KERSEMI SIHFU430A

IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg Results in Simple Drive
Requirement
500
RDS(on) (Ω)
VGS = 10 V
1.7
Qg (Max.) (nC)
24
Qgs (nC)
6.5
Qgd (nC)
Ruggedness
• Fully Characterized Capacitance and Avalanche Voltage
and Current
13
Configuration
Available
• Improved Gate, Avalanche and Dynamic dV/dt RoHS*
COMPLIANT
Single
• Effective Coss Specified
D
• Lead (Pb)-free Available
DPAK
(TO-252)
IPAK
(TO-251)
APPLICATIONS
G
• Switch Mode Power Supply (SMPS)
• Uninterruptible Power Supply
• High Speed Power Switching
S
N-Channel MOSFET
ORDERING INFORMATION
Package
DPAK (TO-252)
IRFR430APbF
SiHFR430A-E3
IRFR430A
SiHFR430A
Lead (Pb)-free
SnPb
DPAK (TO-252)
IRFR430ATRPbFa
SiHFR430AT-E3a
IRFR430ATRa
SiHFR430ATa
DPAK (TO-252)
IRFR430ATRLPbFa
SiHFR430ATL-E3a
IRFR430ATRLa
SiHFR430ATLa
DPAK (TO-252)
IRFR430ATRRPbFa
SiHFR430ATR-E3a
IRFR430ATRRa
SiHFR430ATRa
IPAK (TO-251)
IRFU430APbF
SiHFU430A-E3
IRFU430A
SiHFU430A
Note
a. See device orientation.
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
500
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
IDM
Linear Derating Factor
UNIT
V
5.0
3.2
A
20
0.91
W/°C
EAS
130
mJ
Currenta
IAR
5.0
A
Repetitive Avalanche Energya
EAR
11
mJ
PD
110
W
dV/dt
3.0
V/ns
TJ, Tstg
- 55 to + 150
Single Pulse Avalanche Energyb
Repetitive Avalanche
Maximum Power Dissipation
Peak Diode Recovery
TC = 25 °C
dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
for 10 s
300d
°C
Notes
a.
b.
c.
d.
Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
Starting TJ = 25 °C, L = 11 mH, RG = 25 Ω, IAS = 5.0 A (see fig. 12).
ISD ≤ 5.0 A, dI/dt ≤ 320 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
1.6 mm from case.
www.kersemi.com
1
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
1.1
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS
VGS = 0 V, ID = 250 µA
500
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.60
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.5
V
nA
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
IGSS
IDSS
RDS(on)
gfs
VGS = ± 30 V
-
-
± 100
VDS = 500 V, VGS = 0 V
-
-
25
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
250
-
-
1.7
Ω
VDS = 50 V, ID = 3.0 A
2.3
-
-
S
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
-
490
-
-
75
-
-
4.5
-
VDS = 1.0 V, f = 1.0 MHz
-
750
-
VDS = 400 V, f = 1.0 MHz
-
25
-
-
51
-
-
-
24
ID = 3.0 Ab
VGS = 10 V
µA
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Coss
Effective Output Capacitance
VGS = 10 V
Coss eff.
