ETC UPD70F3003GC-25-7EA

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD70F3003
V853TM
32-/16-BIT SINGLE-CHIP MICROCONTROLLER
DESCRIPTION
The µPD70F3003 has a flash memory instead of the internal mask ROM of the µPD703003. This model is useful
for small-scale production of a variety of application sets or early start of production since the program can be written
and erased by the user even with the µPD70F3003 mounted on the board.
Functions in detail are described in the following user’s manuals. Be sure to read these manuals when
you design your systems.
V853 User’s Manual-Hardware
: U10913E
V850 FamilyTM User’s Manual-Architecture : U10243E
FEATURES
• Compatible with µPD703003
• Can be replaced with mask ROM model for mass production of application set
µPD70F3003 → µPD703003
• Internal flash memory: 128K bytes
Remark For differences among the products, refer to 1. DIFFERENCES AMONG PRODUCTS.
ORDERING INFORMATION
Part Number
µPD70F3003GC-25-7EA
Package
100-pin plastic QFP (fine pitch) (14 × 14 mm)
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability
and additional information.
Document No. U12036EJ3V1DS00 (3rd edition)
Date Published April 1999 N CP(K)
Printed in Japan
The mark
shows major revised points.
©
1997
µPD70F3003
PIN CONFIGURATION (Top View)
• 100-pin plastic QFP (fine pitch) (14 × 14 mm)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
P75/ANI5
P74/ANI4
P73/ANI3
P72/ANI2
P71/ANI1
P70/ANI0
ANO0
ANO1
AVREF2
AVREF3
P07/INTP113/ADTRG
P06/INTP112
P05/INTP111
P04/INTP110
P03/TI11
P02/TCLR11
P01/TO111
P00/TO110
P117/INTP143
P116/INTP142
P115/INTP141
P114/INTP140
P113/TI14
P112/TCLR14
P111/TO141
P43/AD3
P42/AD2
VSS
VDD
P41/AD1
P40/AD0
P90/LBEN
P91/UBEN
P92/R/W
P93/DSTB
P94/ASTB
P95/HLDAK
P96/HLDRO
WAIT
VPP
MODE
RESET
CVDD/CKSEL
X2
X1
CVSS
CLKOUT
VSS
VDD
P110/TO140
P31/TO131
P32/TCLR13
P33/TI13
P34/INTP130
P35/INTP131/SO3
P36/INTP132/SI3
P37/INTP133/SCK3
P63/A19
P62/A18
P61/A17
P60/A16
VSS
VDD
P57/AD15
P56/AD14
P55/AD13
P54/AD12
P53/AD11
P52/AD10
P51/AD9
P50/AD8
P47/AD7
P46/AD6
P45/AD5
P44/AD4
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
P30/TO130
P27/SCK1
P26/RXD1/SI1
P25/TXD1/SO1
P24/SCK0
P23/RXD0/SI0
P22/TXD0/SO0
P21/PWM1
P20/PWM0
NMI
VDD
VSS
P17/INTP123/SCK2
P16/INTP122/SI2
P15/INTP121/SO2
P14/INTP120
P13/TI12
P12/TCLR12
P11/TO121
P10/TO120
AVDD
AVSS
AVREF1
P77/ANI7
P76/ANI6
µ PD70F3003GC-25-7EA
Caution Directly connect VPP pin to VSS pin except the case that µPD70F3003 is used in flash
memory programming mode.
