CM1000DUC-34SA Mega Power Dual IGBT Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com 1000 Amperes/1700 Volts A D P (8 PLACES) U N G H H L S C2E1 C2 C1 G2 E1 E2 G1 W X J K F BB Y C B Z CC F J E2 C1 U V H H H H H H G G C2E1 G2 Di2 E2 (Es2) E2 Tr1 T E1 (Es1) Di1 C1 L R (9 PLACES) C1 (Cs1) Tr2 AA M LABEL C2 (Cs2) E Tolerance Otherwise Specified (mm) Division of Dimension Tolerance 0.5 to 3 ±0.2 over 3 to 6 ±0.3 over 6 to 30 ±0.5 over 30 to 120 ±0.8 over 120 to 400 ±1.2 G1 Outline Drawing and Circuit Diagram Dimensions Inches A 5.91 Millimeters Dimensions Inches Millimeters 150.0 M 0.075±0.008 1.9±0.2 B 5.10 129.5 N 0.47 12.0 C 1.67±0.01 42.5±0.25 P 0.26 6.5 D 5.41±0.01 137.5±0.25 R M6 Metric M6 E 6.54 166.0 S 0.08 2.0 F 2.91±0.01 74.0±0.25 T 0.99 25.1 G 1.65 42.0 U 0.62 15.7 Description: Powerex Mega Power Dual (MPD) Modules are designed for use in switching applications. Each module consists of two IGBT Transistors having a reverseconnected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management. Features: £ Low Drive Power £ Low VCE(sat) £ Discrete Super-Fast Recovery Free-Wheel Diode £ Isolated Baseplate for Easy Heatsinking £ RoHS Compliant Applications: £ High Power DC Power Supply £ Large DC Motor Drives £ Utility Interface Inverters Ordering Information: Example: Select the complete module number you desire from the table - i.e. CM1000DUC-34SA is a 1700V (VCES), 1000 Ampere Dual IGBTMOD Power Module. H 0.55 14.0 V 0.71 18.0 J 1.50±0.01 38.0±0.25 W 0.75 19.0 0.16 4.0 X 0.43 11.0 Y 0.83 21.0 Z 0.41 10.5 Type Current Rating Amperes VCES Volts (x 50) AA 0.22 5.5 CM 1000 34 K L 1.36 +0.04/-0.02 34.6 +1.0/-0.5 Housing Type (J.S.T. MFG. CO. LTD) BB = VHR-2N CC = VHR-5N 03/13 Rev. 3 1 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com CM1000DUC-34SA Mega Power Dual IGBT 1000 Amperes/1700 Volts Absolute Maximum Ratings, Tj = 25°C unless otherwise specified Characteristics SymbolRatingUnits Collector-Emitter Voltage (VGE = 0V) VCES 1700Volts Gate-Emitter Voltage (VCE = 0V) VGES ±20Volts Collector Current (DC, TC = 125°C)*2,*4IC Collector Current (Pulse, Repetitive)*3I 1000Amperes CRM 2000Amperes Total Power Dissipation (TC = 25°C)*2,*4Ptot 10,000Watts Emitter Current*2 Emitter Current (Pulse, Repetitive)*3 Isolation Voltage (Terminals to Baseplate, RMS, f = 60Hz, AC 1 minute) 1000Amperes IERM*1 2000Amperes Visol 4000Volts Maximum Junction Temperature Tj(max)175 °C TC (max)125 °C °C Tstg -40 to +125 °C 111.8 -40 to +150 98.9 0 Storage Temperature Tj(op) 51.0 Operating Junction Temperature 38.2 Maximum Case Temperature *1 Represent ratings and characteristics of the anti-parallel, emitter-to-collector clamp diode. *2 Junction temperature (Tj) should not increase beyond maximum junction temperature (Tj(max)) rating. *3 Pulse width and repetition rate should be such that device junction temperature (Tj) does not exceed Tj(max) rating. *4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. Refer