MICROSEMI APT27GA90SD15

APT27GA90BD15
APT27GA90SD15
900V
High Speed PT IGBT
(B)
TO
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
-2
47
through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
G
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
G
C
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
E
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
Combi (IGBT and Diode)
®
FEATURES
D3PAK
(S)
C
E
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
900
V
IC1
Continuous Collector Current @ TC = 25°C
48
IC2
Continuous Collector Current @ TC = 100°C
27
ICM
Pulsed Collector Current 1
79
VGE
Gate-Emitter Voltage
±30
V
PD
Total Power Dissipation @ TC = 25°C
223
W
Vces
Parameter
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
Symbol
79A @ 900V
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
A
°C
300
TJ = 25°C unless otherwise specified
Parameter
Test Conditions
Min
VBR(CES)
Collector-Emitter Breakdown Voltage
VGE = 0V, IC = 1.0mA
900
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
3.1
VGE = 15V,
TJ = 25°C
2.5
IC = 14A
TJ = 125°C
2.2
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
TJ = 25°C
350
VGE = 0V
TJ = 125°C
1500
Microsemi Website - http://www.microsemi.com
V
6
VCE = 900V,
VGS = ±30V
Unit
±100
μA
nA
052-6343 Rev D 7 - 2009
Symbol
Dynamic Characteristic
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg3
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
APT27GA90BD_SD15
TJ = 25°C unless otherwise specified
Test Conditions
Gate- Collector Charge
Switching Safe Operating Area
Min
Typ
Capacitance
1390
VGE = 0V, VCE = 25V
145
f = 1MHz
30
Gate Charge
62
VGE = 15V
8
VCE= 450V
24
nC
Turn-On Delay Time
A
L= 100uH, VCE = 900V
Inductive Switching (25°C)
9
Current Rise Time
VCC = 600V
8
Turn-Off Delay Time
VGE = 15V
98
IC = 14A
84
RG = 10Ω4
413
Eoff6
Turn-Off Switching Energy
TJ = +25°C
287
td(on)
Turn-On Delay Time
Inductive Switching (125°C)
8
Current Fall Time
Current Rise Time
VCC = 600V
10
Turn-Off Delay Time
VGE = 15V
137
IC = 14A
144
Eon2
Turn-On Switching Energy
RG = 10Ω4
760
Eoff6
Turn-Off Switching Energy
TJ = +125°C
647
tf
pF
79
Turn-On Switching Energy
tr
Unit
IC = 14A
TJ = 150°C, RG = 10Ω4, VGE = 15V,
Eon2
td(off)
Max
Current Fall Time
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol
Characteristic
RθJC
Junction to Case Thermal Resistance (IGBT)
RθJC
Junction to Case Thermal Resistance (Diode)
WT
Torque
Package Weight
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Min
Typ
Max
-
-
.56
1.18
-
5.9
Unit
°C/W
-
g
10
in·lbf
052-6343 Rev D 7 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471.
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
APT27GA90BD_SD15
250
50
V
30
TJ= 150°C
20
TJ= 25°C
10
80
60
40
TJ= 25°C
20
TJ= -55°C
TJ= 125°C
0
0
2
4
6
8
10
12
14
5
4
IC = 28A
3
IC = 14A
IC = 7A
2
1
0
6
8
10
12
14
16
9V
100
8V
75
7V
50
6V
25
16
0
4
8
12
16 20 24 28
32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
I = 14A
C
T = 25°C
14
J
12
VCE = 180V
10
VCE = 450V
8
VCE = 720V
6
4
2
0
16
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
10V
125
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
11V
150
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
0
20
40
60
GATE CHARGE (nC)
FIGURE 4, Gate charge
5
80
4
IC = 28A
3
IC = 14A
2
IC = 7A
1
0
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
50
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
40
30
20
10
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6343 Rev D 7 - 2009
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
175
0
1
2
3
4
5
6
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
13V
200
VGE, GATE-TO-EMITTER VOLTAGE (V)
100
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
TJ= 125°C
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
225
TJ= 55°C
40
15V
= 15V
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
GE
Typical Performance Curves
12
175
td(OFF), TURN-OFF DELAY TIME (ns)
VCE = 600V
TJ = 25°C, or 125°C
RG = 10Ω
L = 100μH
14
td(ON), TURN-ON DELAY TIME (ns)
APT27GA90BD_SD15
200
16
10
8
6
4
2
150
125
75
VGE =15V,TJ=25°C
50
VCE = 600V
RG = 10Ω
L = 100μH
25
0
0
0
5
10
15
20
25
30
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
0
5
10
15
20
25
30
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
30
VGE =15V,TJ=125°C
100
200
RG = 10Ω, L = 100μH, VCE = 600V
180
25
160
140
tr, FALL TIME (ns)
tr, RISE TIME (ns)
20
15
10
TJ = 25 or 125°C,VGE = 15V
5
TJ = 125°C, VGE = 15V
120
100
80
60
TJ = 25°C, VGE = 15V
40
20
0
0
5
10
15
20
25
0
5
10
15
20
25
30
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
Eon2, TURN ON ENERGY LOSS (μJ)
V
= 600V
CE
V
= +15V
GE
R =10Ω
G
1600
1200
TJ = 125°C
800
400
TJ = 25°C
EOFF, TURN OFF ENERGY LOSS (μJ)
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
2000
0
5
10
15
20
25
30
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
Eon2,28A
1500
Eoff,28A
1000
Eon2,14A
Eoff,14A
500
Eon2,7A
Eoff,7A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6343 Rev D 7 - 2009