2
Data Sheet U12036EJ3V1DS00
µPD70F3003
PIN NAMES
: Address Bus
P40-P47
: Port4
AD0-AD15
: Address/Data Bus
P50-P57
: Port5
ADTRG
: AD Trigger Input
P60-P63
: Port6
ANI0-ANI7
: Analog Input
P70-P77
: Port7
ANO0, ANO1
: Analog Output
P90-P96
: Port9
ASTB
: Address Strobe
P110-P117
: Port11
AV DD
: Analog V DD
PWM0, PWM1
: Pulse Width Modulation
AV REF1-AV REF3
: Analog Reference Voltage
RESET
: Reset
AV SS
: Analog V SS
R/W
: Read/Write Status
CV DD
: Power Supply for Clock Generator
RXD0, PXD1
: Receive Data
CV SS
: Ground for Clock Generator
SCK0-SCK3
: Serial Clock
CKSEL
: Clock Select
SI0-SI3
: Serial Input
CLKOUT
: Clock Output
SO0-SO3
: Serial Output
DSTB
: Data Strobe
TO110, TO111,
: Timer Output
HLDAK
: Hold Acknowledge
TO120, TO121,
HLDRQ
: Hold Request
TO130, TO131,
A16-A19
INTP110-INTP113, : Interrupt Request from Peripherals
TO140, TO141
INTP120-INTP123,
TCLR11-TCLR14
: Timer Clear
INTP130-INTP133,
TI11-TI14
: Timer Input
TXD0, TXD1
: Transmit Data
: Lower Byte Enable
UBEN
: Upper Byte Enable
MODE
: Mode
WAIT
: Wait
NMI
: Non-maskable Interrupt Request
X1, X2
: Crystal
P00-P07
: Port 0
V DD
: Power Supply
P10-P17
: Port 1
V PP
: Programming Power Supply
P20-P27
: Port 2
V SS
: Ground
P30-P37
: Port 3
INTP140-INTP143
LBEN
Data Sheet U12036EJ3V1DS00
3
µPD70F3003
INTERNAL BLOCK DIAGRAM
Flash memory
CPU
NMI
INTP110-INTP113
INTP120-INTP123
INTP130-INTP133
INTP140-INTP143
TO110, TO111
TO120, TO121
TO130, TO131
TO140, TO141
Instruction
queue
PC
INTC
128 K
bytes
32-bit
barrel shifter
Multiplier
16 × 16 → 32
System
register
RPU
RAM
TCLR11-TCLR14
TI11-TI14
4 KB
BCU
ASTB
DSTB
R/W
UBEN
LBEN
WAIT
A16-A19
AD0-AD15
HLDRQ
HLDAK
Generalpurpose
register
32 bits × 32
ALU
SIO
SO0/TXD0
SI0/RXD0
SCK0
UART0/CSI0
BRG0
CSI2
Ports
P110-P117
P90-P96
P70-P77
P60-P63
P50-P57
P40-P47
P30-P37
P20-P27
P10-P17
P00-P07
SO2
SI2
SCK2
D/A
Converter
ANO0, ANO1
BRG1
A/D
Converter
AVREF2, AVREF3
UART1/CSI1
ANI0-ANI7
AVREF1
AVSS
AVDD
ADTRG
SO1/TXD1
SI1/RXD1
SCK1
CG
CKSEL
CLKOUT
X1
X2
MODE
RESET
VDD
VSS
BRG2
CVDD
4
SO3
SI3
SCK3
CSI3
PWM0, PWM1
PWM
CVSS
VPP
Data Sheet U12036EJ3V1DS00
µPD70F3003
CONTENTS
1. DIFFERENCES AMONG PRODUCTS ······························································································ 6
2. PIN FUNCTIONS ································································································································ 7
2.1 Port Pins ·····················································································································································
7
2.2 Pins Other Than Port Pins ························································································································
9
2.3 I/O Circuits of Pins and Recommended Connections of Unused Pins ················································ 11
3. PROGRAMMING FLASH MEMORY ································································································· 14
3.1 Selecting Communication Mode ·············································································································· 14
3.2 Flash Memory Programming Function ···································································································· 15
3.3 Connecting Dedicated Flash Programmer ······························································································ 15
4. ELECTRICAL SPECIFICATIONS ······································································································· 16
4.1 Normal Operation Mode ···························································································································· 16
4.2 Flash Memory Programming Mode ·········································································································· 37
5. PACKAGE DRAWING ······················································································································· 39
6. RECOMMENDED SOLDERING CONDITIONS ················································································· 40
Data Sheet U12036EJ3V1DS00
5
µPD70F3003
1. DIFFERENCES AMONG PRODUCTS
Parameter
Internal ROM
µPD703003 µPD703003A µPD703004A µPD703025A µPD70F3003 µPD70F3003A µPD70F3025A
Mask ROM
Flash memory
128K bytes
Internal RAM
Operation Normal
mode
operation
mode
4K bytes
Single chip
mode
Provided
ROM-less mode
Provided
Flash memory programming mode
6
96K bytes 256K bytes 128K bytes
8K bytes
None
256K bytes
4K bytes
Provided
8K bytes
None
None
Provided
VPP pin
None
Provided
CKC register value at reset
00H
Electrical specifications
Current consumption, etc. differs. (Refer to each product data sheets.)
