IRFR1N60A, IRFU1N60A, SiHFR1N60A, SiHFU1N60A Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 600 RDS(on) (Max.) (Ω) VGS = 10 V 7.0 Qg (Max.) (nC) 14 Qgs (nC) 2.7 Qgd (nC) • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Single COMPLIANT • Lead (Pb)-free Available D DPAK (TO-252) RoHS* • Fully Characterized Capacitance and Avalanche Voltage and Current 8.1 Configuration Available APPLICATIONS IPAK (TO-251) • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply G • Power Factor Correction S TYPICAL SMPS TOPOLOGIES N-Channel MOSFET • Low Power Single Transistor Flyback ORDERING INFORMATION Package Lead (Pb)-free SnPb DPAK (TO-252) DPAK (TO-252) DPAK (TO-252) DPAK (TO-252) IPAK (TO-251) IRFR1N60APbF IRFR1N60ATRLPbFa IRFR1N60ATRPbFa IRFR1N60ATRRPbFa IRFU1N60APbF SiHFR1N60A-E3 SiHFR1N60ATL-E3a SiHFR1N60AT-E3a SiHFR1N60ATR-E3a SiHFU1N60A-E3 IRFR1N60A - IRFR1N60ATRa - IRFU1N60A SiHFR1N60A - SiHFR1N60ATa - SiHFU1N60A Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 Continuous Drain Current Pulsed Drain VGS at 10 V TC = 25 °C TC = 100 °C Currenta ID IDM Linear Derating Factor Single Pulse Avalanche Energyb UNIT V 1.4 0.89 A 5.6 0.28 W/°C EAS 93 mJ Repetitive Avalanche Currenta IAR 1.4 A Energya EAR 3.6 mJ Repetitive Avalanche Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) for 10 s PD 36 W dV/dt 3.8 V/ns TJ, Tstg - 55 to + 150 300d °C www.kersemi.com 1 IRFR1N60A, IRFU1N60A, SiHFR1N60A, SiHFU1N60A THERMAL RESISTANCE RATINGS SYMBOL TYP. MAX. Maximum Junction-to-Ambient PARAMETER RthJA - 110 Maximum Junction-to-Ambient (PCB Mount)a RthJA - 50 Maximum Junction-to-Case (Drain) RthJC - 3.5 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static VDS VGS = 0 V, ID = 250 µA 600 - - VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 25 VDS = 480 V, VGS = 0 V, TJ = 150 °C - - 250 Drain-Source Breakdown Voltage Gate-Source Threshold Voltage Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs V nA µA - - 7.0 Ω 0.88 - - S - 229 - - 32.6 - - 2.4 - VDS = 1.0 V, f = 1.0 MHz - 320 - VDS = 480 V, f = 1.0 MHz - 11.5 - - 130 - ID = 0.84 Ab VGS = 10 V VDS = 50 V, ID = 0.84 A Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VGS = 0 V Coss eff. Total Gate Charge Qg Gate-Source Charge Qgs VDS = 0 V to 480 VGS = 10 V Vc ID = 1.4 A, VDS = 400 V, see fig. 6 and 13b - - 14 - - 2.7 pF nC Gate-Drain Charge Qgd - - 8.1 Turn-On Delay Time td(on) - 9.8 - - 14 - - 18 - - 20 - - - 1.4 - - 5.6 - - 1.6 - 290 440 ns - 510 760 µC Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 250 V, ID = 1.4 A, RG = 2.15 Ω, RD = 178 Ω, see fig. 10b tf ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton www.kersemi.com 2 MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 1.4 A, VGS = 0 Vb TJ = 25 °C, IF = 1.4 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) V IRFR1N60A, IRFU1N60A, SiHFR1N60A, SiHFU1N60A TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 10 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 0.1 4.5V 20μs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 100 TJ = 150 ° C 1 TJ = 25 ° C 0.1 4.0 VDS , Drain-to-Source Voltage (V) I D , Drain-to-Source Current (A) 1 4.5V 20μs PULSE WIDTH TJ = 150 ° C 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1 6.0 7.0 8.0 9.0 Fig. 3 - Typical Transfer Characteristics TOP 0.1 5.0 VGS , Gate-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 10 V DS = 100V 20μs PULSE WIDTH ID = 1.4A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFR1N60A, IRFU1N60A, SiHFR1N60A, SiHFU1N60A 10 V GS = 0V, f = 1MHz C iss = C gs + C gd, C dsSHORTED C rss = C gd C oss = C ds + C gd ISD , Reverse Drain Current (A) C, Capacitance (pF) 10000 1000 C iss 100 C oss 10 TJ = 150 ° C 1 TJ = 25 ° C Crss 1 0.1 0.4 A 1 10 100 1000 1.0 1.2 100 ID = 1.4A OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 480V VDS = 300V VDS = 120V ID , Drain Current (A) VGS , Gate-to-Source Voltage (V) 0.8 Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 16 0.6 VSD ,Source-to-Drain Voltage (V) V DS , Drain-to-Source Voltage (V) 20 V GS = 0 V 12 8 10 10us 100us 1 1ms 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 2 4 6 8 10 12 14 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.kersemi.com 4 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area 10000 IRFR1N60A, IRFU1N60A, SiHFR1N60A, SiHFU1N60A RD VDS 1.6 VGS D.U.T. ID , Drain Current (A) RG + - VDD 1.2 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 0.8 Fig. 10a - Switching Time Test Circuit VDS 0.4 90 % 0.0 25 50 75 100 125 150 10 % VGS TC , Case Temperature ( ° C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 PDM 0.02 0.01 0.1 SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.01 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms www.kersemi.com 5 200 ID 0.65A 0.9A BOTTOM 1.4A 770 TOP 160 120 80 40 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current V DSav , Avalanche Voltage (V) EAS , Single Pulse Avalanche Energy (mJ) IRFR1N60A, IRFU1N60A, SiHFR1N60A, SiHFU1N60A 750 730 710 690 670 0.0 A 0.4 0.8 1.2 1.6 I av , Avalanche Current (A) Fig. 12d - Basic Gate Charge Waveform Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Maximum Avalanche Energy vs. Drain Current www.kersemi.com 6 Fig. 13b - Gate Charge Test Circuit IRFR1N60A, IRFU1N60A, SiHFR1N60A, SiHFU1N60A Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7