IRFB16N50K, SiHFB16N50K Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 500 RDS(on) (Ω) VGS = 10 V 0.285 Qg (Max.) (nC) 89 Qgs (nC) 27 Qgd (nC) 43 Configuration Available RoHS* • Improved Gate, Avalanche and Dynamic dV/dt COMPLIANT Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current Single • Low RDS(on) D • Lead (Pb)-free Available TO-220 APPLICATIONS G • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply S G D • High Speed Power Switching S N-Channel MOSFET • Hard Switched and High Frequency Circuits ORDERING INFORMATION Package TO-220 IRFB16N50KPbF SiHFB16N50K-E3 IRFB16N50K SiHFB16N50K Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT VDS VGS 500 ± 30 17 11 68 2.3 310 17 28 280 11 - 55 to + 150 300d 10 1.1 Drain-Source Voltage Gate-Source Voltage Continuous Drain Current VGS at 10 V Pulsed Drain Currenta Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque TC = 25 °C TC = 100 °C ID IDM TC = 25 °C for 10 s 6-32 or M3 screw EAS IAR EAR PD dV/dt TJ, Tstg UNIT V A W/°C mJ A mJ W V/ns °C lbf · in N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature. b. Starting TJ = 25 °C, L = 2.2 mH, RG = 25 Ω, IAS = 17 A. c. ISD ≤ 17 A, dI/dt ≤ 500 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. www.kersemi.com 1 IRFB16N50K, SiHFB16N50K THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 0.44 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.58 - V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 50 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs µA - 0.285 0.350 Ω 5.7 - - S - 2210 - - 240 - - 26 - VDS = 1.0 V, f = 1.0 MHz - 2620 - VDS = 400 V, f = 1.0 MHz - 63 - VDS = 0 V to 400 Vc - 120 - - 60 89 ID = 17 A, VDS = 400 Vb - 18 27 ID = 10 Ab VGS = 10 V VDS = 50 V, ID = 10 A Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz VGS = 0 V Coss eff. Total Gate Charge Qg Gate-Source Charge Qgs VGS = 10 V Gate-Drain Charge Qgd - 28 43 Turn-On Delay Time td(on) - 20 - - 77 - - 38 - - 30 - - - 17 - - 68 Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 250 V, ID = 17 A, RG = 8.8 Ω, VGS = 10 Vb tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 17 A, VGS = 0 Vb TJ = 25 °C, IF = 17 A, dI/dt = 100 A/µsb - - 1.5 V - 490 730 ns - 5710 8560 nC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. 2 www.kersemi.com IRFB16N50K, SiHFB16N50K TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 10 BOTTOM 1 ID, Drain-to-Source Current (Α ) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.5V 7.0V 6.5V 6.0V 5.5V 5.5V 0.1 1 10 10 T J = 25°C VDS = 100V 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 25°C 0.1 T J = 150°C 1.0 4 100 V DS, Drain-to-Source Voltage (V) 6 7 8 9 10 11 12 13 14 15 16 VGS, Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics Fig. 1 - Typical Output Characteristics 100 3.0 10 BOTTOM VGS 15V 10V 8.0V 7.5V 7.0V 6.5V 6.0V 5.5V RDS(on) , Drain-to-Source On Resistance (Normalized) TOP ID, Drain-to-Source Current (A) 5 5.5V 1 60µs PULSE WIDTH Tj = 150°C 0.1 ID = 17A VGS = 10V 2.5 2.0 1.5 1.0 0.5 0.0 0.1 1 10 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 V DS, Drain-to-Source Voltage (V) T J , Junction Temperature (°C) Fig. 2 - Typical Output Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFB16N50K, SiHFB16N50K 100000 ISD, Reverse Drain Current (A) Crss = C gd Coss = C ds + C gd 10000 C, Capacitance(pF) 100.00 VGS = 0V, f = 1 MHZ Ciss = C gs + C gd, C ds SHORTED Ciss 1000 Coss 100 Crss 10 T J = 150°C 10.00 T J = 25°C 1.00 VGS = 0V 0.10 1 1 10 100 0.2 1000 0.8 1.0 1.2 1.4 1.6 Fig. 7 - Typical Source-Drain Diode Forward Voltage 1000 12.0 ID= 17A VDS= 400V VDS= 250V VDS= 100V 10.0 ID, Drain-to-Source Current (A) VGS, Gate-to-Source Voltage (V) 0.6 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage OPERATION IN THIS AREA LIMITED BY R DS(on) 100 8.0 6.0 4.0 2.0 10 100µsec 1msec 1 Tc = 25°C Tj = 150°C Single Pulse 10msec 0.1 0.0 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage 4 0.4 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area www.kersemi.com 10000 IRFB16N50K, SiHFB16N50K RD 20 VDS VGS 15 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 10 Fig. 10a - Switching Time Test Circuit 5 VDS 90 % 0 25 50 75 100 125 150 10 % VGS T C , Case Temperature (°C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms 1 Thermal Response ( Z thJC ) ID, Drain Current (A) D.U.T. RG D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T. RG IAS 20 V tp Driver + - VDD A IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms www.kersemi.com 5 IRFB16N50K, SiHFB16N50K EAS , Single Pulse Avalanche Energy (mJ) 600 ID 7.6A 11A BOTTOM 17A TOP 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform 6 Fig. 13b - Gate Charge Test Circuit www.kersemi.com IRFB16N50K, SiHFB16N50K Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7