KERSEMI SIHFU420A-E3

IRFR420A, IRFU420A, SiHFR420A,
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg Results in Simple Drive
Requirement
500
RDS(on) (Ω)
VGS = 10 V
3.0
Qg (Max.) (nC)
17
Qgs (nC)
4.3
Qgd (nC)
8.5
Configuration
• Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
COMPLIANT
• Fully Characterized Capacitance and Avalanche Voltage
and Current
Single
• Effective Coss Specified
D
DPAK
(TO-252)
Available
RoHS*
• Lead (Pb)-free Available
IPAK
(TO-251)
APPLICATIONS
• Switch Mode Power Supply (SMPS)
G
• Uninterruptible Power Supply
• High Speed Power Switching
S
N-Channel MOSFET
ORDERING INFORMATION
Package
Lead (Pb)-free
SnPb
DPAK (TO-252)
DPAK (TO-252)
DPAK (TO-252)
IRFR420APbF
IRFR420ATRPbFa
IPAK (TO-251)
IRFR420ATRLPbF
IRFU420APbF
SiHFR420A-E3
SiHFR420AT-E3a
SiHFR420ATL-E3
SiHFU420A-E3
IRFR420A
-
-
IRFU420A
SiHFR420A
-
-
SiHFU420A
Note
a. See device orientation.
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
500
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
IDM
Linear Derating Factor
UNIT
V
3.3
2.1
A
10
0.67
W/°C
Single Pulse Avalanche Energyb
EAS
140
mJ
Repetitive Avalanche Currenta
IAR
2.5
A
EAR
5.0
mJ
PD
83
W
dV/dt
3.4
V/ns
TJ, Tstg
- 55 to + 150
Repetitive Avalanche
Energya
Maximum Power Dissipation
TC = 25 °C
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
for 10 s
300d
°C
Notes
a.
b.
c.
d.
Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
Starting TJ = 25 °C, L = 45 mH, RG = 25 Ω, IAS = 2.5 A (see fig. 12).
ISD ≤ 2.5 A, dI/dt ≤ 270 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
1.6 mm from case.
www.kersemi.com
1
IRFR420A, IRFU420A, SiHFR420A,
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
1.5
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS
VGS = 0 V, ID = 250 µA
500
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.60
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.5
V
nA
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
IGSS
IDSS
RDS(on)
gfs
VGS = ± 30 V
-
-
± 100
VDS = 500 V, VGS = 0 V
-
-
25
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
250
-
-
3.0
Ω
VDS = 50 V, ID = 1.5 A
1.4
-
-
S
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
-
340
-
-
53
-
-
2.7
-
VDS = 1.0 V, f = 1.0 MHz
-
490
-
VDS = 400 V, f = 1.0 MHz
-
15
-
-
28
-
-
-
17
ID = 1.5 Ab
VGS = 10 V
µA
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Coss
Effective Output Capacitance
VGS = 0 V
Coss eff.
VDS = 0 V to 400
Vc
Total Gate Charge
Qg
Gate-Source Charge
Qgs
-
-
4.3
Gate-Drain Charge
Qgd
-
-
8.5
Turn-On Delay Time
td(on)
-
8.1
-
tr
-
12
-
-
16
-
-
13
-
-
-
3.3
-
-
10
Rise Time
Turn-Off Delay Time
Fall Time
td(off)
VGS = 10 V
ID = 2.5 A, VDS = 400 V,
see fig. 6 and 13b
VDD = 250 V, ID = 2.5 A,
RG = 21 Ω, RD = 97 Ω, see fig. 10b
tf
pF
pF
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulsed Diode Forward Currenta
Body Diode Voltage
IS
ISM
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IS = 2.5 A, VGS = 0
S
Vb
TJ = 25 °C, IF = 2.5 A, dI/dt = 100 A/µsb
-
-
1.6
V
-
330
500
ns
-
760
1140
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.kersemi.com
2
IRFR420A, IRFU420A, SiHFR420A,
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
10
10
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
1
0.1
4.5V
20μs PULSE WIDTH
TJ = 25 °C
0.01
0.1
1
10
100
TJ = 150 ° C
1
TJ = 25 ° C
0.1
0.01
4.0
Fig. 1 - Typical Output Characteristics
I D , Drain-to-Source Current (A)
1
4.5V
20μs PULSE WIDTH
TJ = 150 ° C
10
VDS , Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1
6.0
7.0
8.0
9.0
Fig. 3 - Typical Transfer Characteristics
TOP
0.1
5.0
VGS , Gate-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
10
V DS = 50V
20μs PULSE WIDTH
ID = 2.5A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.kersemi.com
3
IRFR420A, IRFU420A, SiHFR420A,
10000
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
C, Capacitance(pF)
ISD , Reverse Drain Current (A)
Coss = Cds + Cgd
1000
10
Ciss
100
Coss
10
Crss
TJ = 150 ° C
1
TJ = 25 ° C
1
1
10
100
1000
0.1
0.4
VDS, Drain-to-Source Voltage (V)
V GS = 0 V
0.6
0.8
1.0
1.2
VSD ,Source-to-Drain Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
ID = 2.5A
100
VDS = 400V
VDS = 250V
VDS = 100V
OPERATION IN THIS AREA LIMITED
BY RDS(on)
15
I D , Drain Current (A)
VGS , Gate-to-Source Voltage (V)
20
10
5
0
10
100us
1
FOR TEST CIRCUIT
SEE FIGURE 13
0
4
8
12
16
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
10us
0.1
1ms
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
10ms
100
1000
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
www.kersemi.com
4
10000
IRFR420A, IRFU420A, SiHFR420A,
RD
VDS
5.0
VGS
D.U.T.
RG
+
- VDD
4.0
ID , Drain Current (A)
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
3.0
Fig. 10a - Switching Time Test Circuit
2.0
VDS
1.0
90 %
0.0
25
50
75
100
125
150
( ° C)
TC , Case Temperature
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response
(Z thJC )
10
1
D = 0.50
0.20
0.10
P DM
0.1
0.05
t1
SINGLE PULSE
(THERMAL RESPONSE)
0.02
0.01
t2
Notes:
1. Duty factor D =
2. Peak T
0.01
0.00001
0.0001
0.001
0.01
t1/ t 2
J = P DM x Z thJC
+T C
0.1
1
t 1, Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
15 V
tp
L
VDS
D.U.T
RG
IAS
20 V
tp
Driver
+
A
- VDD
IAS
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Fig. 12b - Unclamped Inductive Waveforms
www.kersemi.com
5
300
TOP
250
BOTTOM
ID
1.1A
1.6A
2.5A
200
150
100
700
V DSav , Avalanche Voltage ( V )
EAS , Single Pulse Avalanche Energy (mJ)
IRFR420A, IRFU420A, SiHFR420A,
650
600
50
550
0.0
0.5
0
25
50
75
100
125
Starting TJ , Junction Temperature ( °C)
150
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
1.0
1.5
2.0
Fig. 12d - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
QG
50 kΩ
12 V
10 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.kersemi.com
6
2.5
IAV , Avalanche Current ( A)
Fig. 13b - Gate Charge Test Circuit
IRFR420A, IRFU420A, SiHFR420A,
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
•
•
•
•
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
www.kersemi.com
7