VDS = 0 V to 400
Vc
Total Gate Charge
Qg
Gate-Source Charge
Qgs
-
-
6.5
Gate-Drain Charge
Qgd
-
-
13
Turn-On Delay Time
td(on)
-
8.7
-
tr
-
27
-
-
17
-
-
16
-
-
-
5.0
-
-
20
Rise Time
Turn-Off Delay Time
Fall Time
td(off)
VGS = 10 V
ID = 5.0 A, VDS = 400 V,
see fig. 6 and 13b
VDD = 250 V, ID = 5.0 A,
RG = 15 Ω, RD = 50 Ω, see fig. 10b
tf
pF
pF
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulsed Diode Forward Currenta
Body Diode Voltage
IS
ISM
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IS = 5.0 A, VGS = 0
S
Vb
TJ = 25 °C, IF = 5.0 A, dI/dt = 100 A/µsb
-
-
1.5
V
-
410
620
ns
-
1.4
2.1
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.kersemi.com
2
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
100.00
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
10
ID, Drain-to-Source Current (Α )
ID, Drain-to-Source Current (A)
TOP
1
0.1
4.5V
0.01
10.00
T J = 150°C
1.00
T J = 25°C
0.10
20μs PULSE WIDTH
Tj = 25°C
VDS = 100V
20μs PULSE WIDTH
0.01
0.001
0.1
1
10
100
4.0
100
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
10.0
12.0
14.0
16.0
I D = 5.0A
4.5V
0.1
20μs PULSE WIDTH
Tj = 150°C
0.01
1
10
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
100
2.0
(Normalized)
1
0.1
8.0
2.5
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (A)
TOP
10
6.0
VGS, Gate-to-Source Voltage (V)
Fig. 3 - Typical Transfer Characteristics
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
TJ , Junction Temperature
80
100
120
140
160
( ° C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.kersemi.com
3
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
100
10000
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
C, Capacitance(pF)
I SD , Reverse Drain Current (A)
Coss = Cds + Cgd
1000
Ciss
100
Coss
10
Crss
10
TJ = 25 ° C
TJ = 150 ° C
1
1
V GS= 0 V
1
10
100
0.1
1000
0.2
0.5
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
OPERATION IN THIS AREA
LIMITED BY R DS(on)
VDS = 400V
VDS = 250V
VDS = 100V
VGS , Gate-to-Source Voltage (V)
10
7
5
2
10
100μsec
1
1msec
0.1
0
4
8
12
16
20
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.keremi.com
4
1.4
100
I D = 5.0A
0
1.1
Fig. 7 - Typical Source-Drain Diode Forward Voltage
ID , Drain-to-Source Current (A)
12
0.8
V SD,Source-to-Drain Voltage (V)
Tc = 25°C
Tj = 150°C
Single Pulse
10
10msec
100
1000
VDS , Drain-toSource Voltage (V)
Fig. 8 - Maximum Safe Operating Area
10000
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
5.5
RD
VDS
VGS
D.U.T.
RG
4.4
+
- VDD
Fig. 10a - Switching Time Test Circuit
2.2
VDS
1.1
90 %
0.0
25
50
75
100
125
150
10 %
VGS
( ° C)
TC , Case Temperature
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
(Z thJC )
10
1
D = 0.50
Thermal Response
ID , Drain Current (A)
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
3.3
0.20
P DM
0.10
0.1
0.05
t1
SINGLE PULSE
(THERMAL RESPONSE)
0.02
0.01
t2
Notes:
1. Duty factor D =
2. Peak T
0.01
0.00001
0.0001
0.001
0.01
t1/ t 2
J = P DM x Z thJC
+TC
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
15 V
tp
L
VDS
D.U.T
RG
IAS
20 V
tp
Driver
+
A
- VDD
IAS
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Fig. 12b - Unclamped Inductive Waveforms
www.kersemi.com
5
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
5.0
250
EAS , Single Pulse Avalanche Energy (mJ)
200
TOP
2.2A
3.2A
BOTTOM
5.0A
VGS(th) Gate threshold Voltage (V)
ID
150
100
50
4.5
ID = 250μA
4.0
3.5
3.0
2.5
-75
0
25
50
75
100
Starting Tj, Junction Temperature
125
-50
-25
0
25
50
75
100 125
( ° C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
T J , Temperature ( °C )
Fig. 12d - Threshold Voltage vs. Temperature
Current regulator
Same type as D.U.T.
50 kΩ
QG
VGS
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.kersemi.com
6
150
150
Fig. 13b - Gate Charge Test Circuit
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
•
•
•
•
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
www.kersemi.com
7