpose inverter.
The PS9634L has a surface mount type lead.
FEATURES
• High instantaneous common mode rejection voltage (CMH = –1 000 V/µs MIN., CML = 1 000 V/µs MIN.)
• High supply voltage (VCC = 18 V)
• High-speed response (tPHL, tPLH = 5 µs MAX.)
• High output current (IO1 = 0.5 A (DC), IO1P = 1.0 A (pulse) )
• Taping product name (PS9634L-E3, E4)
APPLICATIONS
• Inverter control air conditioner
• General purpose inverter
The information in this document is subject to change without notice.
Document No. P12686EJ4V0DS00 (4th edition)
Date Published February 1998 NS CP(K)
Printed in Japan
The mark • shows major revised points.
©
1992
PS9634,PS9634L
PACKAGE DIMENSIONS (in millimeters)
PS9634
TOP VIEW
10.16 MAX.
Signal processing circuit
8
7
6
Tr.1
1
2
5
1. Anode
2. Cathode
3. NC
4. NC
5. Output (O1)
6. Output (O2)
7. GND
8. VCC
Tr.2
3
4
7.62
3.8 MAX.
0.65
2.8 MIN. 4.55 MAX.
6.5±0.5
1.27 MAX.
0.50±0.10
0 to 15˚
2.54
0.25 M
1.34
PS9634L
TOP VIEW
10.16 MAX.
Signal processing circuit
8
7
6
Tr.1
1
2
5
1. Anode
2. Cathode
3. NC
4. NC
5. Output (O1)
6. Output (O2)
7. GND
8. VCC
Tr.2
3
4
3.8 MAX.
6.5±0.5
1.27 MAX.
1.34±0.10
0.25 M
2
2.54
0.9±0.25
9.60±0.4
0.05 to 0.2
7.62
PS9634,PS9634L
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)
Parameter
Symbol
Ratings
Unit
IF
30
mA
VR
6.0
V
IFM
1
A
Supply Voltage
VCC
18
V
Output Current (O1)
IO1
0.5
A
Peak Output Current (O1)
IO1P
1.0
Output Current (O2)
IO2
0.8
Peak Output Current (O2)
IO2P
2.0
Output Voltage (O1)
VO1
18
V
Power Dissipation
PO
500
mW
BV
5 000
Vr.m.s.
Total Power Dissipation
PT
550
mW
Operating Ambient Temperature
TA
−20 to +80
°C
Storage Temperature
Tstg
−55 to +150
°C
Diode
Forward Current (DC)
Reverse Voltage
Peak Forward Current
Detector
Isolation Voltage
*1
*2
*1 PW = 100 µs, Duty Cycle = 1 %
*2 AC voltage for 1 minute at TA = 25 °C, RH = 60 % between input and output
RECOMMENDED OPERATING CONDITIONS
Parameter
TRUTH TABLE
Symbol
MIN.
TYP.
MAX.
Unit
Input On Current
IFLH
6
8
10
mA
Supply Voltage
VCC
5.4
15
V
Output Current (O1)
IO1
0.1
0.2
0.3
A
Output Current (O2)
IO2
Operating Ambient Temperature
TA
0
25
50
°C
LED
ON
OFF
Tr. 1
ON
OFF
Tr. 2
OFF
ON
3
PS9634,PS9634L
ELECTRICAL CHARACTERISTICS (TA = −20 to +80 °C, unless otherwise specified)
Parameter
Diode
Detector
Symbol
Conditions
Forward Voltage
VF
IF = 5 mA, TA = 25 °C
Reverse Current
IR
VR = 5 V, TA = 25 °C
Terminal Capacitance
Ct
V = 0 V, f = 1.0 MHz, TA = 25 °C
Supply Voltage
VCC
Low Level Output Voltage
(O1)
VO1L
VCC = 6 V, IO1 = 0.4 A, RL2 = 10 Ω,
IF = 5 mA
High Level Output Voltage
(O2)
VO2H
VCC = 6 V, IO2 = −0.4 A, IF = 5 mA
Low Level Output Voltage
(O2)
VO2L
VCC = 6 V, IO2 = 0.5 A, IF = 0 mA
Leakage Current (O1)
IO1L
Leakage Current (O2)
IO2L
High Level Supply Current
ICCH
MIN.