Others
Noise immunity and noise radiation differ because circuit scale and mask
layout differ.
MODE = 0: 03H
MODE = 1: 00H
Data Sheet U12036EJ3V1DS00
00H
MODE = 0: 03H
MODE = 1: 00H
µPD70F3003
2. PIN FUNCTIONS
2.1 Port Pins
(1/2)
Pin Name
P00
I/O
I/O
Function
Shared with:
Port 0
TO110
P01
8-bit I/O port.
TO111
P02
Can be set in input or output mode in 1-bit units.
TCLR11
P03
TI11
P04
INTP110
P05
INTP111
P06
INTP112
P07
INTP113/ADTRG
P10
I/O
Port 1
TO120
P11
8-bit I/O port.
TO121
P12
Can be set in input or output mode in 1-bit units.
TCLR12
P13
TI12
P14
INTP120
P15
INTP121/SO2
P16
INTP122/SI2
P17
INTP123/SCK2
P20
I/O
Port 2
PWM0
P21
8-bit I/O port.
PWM1
P22
Can be set in input or output mode in 1-bit units.
TXD0/SO0
P23
RXD0/SI0
P24
SCK0
P25
TXD1/SO1
P26
RXD1/SI1
P27
SCK1
P30
I/O
Port 3
TO130
P31
8-bit I/O port.
TO131
P32
Can be set in input or output mode in 1-bit units.
TCLR13
P33
TI13
P34
INTP130
P35
INTP131/SO3
P36
INTP132/SI3
P37
INTP133/SCK3
P40-P47
I/O
Port 4
AD0-AD7
8-bit I/O port.
Can be set in input or output mode in 1-bit units.
P50-P57
I/O
Port 5
AD8-AD15
8-bit I/O port.
Can be set in input or output mode in 1-bit units.
Data Sheet U12036EJ3V1DS00
7
µPD70F3003
(2/2)
Pin Name
P60-P63
I/O
I/O
Function
Port 6
Shared with:
A16-A19
4-bit I/O port.
Can be set in input or output mode in 1-bit units.
P70-P77
Input
Port 7
ANI0-ANI7
8-bit input port.
P90
Port 9
LBEN
P91
7-bit I/O port.
UBEN
P92
Can be set in input or output mode in 1-bit units.
R/W
P93
DSTB
P94
ASTB
P95
HLDAK
P96
HLDRQ
P110
8
I/O
I/O
Port 11
TO140
P111
8-bit I/O port.
TO141
P112
Can be set in input or output mode in 1-bit units.
TCLR14
P113
TI14
P114
INTP140
P115
INTP141
P116
INTP142
P117
INTP143
Data Sheet U12036EJ3V1DS00
µPD70F3003
2.2 Pins Other Than Port Pins
(1/2)
Pin Name
TO110
I/O
Output
Function
Pulse signal output of timer 11-14
Shared with:
P00
TO111
P01
TO120
P10
TO121
P11
TO130
P30
TO131
P31
TO140
P110
TO141
P111
TCLR11
Input
External clear signal of timer 11-14
P02
TCLR12
P12
TCLR13
P32
TCLR14
P112
TI11
Input
External count clock of timer 11-14
P03
TI12
P13
TI13
P33
TI14
P113
INTP110
Input
INTP111
External maskable interrupt reuest input and external capture
P04
trigger input of timer 11
P05
INTP112
P06
INTP113
P07/ADTRG
INTP120
Input
INTP121
External maskable interrupt reuest input and external capture
P14
trigger input of timer 12
P15/SO2
INTP122
P16/S12
INTP123
P17/SCK2
INTP130
Input
INTP131
External maskable interrupt reuest input and external capture
P34
trigger input of timer 13
P35/SO3
INTP132
P36/SI3
INTP133
P37/SCK3
INTP140
Input
INTP141
External maskable interrupt reuest input and external capture
P114
trigger input of timer 14
P115
INTP142
P116
INTP143
P117
SO0
Output
Serial transmit data output of CSI0-CSI3 (3-wire)
P22/TXD0
SO1
P25/TXD1
SO2
P15/INTP121
SO3
P35/INTP131
SI0
Input
Serial receive data output of CSI0-CSI3 (3-wire)
P23/RXD0
SI1
P26/RXD1
SI2
P16/INTP122
SI3
P36/INTP132
Data Sheet U12036EJ3V1DS00
9
µPD70F3003
(2/2)
Pin Name
SCK0