J
G
1200
1000
TJ = 125°C
800
600
400
200
2000
2000
V
= 600V
CE
V
= +15V
GE
R = 10Ω
1400
TJ = 25°C
0
5
10
15
20
25
30
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
2500
0
1600
0
0
V
= 600V
CE
V
= +15V
GE
T = 125°C
RG = 10Ω, L = 100μH, VCE = 600V
0
30
V
= 600V
CE
V
= +15V
GE
R = 10Ω
G
1500
Eon2,28A
Eoff,28A
1000
Eon2,14A
Eoff,14A
Eon2,7A
500
Eoff,7A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT27GA90BD_SD15
1000
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
10,000
Cies
1,000
100
Coes
Cres
100
10
1
0.1
10
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0
200
400
600
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
D = 0.9
0. 5
0.7
0. 4
0.5
0. 3
Note:
0. 2
PDM
0.3
t1
t2
0. 1
0.1
t
0.05
0
10
-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10
-4
10-3
10-2
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
052-6343 Rev D 7 - 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0. 6
APT27GA90BD_SD15
10%
Gate Voltage
90%
td(on)
APT15DQ100
TJ = 125°C
Collector Current
tr
IC
V CC
V CE
5%
10%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
Gate Voltage
td(off)
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6343 Rev D 7 - 2009
Figure 22, Turn-off Switching Waveforms and Definitions
ULTRAFAST SOFT RECOVERY RECTIFIER DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT27GA90BD_SD15
Maximum Average Forward Current (TC = 126°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
29
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
80
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
Min
IF = 15A
2.5
IF = 30A
3.06
IF = 15A, TJ = 125°C
1.92
Forward Voltage
VF
Type
Max
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Test Conditions
Min
Typ
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
20
-
IF = 15A, diF/dt = -200A/µs
VR = 667V, TC = 25°C
Maximum Reverse Recovery Current
IRRM
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 15A, diF/dt = -200A/µs
VR = 667V, TC = 125°C
Maximum Reverse Recovery Current
IRRM
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
IF = 15A, diF/dt = -1000A/µs
VR = 667V, TC = 125°C
Unit
ns
-
235
-
-
185
-
nC
-
3
-
Amps
-
300
-
ns
-
810
-
nC
-
6
-
Amps
-
125
-
ns
-
1150
-
nC
-
19
-
Amps
D = 0.9
1.00
0.7
0.80
0.60
0.5
0.40
0.3
PDM
Note:
t1
t2
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
0
10-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TJ (°C)
TC (°C)
0.676
0.504
Dissipated Power
(Watts)
0.00147
0.0440
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL
052-6343 Rev D 7 - 2009
0.20
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
1.20
Dynamic Characteristics
TJ = 25°C unless otherwise specified
45
400
TJ = 175°C
25
20
TJ = 125°C
15
TJ = 25°C
TJ = -55°C
5
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 2. Forward Current vs. Forward Voltage
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
2000
T = 125°C
J
V = 667V
1800
R
1600
30A
1400
1200
1000
15A
800
600
7.5A
400
200
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 4. Reverse Recovery Charge vs. Current Rate of Change
15A
250
200
7.5A
150
100
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 3. Reverse Recovery Time vs. Current Rate of Change
25
T = 125°C
J
V = 667V
R
30A
20
15
15A
10
7.5A
5
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 5. Reverse Recovery Current vs. Current Rate of Change
35
trr
trr
300
0
Qrr
1.0
R
350
50
Duty cycle = 0.5
T = 175°C
J
30
IRRM
25
0.8
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
0.6
0.4
Qrr
0.2
0.0
20
15
10
5
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 6. Dynamic Parameters vs. Junction Temperature
0
80
CJ, JUNCTION CAPACITANCE
(pF)
trr, REVERSE RECOVERY TIME
(ns)
30
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
35
10
052-6343 Rev D 7 - 2009
T = 125°C
J
V = 667V
30A
40
0
APT27GA90BD_SD15
70
60
50
40
30
20
10
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 8. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 7. Maximum Average Forward Current vs. CaseTemperature
Dynamic Characteristic
TJ = 25°C unless otherwise specified
APT27GA90BD_SD15
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30μH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 9. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
0.25 IRRM
3
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 10, Diode Reverse Recovery Waveform and Definitions
3
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
(Cathode)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector (Cathode)
(Heat Sink)
D PAK Package Outline
e3 SAC: Tin, Silver, Copper
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.41 (.528)
13.51(.532)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector (Cathode)
Emitter (Anode)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Emitter (Anode)
Collector (Cathode)
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6343 Rev D 7 - 2009
0.46 (.018)
0.56 (.022) {3 Plcs}
2.87 (.113)
3.12 (.123)