to the figure to the right for chip location. The heatsink thermal resistance should be measured just under the chips. IE*1 119.3 Tr2 Di2 Di1 Tr1 106.2 Tr2 Di2 Di1 Tr1 93.2 Tr2 Di2 Di1 Tr1 77.8 Tr2 Di2 Di1 Tr1 64.7 Tr2 Di2 Di1 Tr1 51.7 Tr2 Di2 Di1 Tr1 36.3 Tr2 Di2 Di1 Tr1 23.2 Tr2 Di2 Di1 Tr1 10.2 Tr2 Di2 Di1 Tr1 0 LABEL SIDE Tr1, Tr2: IGBT, Di1, Di2: FWDi Each mark points to the center position of each chip. 2 03/13 Rev. 3 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com CM1000DUC-34SA Mega Power Dual IGBT 1000 Amperes/1700 Volts Electrical Characteristics, Tj = 25°C unless otherwise specified Characteristics Collector-Emitter Cutoff Current Symbol ICES Test Conditions VCE = VCES, VGE = 0V Min. Typ. Max. Units — — 1.0 mA Gate-Emitter Leakage Current IGES VGE = VGES, VCE = 0V — — 10 µA Gate-Emitter Threshold Voltage VGE(th) IC = 100mA, VCE = 10V 5.4 6.0 6.6 Volts Collector-Emitter Saturation Voltage VCE(sat) IC = 1000A, VGE = 15V, Tj = 25°C*5 — 1.9 2.4 Volts (Terminal = Chip) IC = 1000A, VGE = 15V, Tj = 125°C*5 — 2.1 — Volts IC = 1000A, VGE = 15V, Tj = Input Capacitance Cies Output Capacitance Coes Reverse Transfer Capacitance Cres Gate Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Emitter-Collector Voltage QG 150°C*5 VCE = 10V, VGE = 0V VCC = 1000V, IC = 1000A, VGE = 15V td(on) — 2.15 — Volts — — 260 nF — — 27 nF — — 5 nF — 4700 — nC — — 900 ns tr VCC = 1000V, IC = 1000A, VGE = ±15V, — — 350 ns td(off) RG = 2.0Ω, Inductive Load — — 1250 ns — — 400 ns IE = 1000A, VGE = 0V, Tj = 25°C*5 — 4.0 5.2 Volts (Terminal = Chip) IE = 1000A, VGE = 0V, Tj = 125°C*5 — 2.8 — Volts IE = 1000A, VGE = 0V, Tj = 150°C*5 — 2.6 — Volts tf VEC*1 *1 VCC = 1000V, IE = 900A, VGE = ±15V — — 400 ns RG = 2.0Ω, Inductive Load — 270 — µC Reverse Recovery Time trr Reverse Recovery Charge Qrr*1 Turn-on Switching Energy per Pulse Eon VCC = 1000V, IC = IE = 1000A, — 239 — mJ Turn-off Switching Energy per Pulse Eoff VGE = ±15V, RG = 2.0Ω, Tj = 150°C, — 269 — mJ Reverse Recovery Energy per Pulse Err*1 Inductive Load — 130 — mJ RCC' + EE' Main Terminals-Chip, — 0.286 — mΩ — 0.56 — Ω Internal Lead Resistance Per Switch,TC = 25°C*4 111.8 98.9 51.0 *1 Represent ratings and characteristics of the anti-parallel, emitter-to-collector clamp diode. *4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. Refer to the figure to the right for chip location. The heatsink thermal resistance should be measured just under the chips. *5 Pulse width and repetition rate should be such as to cause negligible temperature rise. Per Switch 38.2 rg 0 Internal Gate Resistance 119.3 Tr2 Di2 Di1 Tr1 106.2 Tr2 Di2 Di1 Tr1 93.2 Tr2 Di2 Di1 Tr1 77.8 Tr2 Di2 Di1 Tr1 64.7 Tr2 Di2 Di1 Tr1 51.7 Tr2 Di2 Di1 Tr1 36.3 Tr2 Di2 Di1 Tr1 23.2 Tr2 Di2 Di1 Tr1 10.2 Tr2 Di2 Di1 Tr1 0 LABEL SIDE Tr1, Tr2: IGBT, Di1, Di2: FWDi Each mark points to the center position of each chip. 03/13 Rev. 3 3 