I/O
I/O
Function
Serial clock I/O of CSI0-CSI3 (3-wire)
Shared with:
P24
SCK1
P27
SCK2
P17/INTP123
SCK3
P37/INTP133
TXD0
Output
Serial transmit data output of UART0-UART1
TXD1
RXD0
P25/SO1
Input
Serial receive data input of UART0-UART1
RXD1
PWM0
P23/SI0
P26/SI1
Output
Pulse signal output of PWM
PWM1
AD0-AD7
P22/SO0
P20
P21
I/O
16-bit multiplexed address/data bus when external memory is connected
AD8-AD15
P40-P47
P50-P57
A16-A19
Output
High-order address bus when external memory is connected
P60-P63
LBEN
Output
Low-order byte enable signal output of external data bus
P90
High-order byte enable signal output of external data bus
P91
External read/write status output
P92
DSTB
External data strobe signal output
P93
ASTB
External address strobe signal output
P94
Bus hold acknowledge output
P95
UBEN
R/W
Output
HLDAK
Output
HLDRQ
Input
Bus hold request input
P96
ANI0-ANI7
Input
Analog input to A/D converter
P70-P77
ANO0, ANO1
NMI
CLKOUT
Output
Input
Output
Analog output of D/A converter
—
Non-maskable interrupt request input
—
System clock output
—
CKSEL
Input
Input specifying operation mode of clock generator
CVDD
WAIT
Input
Control signal input inserting wait state in bus cycle
—
MODE
Input
Operation mode specification
—
RESET
Input
System reset input
—
X1
Input
System clock resonator connection. Input external clock to X1 to
—
X2
—
supply external clock.
—
ADTRG
Input
A/D converter external trigger input
AVREF1
Input
Reference voltage input for A/D converter
—
AVREF2
Input
Reference voltage input for D/A converter
—
AVREF3
P07/INTP113
—
AVDD
—
Positive power supply for A/D converter
—
AVSS
—
Ground potential for A/D converter
—
CVDD
—
Positive power supply for internal clock generator
CVSS
—
Ground potential for internal clock generator
—
VDD
—
Positive power supply
—
VSS
—
Ground potential
—
VPP
—
High voltage application pin when program is written/verified
—
10
Data Sheet U12036EJ3V1DS00
CKSEL
µPD70F3003
2.3 I/O Circuits of Pins and Recommended Connections of Unused Pins
Table 2-1 shows the I/O circuit type of each pin, and the recommended connections of the unused pins. Figure
2-1 shows a partially simplified diagram of each circuit.
When connecting a pin to V DD or V SS via resistor, use of a resistor of 1 to 10 kΩ is recommended.
Table 2-1. I/O Circuit Types of Each Pin and Recommended Connections of Unused Pins (1/2)
Pin
I/O Circuit Type
Recommended Connections
P00/TO110, P01/TO111
5
Input
: Individually connect to VDD or VSS via resistor.
P02/TCLR11, P03/TI11,
8
Output : Leave unconnected.
P04/INTP110-P07/INTP113/ADTRG
P10-TO120, P11/TO121
5
P12/TCLR12, P13/TI12
8
P14/INTP120
P15/INTP121/SO2
P16/INTP122/SI2
P17/INTP123/SCK2
P20/PWM0, P21/PWM1
5
P22/TXD0/SO0
P23/RXD0/SI0, P24/SCK0
8
P25/TXD1/SO1
5
P26/RXD1/SI1, P27/SCK1
8
P30/TO130, P31/TO131
5
P32/TCLR13, P33/TI13
8
P34/INTP130
P35/INTP131/SO3
10-A
P36/INTP132/SI3
P37/INTP133/SCK3
P40/AD0-P47/AD7
5
P50/AD8-P57/AD15
P60/A16-P63/A19
P70/ANI0-P77/ANI7
9
Directly connect to VSS.
