KERSEMI NFT6003

NFT6003 / IRF5305
www.kersemi.com
HEXFET® Power MOSFET
l
l
l
l
l
l
Advanced Process Technology
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
P-Channel
Fully Avalanche Rated
D
VDSS = -55V
RDS(on) = 0.06Ω
G
ID = -31A
S
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal resistance
and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ -10V
Continuous Drain Current, VGS @ -10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
-31
-22
-110
110
0.71
± 20
280
-16
11
-5.0
-55 to + 175
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
1/8
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
1.4
–––
62
°C/W
NFT6003 / IRF5305
www.kersemi.com
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
-55
–––
–––
-2.0
8.0
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
-0.034
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
14
66
39
63
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
1200
520
250
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Max. Units
Conditions
–––
V
VGS = 0V, ID = -250µA
––– V/°C Reference to 25°C, ID = -1mA
0.06
Ω
VGS = -10V, ID = -16A „
-4.0
V
VDS = V GS, ID = -250µA
–––
S
VDS = -25V, ID = -16A
-25
VDS = -55V, VGS = 0V
µA
-250
VDS = -44V, VGS = 0V, TJ = 150°C
100
VGS = 20V
nA
-100
VGS = -20V
63
ID = -16A
13
nC
VDS = -44V
29
VGS = -10V, See Fig. 6 and 13 „
–––
VDD = -28V
–––
ID = -16A
ns
–––
RG = 6.8Ω
–––
RD = 1.6Ω, See Fig. 10 „
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
–––
VGS = 0V
–––
pF
VDS = -25V
–––
ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Min. Typ. Max. Units
–––
–––
-31
–––
–––
-110
–––
–––
–––
–––
71
170
-1.3
110
250
A
V
ns
nC
Conditions
D
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
S
TJ = 25°C, IS = -16A, VGS = 0V „
TJ = 25°C, IF = -16A
di/dt = -100A/µs „
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ VDD = -25V, starting TJ = 25°C, L = 2.1mH
RG = 25Ω, IAS = -16A. (See Figure 12)
2/8
ƒ ISD ≤ -16A, di/dt ≤ -280A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
D
S
NFT6003 / IRF5305
www.kersemi.com
1000
1000
VGS
- 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOT TOM - 4.5V
VGS
- 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTTOM - 4.5V
TOP
-ID , D rain-to-S ourc e C urrent (A )
-ID , D rain-to-S ou rc e C urre nt (A )
TO P
100
10
-4.5 V
2 0µ s P U LS E W ID TH
T cJ = 2 5°C
A
1
0.1
1
10
100
10
-4 .5 V
20 µ s P U L S E W ID T H
TCJ = 17 5°C
1
0.1
100
1
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
2.0
TJ = 2 5°C
TJ = 17 5 °C
10
V DS = -2 5 V
2 0µ s P U L S E W ID TH
5
6
7
8
9
-V G S , G ate -to-Source Volta ge (V )
Fig 3. Typical Transfer Characteristics
3/8
R D S (on) , Drain-to-S ource O n Resistance
(N orm alized)
-I D , D rain-to -So urc e C urre nt (A )
100
4
A
100
-VD S , D rain-to-S ource V oltage (V )
-VD S , D rain-to-S ourc e V oltage (V )
1
10
10
A
I D = -27 A
1.5
1.0
0.5
V G S = -10 V
0.0
-60
-40
-20
0
20
40
60
80
A
100 120 140 160 180
T J , Junction T em perature (°C )
Fig 4. Normalized On-Resistance
Vs. Temperature
NFT6003 / IRF5305
www.kersemi.com
C, C apacitanc e (pF )
2000
C iss
V GS
C iss
C rs s
C o ss
=
=
=
=
20
0V ,
f = 1MHz
C g s + C g d , C d s S H O R TE D
C gd
C ds + C g d
-V G S , G ate -to-S ou rc e V oltage (V )
2500
V D S = -4 4V
V D S = -2 8V
16
C oss
1500
I D = -1 6A
12
1000
C rss
500
0
10
4
FO R TE S T C IR C U IT
S E E FIG U R E 1 3
0
A
1
8
100
0
10
-V D S , D rain-to-S ourc e V oltage (V )
40
50
A
60
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
1000
O P E R A TIO N IN TH IS A R E A L IM ITE D
B Y R D S (o n)
-ID , D rain C urrent (A )
-IS D , R everse Drain C urrent (A )
30
Q G , Total G ate C harge (nC )
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
TJ = 17 5 °C
TJ = 25 °C
V G S = 0V
10
0.4
0.8
1.2
1.6
-VS D , S ourc e-to-D rain V oltage (V )
Fig 7. Typical Source-Drain Diode
Forward Voltage
4/8
20
A
2.0
100
100µ s
10
1m s
10m s
T C = 25 °C
T J = 17 5°C
S ing le P u lse
1
1
10
100
-VD S , D rain-to-S ourc e V oltage (V )
Fig 8. Maximum Safe Operating Area
A
NFT6003 / IRF5305
www.kersemi.com
RD
VDS
35
VGS
30
D.U.T.
RG
-
-ID , Drain Current (A)
+
VDD
25
-10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
20
Fig 10a. Switching Time Test Circuit
15
10
td(on)
tr
t d(off)
tf
VGS
5
10%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
90%
VDS
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.01
0.00001
P DM
0.05
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5/8
0.1
NFT6003 / IRF5305
www.kersemi.com
L
VDS
+
-
D .U .T
RG
IA S
-2 0 V
tp
VD D
A
D R IV E R
0 .0 1 Ω
15V
Fig 12a. Unclamped Inductive Test Circuit
IAS
E A S , S ingle Pulse Avalanc he E nergy (m J)
700
TO P
600
BOTTOM
ID
-6.6 A
-11 A
-1 6A
500
400
300
200
100
0
V D D = -2 5V
25
50
A
75
100
125
150
175
S tarting T J , J unc tion T em perature (°C )
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
tp
V (BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
-10V
QGS
QGD
D.U.T.
+VDS
VGS
VG
-3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6/8
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
NFT6003 / IRF5305
www.kersemi.com
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
ƒ
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
‚
-
-
„
+
**

• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
RG
VGS*
+
-
*
VDD
*
Reverse Polarity for P-Channel
** Use P-Channel Driver for P-Channel Measurements
Driver Gate Drive
P.W.
D=
Period
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 14. For P-Channel HEXFETS
7/8
[ ISD ]
NFT6003 / IRF5305
www.kersemi.com
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
2.87 (.11 3)
2.62 (.10 3)
10 .54 (.4 15)
10 .29 (.4 05)
-B -
3 .7 8 (.149 )
3 .5 4 (.139 )
4.69 ( .18 5 )
4.20 ( .16 5 )
-A -
1 .32 (.05 2)
1 .22 (.04 8)
6.47 (.25 5)
6.10 (.24 0)
4
1 5.24 (.60 0)
1 4.84 (.58 4)
L E A D A S S IG NM E NT S
1 - GATE
2 - D R A IN
3 - S O U RC E
4 - D R A IN
1.15 (.04 5)
M IN
1
2
3
1 4.09 (.55 5)
1 3.47 (.53 0)
4.06 (.16 0)
3.55 (.14 0)
3X
3X
1 .4 0 (.0 55 )
1 .1 5 (.0 45 )
0.93 (.03 7)
0.69 (.02 7)
0 .3 6 (.01 4)
3X
M
B A M
0.55 (.02 2)
0.46 (.01 8)
2 .92 (.11 5)
2 .64 (.10 4)
2.54 (.10 0)
2X
N O TE S :
1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82.
3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 A B .
2 C O N TR O L LIN G D IM E N S IO N : IN C H
4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .
Part Marking Information
TO-220AB
E X A M P L E : TH IS IS A N IR F 1 0 1 0
W ITH A S S E M B L Y
L O T C O D E 9 B 1M
A
IN TE R N A T IO N A L
R E C TIFIE R
ASSEMBLY
L OT C O D E
8/8
PART NU MBER
IR F 1 0 10
9246
9B
1M
D A TE C O D E
(Y Y W W )
YY = YEAR
W W = W EEK