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com CM1000DUC-34SA Mega Power Dual IGBT 1000 Amperes/1700 Volts Electrical Characteristics, Tj = 25°C unless otherwise specified (continued) Thermal Resistance Characteristics Thermal Resistance, Junction to Case*4 Rth(j-c)Q Per IGBT — — 15 K/kW Thermal Resistance, Junction to Case*4 Rth(j-c)D Per Diode — — 24 K/kW Rth(c-f) Thermal Grease Applied — 6 — K/kW Case to Heatsink (Per 1 Module)*6 Contact Thermal Resistance, Mechanical Characteristics Mounting Torque Creepage Distance Mt Main Terminals, M6 Screw 22 27 31 in-lb Ms Mounting to Heatsink, M6 Screw 22 27 31 in-lb Terminal to Terminal 24 — — mm Terminal to Baseplate 33 — — mm ds Clearance da Weight m Flatness of Baseplate ec Terminal to Terminal 14 — — mm Terminal to Baseplate 33 — — mm — 1450 — Grams On Centerline X, Y*7 -50 — +100 µm Recommended Operating Conditons, Ta = 25°C 1200 Volts 15.0 16.5 Volts External Gate Resistance RG Per Switch 2.0 — 6.0 Ω *4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. Refer to the figure to the right for chip location. The heatsink thermal resistance should be measured just under the chips. *6 Typical value is measured by using thermally conductive grease of λ = 0.9 [W/(m • K)]. *7 Baseplate (mounting side) flatness measurement points (X, Y) are shown in the figure below. – CONCAVE + CONVEX 39 mm 39 mm Y1 Y2 X BOTTOM BOTTOM – CONCAVE 111.8 1000 13.5 98.9 — Applied Across G1-Es1/G2-Es2 51.0 Applied Across C1-E2 VGE(on) 38.2 VCC Gate-Emitter Drive Voltage 0 (DC) Supply Voltage 119.3 Tr2 Di2 Di1 Tr1 106.2 Tr2 Di2 Di1 Tr1 93.2 Tr2 Di2 Di1 Tr1 77.8 Tr2 Di2 Di1 Tr1 64.7 Tr2 Di2 Di1 Tr1 51.7 Tr2 Di2 Di1 Tr1 36.3 Tr2 Di2 Di1 Tr1 23.2 Tr2 Di2 Di1 Tr1 10.2 Tr2 Di2 Di1 Tr1 0 LABEL SIDE BOTTOM + CONVEX LABEL SIDE Tr1, Tr2: IGBT, Di1, Di2: FWDi Each mark points to the center position of each chip. 4 03/13 Rev. 3 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com CM1000DUC-34SA Mega Power Dual IGBT 1000 Amperes/1700 Volts COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (CHIP - TYPICAL) OUTPUT CHARACTERISTICS (CHIP - TYPICAL) 4.5 1500 12 1000 11 10 500 9 0 2 4 6 8 2.5 2.0 1.5 1.0 0.5 1000 1500 IC = 1000A 4 2 0 2000 IC = 600A 6 8 10 12 14 16 18 FREE-WHEEL DIODE FORWARD CHARACTERISTICS (CHIP - TYPICAL) CAPACITANCE VS. VCE (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VGE = 15V Tj = 25°C Tj = 125°C Tj = 150°C 0 1 2 3 4 5 Cies 101 Coes Cres 100 VGE = 0V Tj = 25°C 10-1 10-1 6 td(off) 102 SWITCHING TIME, (ns) 102 100 101 103 tf td(on) 102 tr 101 VCC = 1000V VGE = ±15V RG = 2.0Ω Tj = 125°C Inductive Load 100 101 102 102 103 EMITTER-COLLECTOR VOLTAGE, VEC, (VOLTS) COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS) COLLECTOR CURRENT, IC, (AMPERES) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) SWITCHING TIME VS. GATE RESISTANCE (TYPICAL) SWITCHING TIME VS. GATE RESISTANCE (TYPICAL) 104 td(off) 103 SWITCHING