TYPICAL PERFORMANCE CURVES APT200GT60JRDL APT200GT60JRDL 600V, 200A, VCE(ON) = 2.0V Typical Resonant Mode Combi IGBT® The Thunderbolt IGBT® used in this Resonant Mode Combi is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. • Ultra soft recovery diode • ZVS Phase Shifted Bridge • Low Tail Current • RBSOA and SCSOA Rated • Resonant Mode Switching • Integrated Gate Resistor • High Frequency Switching to 50KHz Low EMI, High Reliability • Ultra Low Leakage Current • Phase Shifted Bridge C • Induction heating • RoHS Compliant G • High Frequency SMPS E All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Parameter APT200GT60JRDL VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 195 I C2 Continuous Collector Current @ TC = 100°C 100 SSOA PD TJ,TSTG Pulsed Collector Current file # E145592 • Welding • Low forward Diode Voltage (VF) I CM 7 22 TO S "UL Recognized" ISOTOP ® • Low Forward Voltage Drop Symbol C G Typical Applications Features E E 1 UNIT Volts Amps 600 Switching Safe Operating Area @ TJ = 150°C 600A @ 600V 595 Total Power Dissipation Operating and Storage Junction Temperature Range Watts -55 to 150 °C STATIC ELECTRICAL CHARACTERISTICS MIN V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.0mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES (VCE = VGE, I C = 4mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 200A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 200A, Tj = 125°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) TYP MAX 3 4 5 1.6 2.0 2.5 Gate-Emitter Leakage Current (VGE = ±30V) μA 1500 600 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Volts 2.5 50 2 Units nA Rev A 4-2009 Characteristic / Test Conditions 052-6357 Symbol APT200GT60JRDL DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eoff td(on) tr td(off) tf 8650 VGE = 0V, VCE = 25V 546 f = 1 MHz 1180 Gate Charge 7.5 VGE = 15V 946 VCE = 300V 58 I C = 200A 430 15V, L = 100μH,VCE = 600V Current Rise Time VCC = 400V 160 Turn-off Delay Time VGE = 15V 952 I C = 200A 212 RG = 2.2Ω Turn-on Switching Energy (Diode) Turn-off Switching Energy TJ = +25°C 5 71 Current Rise Time VCC = 400V 157 Turn-off Delay Time VGE = 15V 1030 Current Fall Time I C = 200A 202 Turn-on Delay Time Turn-on Switching Energy (Diode) Turn-off Switching Energy RG = 2.2Ω 44 Turn-on Switching Energy V nC ns μJ 19290 Inductive Switching (125°C) Eon2 pF 9193 6 UNIT A 72 Current Fall Time MAX 600 Inductive Switching (25°C) Turn-on Delay Time Eon1 Eoff TYP Capacitance TJ = 150°C, R G = 4.3Ω, VGE = Eon1 Eon2 MIN 55 TJ = +125°C ns μJ 10460 66 20210 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .21 RθJC Junction to Case (DIODE) .61 WT VIsolation °C/W Package Weight 29.2 gm RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500 Volts 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) Rev A 4-2009 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 052-6357 UNIT Microsemi reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT200GT60JRDL 250 V GE IC, COLLECTOR CURRENT (A) TJ= 125°C 175 TJ= 150°C TJ= 25°C 150 125 TJ= 55°C 100 75 50 25 250 200 150 100 TJ= 25°C 50 TJ= -55°C TJ= 125°C 0 2 4 10V 250 200 9V 150 100 8V 50 0 5V 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 20 250μs PULSE TEST<0.5 % DUTY CYCLE 300 11V 300 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 350 0 13/15V 12V 350 200 0 6 8 10 I = 200A C T = 25°C J 15 VCE = 120V VCE = 300V 10 VCE = 480V 5 0 12 0 250 500 750 GATE CHARGE (nC) FIGURE 4, Gate charge 6 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 5 4 IC = 400A 3 IC = 200A IC = 100A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 4 IC = 400A 3 IC = 200A IC = 100A 2 1 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 0 25 250 1.10 200 IC, DC COLLECTOR CURRENT (A) 1.05 1.00 150 0.95 0.90 100 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature Rev A 4-2009 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.15 1000 5 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 50 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6357 IC, COLLECTOR CURRENT (A) 400 = 15V VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 225 APT200GT60JRDL 1400 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 100 VGE = 15V 80 60 40 VCE = 400V TJ = 25°C, or 125°C RG = 2.2Ω L = 100μH 20 1200 1000 VGE =15V,TJ=25°C 600 400 VCE = 400V RG = 2.2Ω L = 100μH 200 0 0 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 400 VGE =15V,TJ=125°C 800 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 450 RG = 2.2Ω, L = 100μH, VCE = 400V RG = 2.2Ω, L = 100μH, VCE = 400V 400 350 tr, FALL TIME (ns) tr, RISE TIME (ns) 300 200 100 TJ = 25°C, VGE = 15V 300 250 200 TJ = 125°C, VGE = 15V 150 100 TJ = 25 or 125°C,VGE = 15V 50 0 0 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 