TYP.
MAX.
Unit
1.1
1.4
V
5
µA
30
5.4
0.25
4.5
ICCL
Input On Current (L → H)
IFLH
0.40
V
1
V
2
VCC = 13 V, IF = 0 mA
100
µA
3
VCC = 13 V, IF = 5 mA
100
µA
4
12
mA
TA = 25 °C
8
16
TA = 25 °C
TA = 25 °C
VCC = 6 V, RL1 = 5 Ω, RL2 = 10 Ω
4
V
V
15
VCC = 6 V, IF = 0 mA
Coupled
15
0.40
VCC = 6 V, IF = 5 mA
Low Level Supply Current
pF
5.0
0.25
Fig.
Isolation Resistance
RI-O
RH = 40 to 60 %, TA = 25 °C
Propagation Delay Time
(L → H)
tPLH
VCC = 6 V, IF = 5 mA, TA = 25 °C
RL1 = 5 Ω, RL2 = 10 Ω
Propagation Delay Time
(H → L)
tPHL
Instantaneous Common
Mode Rejection Voltage
(Output: High)
CMH
Instantaneous Common
Mode Rejection Voltage
(Output: Low)
CML
TA = 25 °C, VCM = 600 V (peak),
IF = 5 mA, RL1 = 470 Ω, RL2 = 1 kΩ,
∆V02H = 2 V
TA = 25 °C, VCM = 600 V (peak),
IF = 0 mA, RL1 = 470 Ω, RL2 = 1 kΩ,
∆V02L = 0.5 V
18
mA
22
0.3
1.5
0.2
3.0
mA
5
5.0
Ω
11
10
µs
6
−1 000
V/µs
7
1 000
V/µs
3
5
PS9634,PS9634L
MEASUREMENT CIRCUITS FOR ELECTRICAL CHARACTERISTICS
Fig. 1 VO1L
Fig. 4 IO2L
IF
IF
1
8
2
7
3
6
4
5
1
8
2
7
3
6
4
5
VCC
VCC
RL2 = 10 Ω
–
V VO1L
+
A
IO2L
IO1
Fig. 2 VO2H
Fig. 5 IFLH
IF
IF variable
1
8
2
7
1
8
2
7
VCC
3
VCC
–
V VO2H
+
6
IO2
3
5
4
(tr, tf = 0.01 µs)
VIN
1
IF
8
V VO2
+
RL1
=5Ω
Fig. 6 tPLH, tPHL
8
2
7
3
6
4
5
7
51 Ω
3
6
4
5
A
6V
VCC
VCC
2
RL2
= 10 Ω
5
4
Fig. 3 IO1L
1
6
–
RL2 = 10 Ω
VOUT
IO1L
RL1 = 5 Ω
VIN
50 %
VOUT
50 %
tPLH
tPHL
Fig. 7 CMH, CML
IF
1
8
SW
600 V
VCC
VCM
7
2
GND
RL2 = 1 kΩ
3
6
5
4
+
CMH (IF = 5 mA)
2V
VO2
VO2
RL1 = 470 Ω
0.5 V
CML (IF = 0 mA)
–
VCM
5
PS9634,PS9634L
TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise specified)
MAXIMUM FORWARD CURRENT vs.
AMBIENT TEMPERATURE
POWER DISSIPATION vs.
AMBIENT TEMPERATURE
Power Dissipation PO (mW)
600
30
20
10
25
400
300
200
100
25
0
7580
50
Ambient Temperature TA (˚C)
TOTAL POWER DISSIPATION vs.
