KERSEMI SIHFU9310

IRFR9310, IRFU9310, SiHFR9310, SiHFU9310
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
•
•
•
•
•
•
•
- 400
RDS(on) (Ω)
VGS = - 10 V
7.0
Qg (Max.) (nC)
13
Qgs (nC)
3.2
Qgd (nC)
5.0
Configuration
Single
P-Channel
Surface Mount (IRFR9310/SiHFR9310)
Straight Lead (IRFU9310/SiHFU9310)
Advanced Process Technology
Fast Switching
Fully Avalanche Rated
Lead (Pb)-free Available
Available
RoHS*
COMPLIANT
DESCRIPTION
S
D PAK
(TO-252)
IPAK
(TO-251)
Third generation Power MOSFETs from Vishay utilize
advanced processing techniques to achieve low
on-resistance per silicon area. This benefit, combined with
the fast switching speed and ruggedized device design that
Power MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use in a
wide variety of applications.
The DPAK is designed for surface mounting using vapor
phase, infrared, or wave soldering techniques. The straight
lead version (IRFU/SiHFU series) is for through-hole
mounting applications. Power dissipation levels up to 1.5 W
are possible in typical surface mount applications.
G
D
P-Channel MOSFET
ORDERING INFORMATION
Package
Lead (Pb)-free
SnPb
DPAK (TO-252)
DPAK (TO-252)
DPAK (TO-252)
DPAK (TO-252)
IPAK (TO-251)
IRFR9310PbF
IRFR9310TRLPbFa
IRFR9310TRPbFa
IRFR9310TRRPbFa
IRFU9310PbF
SiHFR9310-E3
SiHFR9310TL-E3a
SiHFR9310T-E3a
SiHFR9310TR-E3a
SiHFU9310-E3
IRFR9310
IRFR9310TRLa
IRFR9310TRa
-
IRFU9310
SiHFR9310
SiHFR9310TLa
SiHFR9310Ta
-
SiHFU9310
Note
a. See device orientation.
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current
Pulsed Drain Currenta
Linear Derating Factor
Single Pulse Avalanche Energyb
Repetitive Avalanche Currenta
Repetitive Avalanche Energya
Maximum Power Dissipation
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
SYMBOL
VDS
VGS
VGS at - 10 V
TC = 25 °C
TC = 100 °C
ID
IDM
TC = 25 °C
for 10 s
EAS
IAR
EAR
PD
dV/dt
TJ, Tstg
LIMIT
- 400
± 20
- 1.8
- 1.1
- 7.2
0.40
92
- 1.8
5.0
50
- 24
- 55 to + 150
300d
UNIT
V
A
W/°C
mJ
A
mJ
W
V/ns
°C
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 57 mH, RG = 25 Ω, IAS = - 1.8 A (see fig. 12).
c. ISD ≤ - 1.1 A, dI/dt ≤ 450 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
www.kersemi.com
1
IRFR9310, IRFU9310, SiHFR9310, SiHFU9310
THERMAL RESISTANCE RATINGS
SYMBOL
MIN.
TYP.
MAX.
Maximum Junction-to-Ambient
PARAMETER
RthJA
-
-
110
Maximum Junction-to-Ambient
(PCB Mount)a
RthJA
-
-
50
Maximum Junction-to-Case (Drain)
RthJC
-
-
2.5
UNIT
°C/W
Note
a. When mounted on 1" square PCB (FR-4 or G-10 material).
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
VDS
VGS = 0 V, ID = - 250 µA
- 400
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = - 1 mA
-
- 0.41
-
V/°C
VGS(th)
VDS = VGS, ID = - 250 µA
- 2.0
-
- 4.0
V
nA
VGS = ± 20 V
-
-
± 100
VDS = - 400 V, VGS = 0 V
-
-
- 100
VDS = - 320 V, VGS = 0 V, TJ = 125 °C
-
-
- 500
IGSS
IDSS
RDS(on)
gfs
ID = - 1.1 Ab
VGS = - 10 V
VDS = - 50 V, ID = - 1.1 A
µA
-
-
7.0
Ω
0.91
-
-
S
-
270
-
-
50
-
-
8.0
-
-
-
13
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
VGS = 0 V,
VDS = - 25 V,
f = 1.0 MHz, see fig. 5
Gate-Source Charge
Qgs
-
-
3.2
Gate-Drain Charge
Qgd
-
-
5.0
Turn-On Delay Time
td(on)
-
11
-
tr
-
10
-
-
25
-
-
24
-
-
4.5
-
-
7.5
-
-
-
- 1.9
-
-
- 7.6
-
-
- 4.0
-
170
260
ns
-
640
960
nC
Rise Time
Turn-Off Delay Time
Fall Time
td(off)
VGS = - 10 V
ID = - 1.1 A, VDS = - 320 V,
see fig. 6 and 13b
pF
VDD = - 200 V, ID = - 1.1 A,
RG = 21 Ω, RD = 180 Ω, see fig. 10b
tf
Internal Drain Inductance
LD
Internal Source Inductance
LS
Between lead,
6 mm (0.25") from
package and center of
die contactc
D
nC
ns
nH
G
S
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
A
G
S
TJ = 25 °C, IS = - 1.1 A, VGS = 0 Vb
TJ = 25 °C, IF = -1.1 A, dI/dt = 100 A/µsb
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. This is applied for IPAK, LS of DPAK is measured between lead and center of die contact.