P90/LBEN
5
Input: Individually connect to VDD or VSS via resistor.
P91/UBEN
Output: Leave unconnected.
P92/R/W
P93/DSTB
P94/ASTB
P95/HLDAK
P96/HLDRQ
P110/TO140, P111/TO141
P112/TCLR14, P113/TI14
8
P114/INTP140-P117/INTP143
Data Sheet U12036EJ3V1DS00
11
µPD70F3003
Table 2-1. I/O Circuit Types of Each Pin and Recommended Connections of Unused Pins (2/2)
Pin
I/O Circuit Type
Recommended Connections
ANO0, ANO1
12
Leave unconnected.
NMI
2
Directly connect to VSS.
CLKOUT
3
Leave unconnected.
WAIT
1
Directly connect to VDD.
MODE
2
—
RESET
CVDD/CKSEL
—
AVREF1-AVREF3, AVSS
—
Directly connect to VSS.
AVDD
—
Directly connect to VDD.
VPP
—
Directly connect to VSS.
12
Data Sheet U12036EJ3V1DS00
µPD70F3003
Figure 2-1. I/O Circuits of Pins
Type 1
Type 8
VDD
Data
VDD
P-ch
IN/OUT
P-ch
Output
disable
IN
N-ch
N-ch
Type 9
Type 2
P-ch
N-ch
IN
Comparator
+
–
IN
VREF (Threshold voltage)
Input enable
Schmitt trigger input with hysteresis characteristics
Type 3
Type 10-A
VDD
Pullup
enable
VDD
P-ch
VDD
Data
P-ch
P-ch
OUT
IN/OUT
Open drain
Output disable
N-ch
N-ch
Type 12
Type 5
VDD
Data
P-ch
IN/OUT
Analog output voltage
Output
disable
P-ch
N-ch
OUT
N-ch
Input
enable
Data Sheet U12036EJ3V1DS00
13
µPD70F3003
3. PROGRAMMING FLASH MEMORY
There are the following two methods for writing a program to the flash memory.
(1) On-board programming
Write a program to the flash memory using a dedicated flash programmer after the µPD70F3003 has been
mounted on the target board. Also mount a connector, etc. on the target board to communicate with the dedicated
flash programmer.
(2) Off-board programming
Write a program using a dedicated adapter before the µPD70F3003 has been mounted on the target board.
3.1 Selecting Communication Mode
To write the flash memory, use a dedicated flash programmer and serial communication. Select a serial
communication mode from those listed in Table 3-1 in the format shown in Figure 3-1. Each communication
mode is selected by the number of V PP pulses shown in Table 3-1.
Table 3-1. Communication Modes
Communication Mode
CSI
Pins Used
SCK0 (serial clock input)
SO0 (serial data output)
Number of VPP Pulses
0
SI0 (serial data input)
UART
TXD0 (serial data output)
RXD0 (serial data input)
8
Figure 3-1. Communication Mode Selecting Format
10 V
VPP
VDD
VSS
VDD
RESET
VSS
14
Data Sheet U12036EJ3V1DS00
µPD70F3003
3.2 Flash Memory Programming Function
The flash memory is written by transferring or receiving commands and data in a selected communication
mode. The major functions of flush memory programming are listed in Table 3-2.
Table 3-2. Major Functions of Flash Memory Programming
Function
Description
Batch erasure
Erases all contents of memory.
Batch blank check
Checks erased status of entire memory.
Data write
Writes flash memory based on write start address and number of data to be
written (in bytes).
Batch verify
Compares all contents of memory with input data.
3.3 Connecting Dedicated Flash Programmer
The dedicated flash programmer and µ PD70F3003 are connected differently depending on the selected
communication mode. Figures 3-2 through 3-3 show the connections in the respective communication modes.