50000 V = 400V CE V = +15V GE R = 2.2Ω 35000 G 30000 25000 TJ = 125°C 20000 15000 10000 5000 TJ = 25°C EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 40000 0 J 80000 Eon2,400A 60000 Eoff,200A 40000 Eon2,200A 20000 30000 20000 TJ = 25°C 10000 60000 Eoff,400A Eoff,100A TJ = 125°C 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) Rev A 4-2009 052-6357 V = 400V CE V = +15V GE T = 125°C G 40000 0 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 100000 V = 400V CE V = +15V GE R = 2.2Ω 50000 V = 400V CE V = +15V GE R = 2.2Ω G 40000 Eoff,400A 30000 20000 Eoff,200A 10000 Eon2,200A Eon2,100A 0 0 5 10 15 20 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance Eon2,400A Eon2,100A Eoff,100A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT200GT60JRDL 1000 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) 100,000 Cies 10,000 1,000 Coes Cres 100 100 10 1 0.1 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0 100 200 300 400 500 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage D = 0.9 0.20 0.7 0.15 0.5 Note: PDM 0.10 0.3 t 0.1 0.05 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10 -1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 40 75°C 30 10 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 1.0Ω G 20 F 100°C 10 = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf max f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC 0 −10 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Rev A 4-2009 10 20 052-6357 0 t1 t2 0.05 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT200GT60JRDL 10% Gate Voltage td(on) APT100DL60 TJ = 125°C tr 90% IC V CC Collector Current V CE 5% 10% 5% CollectorVoltage A D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% TJ = 125°C Gate Voltage 90% td(off) tf Collector Current 10% 0 CollectorVoltage Switching Energy 052-6357 Rev A 4-2009 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT200GT60JRDL ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. Characteristic / Test Conditions APT200GT60JRDL Maximum Average Forward Current (TC = 50°C, Duty Cycle = 0.5) 100 RMS Forward Current (Square wave, 50% duty) 116 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 640 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions Min Forward Voltage Type Max IF = 100A 1.25 1.6 IF = 200A 2.0 IF = 50A, TJ = 125°C 1.25 Unit Volts DYNAMIC CHARACTERISTICS Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge Typ Max IF = 1A, diF/dt = -100A/μs, VR = 30V, TJ = 25°C - 56 - - 379 - - 2202 - nC - 12 - Amps - 580 - ns - 5925 - nC - 19 - Amps - 264 - ns - 9530 - nC - 61 - Amps IF =100A, diF/dt = -200A/μs VR = 400V, TC = 25°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Min IF = 100A, diF/dt = -200A/μs VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current IF = 100A, diF/dt = -1000A/μs VR = 400V, TC = 125°C Unit ns 0.6 0.5 0.4 0.3 Note: 0.2 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.7 t1 t2 0.1 0 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION Rev A 4-2009 IRRM Test Conditions 052-6357 Symbol TYPICAL PERFORMANCE CURVES (ratings per diode) APT200GT60JRDL 700 120 TJ= 125°C Qrr, REVERSE RECOVERY CHARGE (nC) trr, COLLECTOR CURRENT (A) TJ= 55°C 80 TJ= 25°C 60 40 20 0 0.5 1.0 1.5 2.0 2.5 3.0 VF, ANODE-TO-CATHODE VOLTAGE (V) FIGURE 2, Forward Current vs. Forward Voltage 8000 100A R 6000 50A 5000 25A 4000 3000 2000 1000 0 CJ, JUNCTION CAPACITANCE (pF) 100 T = 125°C J V = 400V 40 R 50A 100A 35 30 25A 25 20 15 10 5 120 QRR 100 80 60 40 0.2 20 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 6, Dynamic Parameters vs Junction Temperature 500 Rev A 4-2009 200 140 0.4 0 052-6357 300 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 5, Reverse Recovery Current vs. Current Rate of Change 160 IRRM 0.6 25A 0 tRR 0.8 50A 400 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 3, Reverse Recovery Time vs. Current Rate of Change IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/μs) 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change 1.2 1.0 500 45 T = 125°C J V = 400V 7000 R 600 0 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 100 0 T = 125°C J V = 400V 100A TJ= 150°C 450 400 350 300 250 200 150 100 50 0 0 10 100 400 VR, REVERSE VOLTAGE (V) FIGURE 8, Junction Capacitance vs. Reverse Voltage 0 Duty cycle = 0.5 TJ = 126°C 25 50 75 100 125 150 Case Temperature (°C) FIGURE 7, Maximum Average Forward Current vs. Case Temperature TYPICAL PERFORMANCE CURVES APT200GT60JRDL r diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32, Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode ) Dimensions in Millimeters and (Inches Rev A 4-2009 Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6357 * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate