APT28GA60BD15 APT28GA60SD15 600V High Speed PT IGBT (B) TO POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved -2 47 through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low G gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short G C E delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. Combi (IGBT and Diode) ® FEATURES D3PAK (S) C E TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 600 V IC1 Continuous Collector Current @ TC = 25°C 50 IC2 Continuous Collector Current @ TC = 100°C 28 ICM Pulsed Collector Current 1 84 VGE Gate-Emitter Voltage ±30 V PD Total Power Dissipation @ TC = 25°C 222 W Vces Parameter 2 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range TL Symbol 84A @ 600V -55 to 150 Lead Temperature for Soldering: 0.063" from Case for 10 Seconds Static Characteristics A °C 300 TJ = 25°C unless otherwise specified Parameter Test Conditions Min VBR(CES) Collector-Emitter Breakdown Voltage VGE = 0V, IC = 1.0mA 600 VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 2.5 VGE = 15V, TJ = 25°C 2.0 IC = 16A TJ = 125°C 1.9 VGE =VCE , IC = 1mA ICES Typ 3 4.5 TJ = 25°C 275 VGE = 0V TJ = 125°C 3000 Microsemi Website - http://www.microsemi.com V 6 VCE = 600V, VGS = ±30V Unit ±100 μA nA 052-6335 Rev D 7 - 2009 Symbol Dynamic Characteristics Symbol Parameter Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg3 Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf APT28GA60BD_SD15 TJ = 25°C unless otherwise specified Test Conditions Gate- Collector Charge Switching Safe Operating Area Min Typ Capacitance 2109 VGE = 0V, VCE = 25V 214 f = 1MHz 26 Gate Charge 90 VGE = 15V 14 VCE= 300V 28 nC Turn-On Delay Time A L= 100uH, VCE = 600V Inductive Switching (25°C) 11 Current Rise Time VCC = 400V 8 Turn-Off Delay Time VGE = 15V 101 IC = 16A 27 RG = 10Ω4 239 Eoff6 Turn-Off Switching Energy TJ = +25°C 170 td(on) Turn-On Delay Time Inductive Switching (125°C) 11 Current Fall Time Current Rise Time VCC = 400V 10 Turn-Off Delay Time VGE = 15V 132 IC = 16A 114 Eon2 Turn-On Switching Energy RG = 10Ω4 412 Eoff6 Turn-Off Switching Energy TJ = +125°C 335 tf pF 84 Turn-On Switching Energy tr Unit IC = 16A TJ = 150°C, RG = 10Ω4, VGE = 15V, Eon2 td(off) Max Current Fall Time ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic RθJC Junction to Case Thermal Resistance (IGBT) RθJC Junction to Case Thermal Resistance (Diode) WT Torque Package Weight Mounting Torque (TO-247 Package), 4-40 or M3 screw Min Typ Max - - .56 1.35 - 5.9 Unit °C/W - g 10 in·lbf 052-6335 Rev D 7 - 2009 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. 3 See Mil-Std-750 Method 3471. 4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves APT28GA60BD_SD15 250 IC, COLLECTOR CURRENT (A) GE 200 = 15V 15V TJ= 150°C TJ= 55°C TJ= 25°C TJ= 125°C 150 100 50 IC, COLLECTOR CURRENT (A) V 250 13V 200 12V 11V 150 10V 100 9V 50 8V 6V 160 120 80 TJ= 25°C TJ= -55°C 40 TJ= 125°C VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 0 4 4 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3 IC = 400A IC = 200A 2 IC = 100A 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage J VCE = 120V 10 VCE = 300V 0.80 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 100 IC = 32A IC = 16A 2 IC = 8A 1 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 50 0.85 40 60 80 GATE CHARGE (nC) FIGURE 4, Gate charge 3 1.05 0.90 20 4 60 0.95 0 5 1.10 1.00 VCE = 480V 5 0 2 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE I = 16A C T = 25°C 0 25 40 30 20 10 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6335 Rev D 7 - 2009 200 VGE, GATE-TO-EMITTER VOLTAGE (V) 240 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 15 250μs PULSE TEST<0.5 % DUTY CYCLE IC, DC COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 280 0 0 0 5 10 15 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 Typical Performance Curves APT28GA60BD_SD15 200 16 td(ON), TURN-ON DELAY TIME (ns) 14 td(OFF), TURN-OFF DELAY TIME (ns) VCE = 400V TJ = 25°C, or 125°C RG = 10Ω L = 100μH 15 13 12 VGE = 15V 11 10 9 160 120 80 VGE =15V,TJ=25°C 40 VCE = 400V RG = 10Ω L = 100μH 0 8 0 5 10 15 20 25 30 35 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 35 VGE =15V,TJ=125°C 0 5 10 15 20 25 30 35 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 150 RG = 10Ω, L = 100μH, VCE = 400V 30 125 TJ = 125°C, VGE = 15V tr, FALL TIME (ns) tr, RISE TIME (ns) 25 20 15 10 TJ = 25 or 125°C,VGE = 15V 5 0 0 5 10 15 20 25 30 TJ = 125°C 600 500 400 300 TJ = 25°C 200 100 1000 Eoff,32A 750 Eon2,16A 500 Eoff,16A Eon2,8A 250 Eoff,8A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) 052-6335 Rev D 7 - 2009 Eon2,32A V = 400V CE V = +15V GE R = 10Ω G 800 700 TJ = 125°C 600 500 400 300 200 TJ = 25°C 100 1000 J 1250 900 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current V = 400V CE V = +15V GE T = 125°C RG = 10Ω, L = 100μH, VCE = 400V 0 0 1500 50 0 10 20 30 40 50 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) G 800 700 TJ = 25°C, VGE = 15V 0 35 V = 400V CE V = +15V GE R =10Ω 900 75 25 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 1000 100 V = 400V CE V = +15V GE R = 10Ω Eon2,32A G 800 Eoff,32A 600 Eon2,16A 400 Eoff,16A 200 Eon2,8A Eoff,8A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT28GA60BD_SD15 200 10000 C, CAPACITANCE (pF) 1000 Coes 100 Cres 10 0 100 200 300 400 500 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage IC, COLLECTOR CURRENT (A) 100 Cies 10 1 0.1 1 10 100 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area D = 0.9 0.5 0.7 0.4 0.5 0.3 Note: 0.2 0.3 0.1 0.1 PDM t1 t2 t 0.05 SINGLE PULSE 0 10 10 -3 10 -2 10 -1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration -5 10 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC -4 1.0 052-6335 Rev D 7 - 2009 ZθJC, THERMAL IMPEDANCE (°C/W) 0.6 APT28GA60BD_SD15 10% 90% Gate Voltage TJ = 125°C td(on) Collector Current APT30DQ120 tr V CE IC V CC 5% 10% 5% Collector Voltage Switching Energy A D.U.T. Figure 12, Inductive Switching Test Circuit Figure 13, Turn-on Switching Waveforms and Definitions 90% 90% TJ = 125°C td(off) Gate Voltage Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6335 Rev D 7 - 2009 Figure 14, Turn-off Switching Waveforms and Definitions ULTRAFAST SOFT RECOVERY RECTIFIER DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT28GA60BD_SD15 Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5) 600 RMS Forward Current (Square wave, 50% duty) 30 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 110 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Min IF = 15A 2.0 IF = 30A 2.5 IF = 15A, TJ = 125°C 1.56 Forward Voltage VF Type Max Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current Test Conditions Min Typ Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 15 - IF = 15A, diF/dt = -200A/µs VR = 400V, TC = 25°C IF = 15A, diF/dt = -200A/µs VR = 400V, TC = 125°C IF = 15A, diF/dt = -1000A/µs VR = 400V, TC = 125°C Unit ns - 19 - - 21 - nC - 2 - Amps - 105 - ns - 250 - nC - 5 - Amps - 55 - ns - 420 - nC - 15 - Amps D = 0.9 1.20 1.00 0.7 0.80 0.5 Note: 0.60 PDM 0.3 0.40 t1 t2 t 0.20 0.1 SINGLE PULSE 0.05 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION 052-6335 Rev D 7 - 2009 ZθJC, THERMAL IMPEDANCE (°C/W) 1.40 Dynamic Characteristics TJ = 25°C unless otherwise specified 60 APT28GA60BD_SD15 140 trr, REVERSE RECOVERY TIME (ns) T =125°C J V =400V IF, FORWARD CURRENT (A) 50 TJ = 175°C 40 TJ = 125°C 30 20 10 0 0 7.5A 60 40 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 3. Reverse Recovery Time vs. Current Rate of Change R 600 30A 500 400 15A 300 7.5A 200 100 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 4. Reverse Recovery Charge vs. Current Rate of Change 1.2 IRRM, REVERSE RECOVERY CURRENT (A) Qrr, REVERSE RECOVERY CHARGE (nC) 15A 80 25 T =125°C J V =400V 0 R 20 30A 15 10 15A 7.5A 5 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 5. Reverse Recovery Current vs. Current Rate of Change 35 Qrr Duty cycle = 0.5 T =175°C J trr 1.0 T =125°C J V =400V 0 30 25 0.8 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 100 0 700 IRRM 0.6 trr 20 15 0.4 10 Qrr 0.2 0.0 5 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 6. Dynamic Parameters vs. Junction Temperature 0 90 CJ, JUNCTION CAPACITANCE (pF) 30A 20 TJ = 25°C TJ = -55°C 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 2. Forward Current vs. Forward Voltage 052-6335 Rev D 7 - 2009 R 120 80 70 60 50 40 30 20 10 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 8. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 7. Maximum Average Forward Current vs. CaseTemperature Dynamic Characteristics TJ = 25°C unless otherwise specified APT28GA60BD_SD15 Vr diF /dt Adjust +18V APT6017LLL 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 9. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 10, Diode Reverse Recovery Waveform and Definitions 3 TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector (Cathode) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) (Heat Sink) D PAK Package Outline e3 SAC: Tin, Silver, Copper 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) 13.41 (.528) 13.51(.532) 13.79 (.543) 13.99(.551) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Gate Collector (Cathode) Emitter (Anode) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated Emitter (Anode) Collector (Cathode) Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6335 Rev D 7 - 2009 0.46 (.018) 0.56 (.022) {3 Plcs}