AMBIENT TEMPERATURE
FORWARD CURRENT vs.
FORWARD VOLTAGE
600
550
500
100
100
400
300
200
TA = +100 ˚C
+75 ˚C
+50 ˚C
10
+25 ˚C
0 ˚C
–25 ˚C
–55 ˚C
1
0.1
100
25
7580
50
0.01
0.6
100
0.8
1.0
1.2
1.4
1.6
Ambient Temperature TA (˚C)
Forward Voltage VF (V)
NORMALIZED INPUT ON CURRENT vs.
SUPPLY VOLTAGE
NORMALIZED INPUT ON CURRENT vs.
AMBIENT TEMPERATURE
1.5
1.3
VCC = 6 V
1.0
0.5
0.0
2
4
6
8
10
12
14
Supply Voltage VCC (V)
6
100
500
Ambient Temperature TA (˚C)
0
Normalized Input On Current IFLH
7580
50
Forward Current IF (mA)
Total Power Dissipation PT (mW)
0
Normalized Input On Current IFLH
Maximum Forward Current IF (mA)
40
16
18
1.2
Normalized to 1.0
at TA = 25 ˚C,
VCC = 6 V
1.1
1.0
0.9
0.8
–20
0
20
40
60
Ambient Temperature TA (˚C)
80
PS9634,PS9634L
LOW LEVEL SUPPLY CURRENT vs.
SUPPLY VOLTAGE
HIGH LEVEL SUPPLY CURRENT vs.
SUPPLY VOLTAGE
22.5
+25 ˚C
10
+80 ˚C
5
6
8
10
12
14
16
+25 ˚C
17.5
+80 ˚C
15.0
12.5
10.0
6
8
10
12
14
16
18
Supply Voltege VCC (V)
LOW LEVEL OUTPUT VOLTAGE (O1)
vs. OUTPUT CURRENT (O1)
LOW LEVEL OUTPUT VOLTAGE (O1)
vs. AMBIENT TEMPERATURE
VCC = 6 V
10–1
10–2
10–2
10–1
100
0.35
VCC = 6 V
IO1 = 0.5 A
0.30
0.25
0.3 A
0.20
0.15
0.10
0.1 A
0.05
0.00
–20
0
20
40
60
80
Output Current (O1) IO1 (A)
Ambient Temperature TA (˚C)
LOW LEVEL OUTPUT VOLTAGE (O2)
vs. OUTPUT CURRENT (O2)
LOW LEVEL OUTPUT VOLTAGE (O2)
vs. AMBIENT TEMPERATURE
100
VCC = 6 V
10–1
10–2
10–3
20.0
C
–20 ˚
Supply Voltage VCC (V)
100
10–3
TA =
7.5
4
18
Low Level Output Voltage (O1) VO1L (V)
Low Level Output Voltage (O1) VO1L (V)
Low Level Supply Current ICCL (mA)
TA
0
4
Low Level Output Voltage (O2) VO2L (V)
= –20 ˚C
10–2
10–1
Output Current (O2) IO2 (A)
100
Low Level Output Voltage (O2) VO2L (V)
High Level Supply Current ICCH (mA)
15
0.5
VCC = 6 V
IO2 = 0.6 A
0.4
0.3
0.4 A
0.2
0.1
0.0
–20
0.1 A
0
20
40
60
80
Ambient Temperature TA (˚C)
7
PS9634,PS9634L
VCC = 6 V
5.0
4.5
4.0
0.0
–0.1
–0.2
–0.3
–0.4
–0.5
High Level Output Voltage (O2) VO2H (V)
5.5
HIGH LEVEL OUTPUT VOLTAGE (O2)
vs. AMBIENT TEMPERATURE
–0.6
5.3
VCC = 6 V
5.2
0.1 A
IO2 = –
5.1
–0.4 A
–0.6A
5.0
4.9
4.8
4.7
4.6
4.5
–20
0
20
40
60
Output Current (O2) IO2 (A)
Ambient Temperature TA (˚C)
PROPAGATION DELAY TIME vs.
