APT150GN60JDQ4 600V TYPICAL PERFORMANCE CURVES APT150GN60JDQ4 ® E E Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses. C G ISOTOP ® • 600V Field Stop • Trench Gate: Low VCE(on) • Easy Paralleling • Intergrated Gate Resistor: Low EMI, High Reliability S OT 22 7 "UL Recognized" file # E145592 C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT150GN60JDQ4 VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 220 I C2 Continuous Collector Current @ TC = 110°C 123 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 450 Switching Safe Operating Area @ TJ = 175°C 450A @ 600V Total Power Dissipation 536 Operating and Storage Junction Temperature Range Watts -55 to 175 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES RG(int) (VCE = VGE, I C = 2400µA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 150A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 150A, Tj = 125°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) TYP MAX 5.0 5.8 6.5 1.05 1.45 1.85 50 2 600 2 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA TBD Gate-Emitter Leakage Current (VGE = ±20V) Intergrated Gate Resistor Volts 1.65 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) Units nA Ω 4-2006 MIN Rev A Characteristic / Test Conditions 050-7625 Symbol APT150GN60JDQ4 DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge td(on) tr td(off) tf Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) tr tf Eon1 Eon2 Eoff 4 UNIT pF V nC 510 450 A VGE = 15V 430 RG = 1.0Ω 7 8810 ns 60 TJ = +25°C 5 MAX 65 110 µJ 8615 6 4295 Inductive Switching (125°C) 44 VCC = 400V 110 VGE = 15V Turn-off Delay Time 95 RG = 1.0Ω 7 44 Turn-on Switching Energy (Diode) 55 ns 480 I C = 150A Current Fall Time Turn-off Switching Energy 970 VCC = 400V Current Rise Time Turn-on Switching Energy 9.5 VGE = 15V I C = 150A Eon1 td(off) Gate Charge 44 Current Fall Time Turn-on Delay Time 300 Inductive Switching (25°C) Turn-off Delay Time td(on) 350 f = 1 MHz 15V, L = 100µH,VCE = 600V Current Rise Time Turn-off Switching Energy VGE = 0V, VCE = 25V TJ = 175°C, R G = 4.3Ω 7, VGE = Turn-on Delay Time Eoff 9200 I C = 150A Switching Safe Operating Area TYP Capacitance VCE = 300V Qge SSOA MIN 8880 TJ = +125°C µJ 9735 66 5460 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic RθJC Junction to Case (IGBT) RθJC Junction to Case (DIODE) VIsolation WT Torque RMS Voltage (50-60Hz Sinusoidal MIN TYP MAX 0.28 .33 Waveform from Terminals to Mounting Base for 1 Min.) Package Weight Maximum Terminal & Mounting Torque 2500 UNIT °C/W Volts 1.03 oz 29.2 gm 10 Ib•in 1.1 N•m 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 050-7625 Rev A 4-2006 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V TJ = -55°C IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) TJ = 25°C 250 TJ = 125°C 200 TJ = 175°C 150 100 50 0 TJ = -55°C TJ = 25°C TJ = 125°C TJ = 175°C 250 200 150 100 50 0 0 250 10V 200 150 9V 100 8V 50 7V FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 300 11V 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 250µs PULSE TEST<0.5 % DUTY CYCLE 300 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 350 12, 13 &15V 350 300 J VCE = 120V 12 VCE = 300V 10 VCE = 480V 8 6 4 2 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 150A C T = 25°C 14 0 200 3.5 IC = 300A 3.0 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 2.5 2.0 IC = 150A 1.5 IC = 75A 1.0 0.5 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.00 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.05 3.0 2.5 IC = 300A 2.0 IC = 150A 1.5 IC = 75A 1.0 0.5 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 175 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 300 1.15 1.10 1200 FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.0 400 600 800 1000 GATE CHARGE (nC) 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 4-2006 GE Rev A V APT150GN60JDQ4 400 050-7625 350 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 50 VGE = 15V 40 30 20 VCE = 400V 10 T = 25°C, or 125°C J 0 RG = 1.0Ω L = 100µH RG = 1.0Ω, L = 100µH, VCE = 400V 100 VCE = 400V RG = 1.0Ω L = 100µH 30 160 TJ = 125°C, VGE = 15V 140 TJ = 25 or 125°C,VGE = 15V 250 tf, FALL TIME (ns) tr, RISE TIME (ns) 200 180 200 150 0 120 100 80 60 TJ = 25°C, VGE = 15V 40 20 0 30 40,000 EOFF, TURN OFF ENERGY LOSS (µJ) G 30,000 TJ = 125°C 25,000 20,000 15,000 10,000 TJ = 25°C 5,000 Eon2,300A 50,000 40,000 30,000 Eoff,300A Eon2,150A 10,000 Eon2,75A 0 Eoff,75A Eoff,150A 20 15 10 5 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) J 0 12,000 TJ = 125°C 10,000 8,000 6,000 4,000 TJ = 25°C 2,000 40,000 = 400V V CE = +15V V GE T = 125°C 20,000 G 14,000 70 110 150 190 230 270 310 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 70 110 150 190 230 270 310 