IRFB16N60L, SiHFB16N60L Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Super Fast Body Diode Eliminates the Need for External Diodes in ZVS Applications 600 RDS(on) (Ω) VGS = 10 V 0.385 • Lower Gate Charge Results in Simpler Drive Requirements Available RoHS* COMPLIANT Qg (Max.) (nC) 100 Qgs (nC) 30 Qgd (nC) 46 • Enhanced dV/dt Capabilities Offer Improved Ruggedness Single • Higher Gate Voltage Threshold Offers Improved Noise Immunity Configuration D • Lead (Pb)-free Available TO-220 APPLICATIONS G • Zero Voltage Switching SMPS • Telecom and Server Power Supplies S G D S • Uninterruptible Power Supplies N-Channel MOSFET • Motor Control Applications ORDERING INFORMATION Package TO-220 IRFB16N60LPbF SiHFB16N60L-E3 IRFB16N60L SiHFB16N60L Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT VDS VGS 600 ± 30 16 10 60 2.5 310 16 31 310 10 - 55 to + 150 300d 10 1.1 Drain-Source Voltage Gate-Source Voltage Continuous Drain Current VGS at 10 V Pulsed Drain Currenta Linear Derating Factor Single Pulse Avalanche Energyb Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque TC = 25 °C TC = 100 °C ID IDM TC = 25 °C EAS IAR EAR PD dV/dt TJ, Tstg for 10 s 6-32 or M3 screw UNIT V A W/°C mJ A mJ W V/ns °C lbf · in N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 2.5 mH, RG = 25 Ω, IAS =16 A, dV/dt = 10 V/ns (see fig. 12a). c. ISD ≤ 16 A, dI/dt ≤ 340 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. www.kersemi.com 1 IRFB16N60L, SiHFB16N60L THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Maximum Junction-to-Case (Drain) RthJC - 0.4 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.39 - V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 50 µA VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 2.0 mA - 0.385 0.460 Ω VDS = 50 V, ID = 9.0 A 8.3 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 2720 - - 26 - - 20 - - 120 - - 100 - - - 100 - - 30 - - 46 - 20 - - 44 - - 28 - - 5.5 - - - 16 - - 60 Drain-Source On-State Resistance RDS(on) Forward Transconductance gfs ID = 9.0 Ab VGS = 10 V Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Effective Output Capacitance Coss eff. Effective Output Capacitance (Energy Related) Coss eff. (ER) Total Gate Charge VGS = 0 V VDS = 0 V to 480 Vc Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Turn-On Delay Time td(on) Rise Time tr Turn-Off Delay Time td(off) Fall Time ID = 16 A, VDS = 480 V, see fig. 7 and 15b VGS = 10 V VDD = 300 V, ID = 16 A, RG = 1.8 Ω, see fig. 11a and 11bb tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Body Diode Reverse Recovery Charge Body Diode Reverse Recovery Current Forward Turn-On Time IS ISM VSD MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 16 A, VGS = 0 S Vb - - 1.5 - 130 200 - 240 360 trr TJ = 25 °C, IF = 16 A, TJ = 125 °C, dI/dt = 100 A/µsb Qrr TJ = 25 °C, IS = 16 A, TJ = 125 °C, dI/dt = 100 A/µsb - 450 670 - 1080 1620 TJ = 25 °C - 5.8 8.7 IRRM ton Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss whil VDS is rising from 0 to 80 % VDS. 2 www.kersemi.com V ns nC A IRFB16N60L, SiHFB16N60L TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 1000 1000 10 BOTTOM ID, Drain-to-Source Current (Α) ID, Drain-to-Source Current (A) TOP 100 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V 5.0V 1 5.0V 0.1 0.01 100 T J = 150°C 10 1 T J = 25°C 0.1 VDS = 50V 20μs PULSE WIDTH 20μs PULSE WIDTH Tj = 25°C 0.001 0.01 0.1 1 10 100 4 VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 8 10 12 14 16 VGS , Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics 3.0 10 BOTTOM 5.0V 1 0.1 20μs PULSE WIDTH Tj = 150°C ID = 15A 2.5 VGS = 10V 2.0 (Normalized) TOP VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V 5.0V RDS(on) , Drain-to-Source On Resistance 100 ID, Drain-to-Source Current (A) 6 1.5 1.0 0.5 0.0 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFB16N60L, SiHFB16N60L 100000 12.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = Cgd VGS , Gate-to-Source Voltage (V) 10000 ID= 15A Coss = Cds + Cgd C, Capacitance(pF) Ciss 1000 Coss 100 Crss 10 10.0 VDS= 120V 8.0 6.0 4.0 2.0 0.0 1 1 10 100 0 1000 10 20 30 40 50 60 70 VDS, Drain-to-Source Voltage (V) Q G Total Gate Charge (nC) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage 25 100.00 ISD, Reverse Drain Current (A) Energy (μJ) 20 15 10 5 T J = 150°C 10.00 T J = 25°C 1.00 VGS = 0V 0 0.10 0 100 200 300 400 500 600 700 VDS, Drain-to-Source Voltage (V) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage 4 VDS= 480V VDS= 300V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, Source-to-Drain Voltage (V) Fig. 8 - Maximum Safe Operating Area www.kersemi.com 1.6 IRFB16N60L, SiHFB16N60L 18 ID, Drain-to-Source Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 16 14 ID, Drain Current (A) 100 10 100μsec 1msec 1 12 10 8 6 4 Tc = 25°C Tj = 150°C Single Pulse 2 10msec 0 0.1 1 10 100 1000 10000 25 VDS, Drain-to-Source Voltage (V) Fig. 9 - Maximum Safe Operating Area VDS 50 75 100 125 150 T C , Case Temperature (°C) Fig. 10 - Maximum Darin Current vs. Case Temperature RD VDS 90 % VGS D.U.T. RG + - VDD 10 % VGS 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % td(on) Fig. 11a - Switching Time Test Circuit td(off) tf tr Fig. 11b - Switching Time Waveforms Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 P DM 0.01 0.02 0.01 t1 t2 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty factor D = 2. Peak T t1/ t 2 J = P DM x Z thJC +T C 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFB16N60L, SiHFB16N60L 15 V VGS(th) Gate threshold Voltage (V) 5.0 4.5 4.0 Driver L VDS D.U.T. RG + A - VDD IAS 3.5 20 V tp ID = 250μA 0.01 Ω Fig. 14b - Unclamped Inductive Test Circuit 3.0 VDS 2.5 tp 2.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig. 13 - Threshold Voltage vs. Temperature IAS Fig. 14c - Unclamped Inductive Waveforms QG VGS EAS , Single Pulse Avalanche Energy (mJ) 600 QGS ID TOP 7.2A 10A BOTTOM 16A 500 QGD VG 400 Charge Fig. 15a - Basic Gate Charge Waveform 300 Current regulator Same type as D.U.T. 200 50 kΩ 100 12 V 0.2 µF 0.3 µF + 0 D.U.T. 25 50 75 100 125 - VDS 150 Starting T J , Junction Temperature (°C) VGS 3 mA IG ID Current sampling resistors Fig. 14a - Maximum Avalanche Energy vs. Drain Current 6 Fig. 15b - Gate Charge Test Circuit www.kersemi.com IRFB16N60L, SiHFB16N60L Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 16 - For N-Channel www.kersemi.com 7