IRFB20N50K, SiHFB20N50K Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 500 RDS(on) (Ω) VGS = 10 V 0.21 Qg (Max.) (nC) 110 Qgs (nC) 33 Qgd (nC) 54 Configuration • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Available RoHS* COMPLIANT • Fully Characterized Capacitance and Avalanche Voltage and Current Single • Low RDS(on) D TO-220 • Lead (Pb)-free Available APPLICATIONS • Switch Mode Power Supply (SMPS) G • Uninterruptible Power Supply • High Speed Power Switching S G D • Hard Switched and High Frequency Circuits S N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRFB20N50KPbF SiHFB20N50K-E3 IRFB20N50K SiHFB20N50K Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID UNIT V 20 12 A IDM 80 2.2 W/°C EAS 330 mJ Currenta IAR 20 A Repetitive Avalanche Energya EAR 28 mJ Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche TC = 25 °C Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque PD 280 W dV/dt 6.9 V/ns TJ, Tstg - 55 to + 150 for 10 s 300d 6-32 or M3 screw 10 °C N Notes a. Repetitive rating; pulse width limited by maximum junction temperature. b. Starting TJ = 25 °C, L = 1.6 mH, RG = 25 Ω, IAS = 20 A. c. ISD ≤ 20 A, dI/dt ≤ 350 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply www.kersemi.com 1 IRFB20N50K, SiHFB20N50K THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 58 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 0.45 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.61 - V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 50 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 µA - 0.21 0.25 Ω gfs VDS = 50 V, ID = 12 A 11 - - S Input Capacitance Ciss VGS = 0 V, - 2870 - Output Capacitance Coss VDS = 25 V, - 320 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 34 - - 3480 - Drain-Source On-State Resistance Forward Transconductance RDS(on) ID = 12 Ab VGS = 10 V Dynamic Output Capacitance Effective Output Capacitance Total Gate Charge Coss VDS = 1.0 V, f = 1.0 MHz VGS = 0 V Coss eff. VDS = 400 V, f = 1.0 MHz - 85 - VDS = 0 V to 400 V - 160 - - - 110 - - 33 Qg VGS = 10 V ID = 20 A, VDS = 400 V pF Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 54 Turn-On Delay Time td(on) - 22 - - 74 - - 45 - - 33 - - - 20 S - - 80 TJ = 25 °C, IS = 20 A, VGS = 0 Vb - - 1.5 - 520 780 ns - 5.3 8.0 µC Rise Time Turn-Off Delay Time Fall Time tr td(off) see fig. 6 and 13b VDD = 250 V, ID = 20 A RG = 7.5 Ω, VGS = 10 V, see fig. 10b tf nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D TJ = 25 °C, IF = 20 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature. b. Pulse width ≤ 400 µs; duty cycle ≤ 2 %. 2 A G www.kersemi.com V IRFB20N50K, SiHFB20N50K TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 10 100.0 VGS Top 15 V 12 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V Bottom 5.0 V ID, Drain-to-Source Current (A) ID , Drain-to-Source Current (A) 100 1 0.1 5.0V T J = 150 °C 10.0 T J = 25 °C 1.0 0.1 20 µs Pulse Width TJ = 25 °C VDS = 50 V 0.01 20 ms Pulse width 0.0 0.1 1 10 100 5.0 1 5.0V 0.1 20 µs Pulse Width TJ = 25 °C 9.0 10.0 I D = 20 A 1 10 2.5 2.0 1.5 1.0 0.5 V GS = 10 V 0.01 0.1 8.0 3.0 rDS(on), Drain-to-Source On-Resistance (normalised) ID, Drain-to-Source Current (A) 3.5 VGS Top 15 V 12 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V Bottom 5.0 V 10 7.0 VGS , Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics VDS , Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 100 6.0 100 0.0 - 60 - 40 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics - 20 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFB20N50K, SiHFB20N50K 100000 100.0 C, Capacitance (pF) 10000 ISD, Reverse Drain Current (A) VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds shorted Crss = Cgd Coss = Cds + Cgd Ciss 1000 Coss 100 Crss TJ = 150 °C 10.0 1.0 TJ = 25 °C 10 VGS = 0 V 0.1 1 10 100 1000 0.2 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 1.0 1.2 Operation in this area limited by rDS(on) VDS = 400 V VDS = 250 V VDS = 100 V 16 12 8 4 For test circuit see figure 13 20 40 60 80 100 100 10 120 100 µs 1 ms 1 0.1 0 TC = 25 °C TJ = 150 °C Single Pulse 1 10 10 ms 100 1000 10000 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage 4 0.8 1000 ?? ? ??? 0 0.6 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID, Drain-to-Source Current (A) VGS, Gate-to-Source Voltage (V) 20 0.4 VSD, Source-to Drain Voltage (V) Fig. 8 - Maximum Safe Operating Area www.kersemi.com IRFB20N50K, SiHFB20N50K RD VDS 20 VGS D.U.T. RG 16 + 10 V 12 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 8 Fig. 10a - Switching Time Test Circuit VDS 4 90 % 0 25 50 75 100 125 150 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms 1 D = 0.50 Thermal Response ( ZthJC) ID, Drain Current (A) - VDD 0.20 0.1 0.10 0.01 0.02 0.01 Single Pulse (Thermal Response) P DM 0.01 t1 t2 Notes: 1. Duty Factor D = t1/t2 2. Peak TJ = PDM x TthJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1, Rectangular Pulse Duration (s) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS tp 15 V L VDS D.U.T RG IAS 20 V tp Driver + A - VDD A A IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms www.kersemi.com 5 IRFB20N50K, SiHFB20N50K 600 ID 9.4 A 17 A 20A EAS, Single Pulse Avalanche Energy (mJ) Top 500 Bottom 400 300 200 100 0 25 50 75 100 125 150 Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform 6 Fig. 13b - Gate Charge Test Circuit www.kersemi.com IRFB20N50K, SiHFB20N50K Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive Period P.W. + D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7