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 60,000 = 400V V CE = +15V V GE R = 1.0Ω 16,000 0 0 70,000 30 18,000 = 400V V CE = +15V V GE R = 1.0Ω 35,000 RG = 1.0Ω, L = 100µH, VCE = 400V 70 110 150 190 230 270 310 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 70 110 150 190 230 270 310 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current EON2, TURN ON ENERGY LOSS (µJ) VGE =15V,TJ=25°C 400 50 SWITCHING ENERGY LOSSES (µJ) VGE =15V,TJ=125°C 300 110 150 190 230 270 310 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 100 4-2006 400 0 300 Rev A 500 110 150 190 230 270 310 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 30 350 050-7625 APT150GN60JDQ4 600 60 = 400V V CE = +15V V GE R = 1.0Ω 35,000 Eon2,300A G 30,000 25,000 20,000 Eoff,300A 15,000 Eon2,150A 10,000 Eoff,150A 5,000 0 Eoff,75A Eon2,75A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES 20,000 500 P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 10,000 APT150GN60JDQ4 500 100 50 Coes 400 300 200 100 Cres 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.25 0.20 0.7 0.15 0.5 Note: 0.10 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 0.3 t1 t2 0.05 0 0.1 t SINGLE PULSE Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.00770 Power (watts) 0.184 0.300 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 5 1 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 1.0Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 30 50 70 90 110 130 150 170 190 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 4-2006 0.0964 F Rev A Junction temp. (°C) 10 050-7625 RC MODEL FMAX, OPERATING FREQUENCY (kHz) 50 APT150GN60JDQ4 APT100DQ60 Gate Voltage 10% TJ = 125°C td(on) tr IC V CC V CE Collector Current 90% 5% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage td(off) TJ = 125°C 90% tf Collector Voltage 10% 0 Collector Current Switching Energy 050-7625 Rev A 4-2006 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT150GN60JDQ4 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT100GN60LDQ4 Characteristic / Test Conditions Maximum Average Forward Current (TC = 103°C, Duty Cycle = 0.5) 100 RMS Forward Current (Square wave, 50% duty) 146 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 1000 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions MIN Forward Voltage TYP IF = 150A 1.83 IF = 300A 2.33 IF = 150A, TJ = 125°C 1.47 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C Reverse Recovery Time Qrr Reverse Recovery Charge IF = 100A, diF/dt = -200A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 400V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 100A, diF/dt = -200A/µs IF = 100A, diF/dt = -1000A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current MIN TYP MAX UNIT - 34 - 160 - 290 - 5 - 220 ns - 1530 nC - 13 - 100 ns - 2890 nC - 44 Amps ns nC - - Amps Amps D = 0.9 0.30 0.25 0.7 0.20 0.5 Note: 0.15 PDM 0.3 0.10 t1 t2 0.05 0 10-5 t 0.1 0.05 0.05 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE SINGLE PULSE PULSE 10-4 10-3 10-2 10-1 1.0 10 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION RC MODEL 0.0182 0.188 0.361 0.0743 5.17 Case temperature (°C) FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL Rev A Power (watts) 0.0673 4-2006 Junction temp (°C) 050-7625 Z JC, THERMAL IMPEDANCE (°C/W) θ 0.35 300 trr, REVERSE RECOVERY TIME (ns) TJ = 25°C 250 IF, FORWARD CURRENT (A) APT150GN60JDQ4 300 200 TJ = 175°C 150 TJ = 125°C 100 50 T =125°C J V =400V R 250 200A 200 100A 50A 150 100 50 TJ = -55°C 0 0 0.5 1.0 1.5 2.0 2.5 3.0 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change 60 T =125°C J V =400V 3500 R 200A 3000 100A 2500 2000 50A 1500 1000 500 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change 0.6 IRRM Qrr CJ, JUNCTION CAPACITANCE (pF) 4-2006 Rev A Duty cycle = 0.5 T =175°C J 100 80 60 40 20 0 1400 050-7625 10 120 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature 1200 1000 800 600 400 200 0 50A 20 140 0.2 0.0 100A 30 160 trr 0.4 200A 40 180 trr 0.8 R 50 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change Qrr 1.0 T =125°C J V =400V 0 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 IRRM, REVERSE RECOVERY CURRENT (A) Qrr, REVERSE RECOVERY CHARGE (nC) 4000 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT150GN60JDQ4 Vr diF /dt Adjust +18V APT60M75L2LL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 31.5 (1.240) 31.7 (1.248) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate Dimensions in Millimeters and (Inches) ISOTOP® is a Registered Trademark of SGS Thomson. APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 4-2006 3.3 (.129) 3.6 (.143) Rev A r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 050-7625 7.8 (.307) 8.2 (.322) 11.8 (.463) 12.2 (.480)