TIME, (ns) tf td(on) 102 tr VCC = 1000V VGE = ±15V RG = 2.0Ω Tj = 150°C Inductive Load 100 101 104 VCC = 1000V VGE = ±15V IC = 1000A Tj = 125°C Inductive Load td(off) td(on) 102 tf VCC = 1000V VGE = ±15V IC = 1000A Tj = 150°C Inductive Load 102 103 101 10-1 td(off) 103 td(on) tf tr tr COLLECTOR CURRENT, IC, (AMPERES) 03/13 Rev. 3 103 20 104 103 104 SWITCHING TIME, (ns) 500 IC = 2000A 6 GATE-EMITTER VOLTAGE, VGE, (VOLTS) 103 101 0 8 COLLECTOR CURRENT, IC, (AMPERES) CAPACITANCE, Cies, Coes, Cres, (nF) EMITTER CURRENT, IE, (AMPERES) 3.0 Tj = 25°C COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS) 104 101 3.5 0 10 10 VGE = 15V Tj = 25°C Tj = 125°C Tj = 150°C 4.0 SWITCHING TIME, (ns) COLLECTOR CURRENT, IC, (AMPERES) 15 13.5 COLLECTOR-EMITTER SATURATION VOLTAGE, VCE(sat), (VOLTS) Tj = 25°C VGE = 20V COLLECTOR-EMITTER SATURATION VOLTAGE, VCE(sat), (VOLTS) 2000 0 COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (CHIP - TYPICAL) 100 EXTERNAL GATE RESISTANCE, RG, (Ω) 101 102 100 101 EXTERNAL GATE RESISTANCE, RG, (Ω) 5 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com CM1000DUC-34SA Mega Power Dual IGBT 1000 Amperes/1700 Volts VCC = 1000V VGE = ±15V RG = 2.0Ω Tj = 125°C Inductive Load Irr trr 101 101 102 VCC = 1000V VGE = ±15V RG = 2.0Ω Tj = 150°C Inductive Load Irr trr 101 101 103 102 4000 6000 HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) 103 102 103 Eon Eoff Err 101 101 102 100 10-1 102 10-2 Eon Eoff Err GATE RESISTANCE, RG, (Ω) 103 101 10-3 10-3 TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) 10-2 10-1 100 8000 VCC = 1000V VGE = ±15V IC/IE = 1000A Tj = 125°C 102 101 10-1 Eon Eoff Err 100 101 GATE RESISTANCE, RG, (Ω) COLLECTOR CURRENT, IC, (AMPERES) EMITTER CURRENT, IE, (AMPERES) VCC = 1000V VGE = ±15V IC/IE = 1000A Tj = 150°C 100 103 VCC = 1000V VGE = ±15V RG = 2.0Ω Tj = 150°C 102 NORMALIZED TRANSIENT THERMAL IMPEDANCE, Zth(j-c') Zth = Rth • (NORMALIZED VALUE) SWITCHING ENERGY, Eon, Eoff, (mJ) REVERSE RECIVERY ENERGY, Err, (mJ) 2000 0 HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) COLLECTOR CURRENT, IC, (AMPERES) EMITTER CURRENT, IE, (AMPERES) 6 5 GATE CHARGE, QG, (nC) Eon Eoff Err 101 10-1 10 EMITTER CURRENT, IE, (AMPERES) 101 101 103 15 0 103 IC = 1000A VCC = 1000V Tj = 25°C EMITTER CURRENT, IE, (AMPERES) VCC = 1000V VGE = ±15V RG = 2.0Ω Tj = 125°C 102 102 GATE CHARGE VS. VGE 20 SWITCHING ENERGY, Eon, Eoff, (mJ) REVERSE RECIVERY ENERGY, Err, (mJ) SWITCHING ENERGY, Eon, Eoff, (mJ) REVERSE RECIVERY ENERGY, Err, (mJ) 103 REVERSE RECOVERY, Irr (A), trr (ns) 102 103 SWITCHING ENERGY, Eon, Eoff, (mJ) REVERSE RECIVERY ENERGY, Err, (mJ) REVERSE RECOVERY, Irr (A), trr (ns) 103 REVERSE RECOVERY CHARACTERISTICS (TYPICAL) GATE-EMITTER VOLTAGE, VGE, (VOLTS) REVERSE RECOVERY CHARACTERISTICS (TYPICAL) 101 10-1 Single Pulse TC = 25°C Per Unit Base = Rth(j-c) = 15 K/kW (IGBT) Rth(j-c) = 24 K/kW (FWDi) 10-2 10-5 10-4 10-3 10-3 TIME, (s) 03/13 Rev. 3