www.kersemi.com
2
D
V
IRFR9310, IRFU9310, SiHFR9310, SiHFU9310
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
10
10
VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
BOTTOM -4.5V
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
TOP
1
-4.5V
20μs PULSE WIDTH
TJ = 25 °C
0.1
1
10
100
TJ = 25 ° C
TJ = 150 ° C
1
V DS = -50V
20μs PULSE WIDTH
0.1
4
-VDS , Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
2.5
VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
BOTTOM -4.5V
-I D , Drain-to-Source Current (A)
TOP
1
-4.5V
0.1
20μs PULSE WIDTH
TJ = 150 °C
1
10
-VDS , Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
6
7
8
9
10
Fig. 3 - Typical Transfer Characteristics
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
10
5
-VGS, Gate-to-Source Voltage (V)
ID = -1.8A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = -10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.kersemi.com
3
IRFR9310, IRFU9310, SiHFR9310, SiHFU9310
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance (pF)
400
Ciss
300
200
Coss
100
Crss
10
-ISD , Reverse Drain Current (A)
500
0
1
10
TJ = 150 ° C
1
TJ = 25 ° C
0.1
1.0
100
-VDS , Drain-to-Source Voltage (V)
3.0
4.0
5.0
Fig. 7 - Typical Source-Drain Diode Forward Voltage
100
ID = -1.1A
OPERATION IN THIS AREA LIMITED
BY RDS(on)
VDS =-320V
VDS =-200V
VDS =-80V
16
-IID , Drain Current (A)
-VGS , Gate-to-Source Voltage (V)
2.0
-VSD ,Source-to-Drain Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
20
V GS = 0 V
12
8
10
10us
100us
1
1ms
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
4
8
12
16
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.kersemi.com
4
0.1
TC = 25 °C
TJ = 150 °C
Single Pulse
10
10ms
100
-VDS , Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
1000
IRFR9310, IRFU9310, SiHFR9310, SiHFU9310
RD
VDS
2.0
VGS
1.6
+VDD
- 10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
1.2
Fig. 10a - Switching Time Test Circuit
0.8
td(on)
0.4
td(off) tf
tr
VGS
10 %
0.0
25
50
75
100
125
150
TC , Case Temperature ( °C)
90 %
VDS
Fig. 9 - Maximum Drain Current vs. Case Temperature
Fig. 10b - Switching Time Waveforms
10
Thermal Response (Z thJC )
-ID , Drain Current (A)
D.U.T.
RG
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
0.02
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.kersemi.com
5
IRFR9310, IRFU9310, SiHFR9310, SiHFU9310
L
VDS
IAS
+ VDD
A
D.U.T.
RG
IAS
- 20 V
tp
Driver
0.01 Ω
tp
15 V
VDS
EAS , Single Pulse Avalanche Energy (mJ)
Fig. 12a - Unclamped Inductive Test Circuit
Fig. 12b - Unclamped Inductive Waveforms
300
ID
-0.49A
-0.7A
BOTTOM -1.1A
TOP
250
200
150
100
50
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
- 10 V
12 V
0.2 µF
0.3 µF
QGS
-
QGD
D.U.T.
VG
+ VDS
VGS
- 3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.kerseemi.com
6
Fig. 13b - Gate Charge Test Circuit
IRFR9310, IRFU9310, SiHFR9310, SiHFU9310
Peak Diode Recovery dV/dt Test Circuit
D.U.T.
+
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
+
• dV/dt controlled by RG
• ISD controlled by duty factor "D"
• D.U.T. - device under test
+
- VDD
Compliment N-Channel of D.U.T. for driver
Driver gate drive
P.W.
Period
D=
P.W.
Period
VGS = - 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
*
ISD
VGS = - 5 V for logic level and - 3 V drive devices
Fig. 14 - For P-Channel
www.kersemi.com
7