FORWARD CURRENT
PROPAGATION DELAY TIME vs.
AMBIENT TEMPERATURE
5
Propagation Delay Time tPLH/tPHL ( µ s)
Propagation Delay Time tPLH/tPHL ( µ s)
High Level Output Voltage (O2) VO2H (V)
HIGH LEVEL OUTPUT VOLTAGE (O2)
vs. OUTPUT CURRENT (O2)
VCC = 6 V,
RL1 = 5 Ω,
RL2 = 10 Ω
tPLH
tPHL
4
TA = +80 ˚C
3
+25 ˚C
–20 ˚C
2
0
5
10
15
20
25
30
Forward Current IF (mA)
5.0
VCC = 6 V, IF = 5 mA,
RL1 = 5 Ω, RL2 = 10 Ω
4.5
4.0
tPHL
3.5
tPLH
3.0
2.5
2.0
–20
0
20
40
60
Ambient Temperature TA (˚C)
SAFE OPERATING AREA (Tr.1)
5
IO2 MAX. (Pulse)
1
10
10
1
0
IO2 MAX. (DC)
0.5
DC
1
(T
A
0.2
=
DC
80
m
s *1
m
s *1
m
s *1
s *1
*2
˚C
VCC MAX.
Output Current (O2) IO2 (A)
10
2
) *2
0.1
0.3
0.5
1
2
3
5
10
20 30
Output Voltage (O2) VO2 (V)
*1 One pulse
*2 On the epoxy board
Remark The measurement of TYPICAL CHARACTERISTICS are only for reference, not guaranteed.
8
80
80
PS9634,PS9634L
TAPING SPECIFICATIONS (in millimeters)
4.3±0.2
10.3±0.1
7.5±0.1
1.55±0.1
16.0±0.3
2.0±0.1
4.0±0.1
1.75±0.1
Outline and Dimensions (Tape)
0.3
10.4±0.1
1.55±0.1
12.0±0.1
Tape Direction
PS9634L-E3
PS9634L-E4
Outline and Dimensions (Reel)
φ 21.0±0.8
φ 80.0±5.0
R 1.0
φ 330
2.0±0.5
φ 13.0±0.5
16.4 +2.0
–0.0
Packing: 1 000 pcs/reel
9
PS9634,PS9634L
RECOMMENDED SOLDERING CONDITIONS
(1) Infrared reflow soldering
• Peak reflow temperature
235 °C (package surface temperature)
• Time of temperature higher than 210 °C
30 seconds or less
• Number of reflows
Three
• Flux
Rosin flux containing small amount of chlorine (The flux with a
maximum chlorine content of 0.2 Wt % is recommended.)
Package Surface Temperature T (˚C)
Recommended Temperature Profile of Infrared Reflow
(heating)
to 10 s
235 ˚C (peak temperature)
210 ˚C
to 30 s
120 to 160 ˚C
60 to 90 s
(preheating)
Time (s)
Caution Please avoid to removed the residual flux by water after the first reflow processes.
Peak temperature 235 ˚C or below
(2) Dip soldering
• Temperature
260 °C or below (molten solder temperature)
• Time
10 seconds or less
• Number of times
One
• Flux
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of
0.2 Wt % is recommended.)
10
PS9634,PS9634L
APPLICATION EXAMPLE OF PHOTOCOUPLER (TO POWER TRANSISTOR MODULE)
VCC
PS9634, PS9634L
1
8
2
7
3
6
Load
+
VCC
TTL or the like
Input
VIN
IO
5
4
Power transistor module
VIN
0
t
0
t
IO
IO1
IO2P
11
PS9634,PS9634L
CAUTION
Within this device there exists GaAs (Gallium Arsenide) material which is a
harmful substance if ingested. Please do not under any circumstances break the
hermetic seal.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96. 5