Figure 3-2. Connection of Dedicated Flash Programmer in UART Mode
Dedicated flash programmer
µ PD70F3003
CLK
CLK
VPP
VPP
VDD
VDD
RESET
RESET
TxD
RXD0
RxD
TXD0
VSS
VSS
Figure 3-3. Connection of Dedicated Flash Programmer in CSI Mode
Dedicated flash programmer
µ PD70F3003
CLK
CLK
VPP
VPP
VDD
VDD
RESET
SCK
RESET
SCK0
SO
SI0
SI
SO0
VSS
VSS
Data Sheet U12036EJ3V1DS00
15
µPD70F3003
4. ELECTRICAL SPECIFICATIONS
4.1 Normal Operation Mode
Absolute Maximum Ratings (TA = 25 °C)
Parameter
Supply voltage
Input voltage
Symbol
Condition
Ratings
Unit
–0.5 to +7.0
V
VDD
VDD pin
CVDD
CVDD pin
–0.5 to VDD + 0.3
V
CVSS
CVSS pin
–0.5 to +0.5
V
AVDD
AVDD pin
–0.5 to VDD + 0.3
V
AVSS
AVSS pin
VI1
Note, VDD = 5.0 V ± 10 %
VI2
VPP pin in flash memory programming mode,
–0.5 to +0.5
V
–0.5 to VDD + 0.3
V
–0.5 to +11.0
V
–0.5 to VDD + 1.0
V
4.0
mA
VDD = 5.0 V ± 10 %
Clock input voltage
VK
X1 pin, VDD = 5.0 V ± 10 %
Output current, low
ICL
1 pin
Output current, high
ICH
Total of all pins
100
mA
1 pin
–4.0
mA
Total of all pins
–100
mA
Output voltage
VO
VDD = 5.0 V ± 10 %
Analog input voltage
VIAN
P70/ANI0-P77/ANI7
Analog reference input voltage
AVREF
AVREF1-AVREF3
–0.5 to VDD + 0.3
V
AVDD > VDD
–0.5 to VDD + 0.3
V
VDD ≥ AVDD
–0.5 to AVDD + 0.3
V
AVDD > VDD
–0.5 to VDD + 0.3
V
VDD ≥ AVDD
–0.5 to AVDD + 0.3
V
Operating ambient temperature
TA
–40 to +70
°C
Storage temperature
Tstg
–40 to +100
°C
Note
Except X1, P70/AN0-P77/AN7, AVREF1-AVREF3
Cautions 1. Do not directly connect the output (or I/O) pins of two or more IC products, and do not directly
connect them to VDD, VCC, or GND pin. Open-drain pins and open-collector pins may be directly
connected to one another however. Moreover, an external circuit that is designed to prevent
contention of output can be connected to pins that go into a high-impedance state.
2. Should the absolute maximum rating of even one of the above parameters be exceeded even
momentarily, the quality of the program may be degraded. The absolute maximum ratings
are, therefore, the values exceeding which the product may be physically damaged. Use the
product so that these values are never exceeded.
The normal operating ranges of ratings and conditions in which the quality of the product
is guaranteed are specified in the following DC Characteristics and AC Characteristics.
16
Data Sheet U12036EJ3V1DS00
µPD70F3003
Capacitance (TA = 25 °C, VDD = VSS = 0 V)
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
Input capacitance
CI
fc = 1 MHz
15
pF
I/O capacitance
CIO
Pins other than tested pin: 0 V
15
pF
Output capacitance
CO
15
pF
Operating Conditions
Operation Mode
Direct mode
PLL mode
Internal Operating Clock Frequency (φ)
Operating Temperature (TA)
Supply Voltage (VDD)
20 to 25 MHz
–40 to +70 °C
5.0 V ± 5 %
Self oscillation frequency to 25 MHz
–40 to +70 °C
5.0 V ± 5 %
Remark The internal operating clock frequency range in the PLL mode means the range in which the functional
operation is guaranteed, and the frequency in the PLL lock status is specified by tCYX.
Data Sheet U12036EJ3V1DS00
17
µPD70F3003
Recommended Oscillation Circuit
(a) Ceramic resonator connection (TDK, Murata Mfg.: TA = –40 to +85 °C, Kyocera: TA = –20 to +80 °C)
X1
X2
Rd
C1
Manufacturer
Oscillation
Frequency
fXX (MHz)
C1(pF)
C2 (pF)
Rd (Ω)
MIN. (V)
CCR5.0MC3
5.0
Provided
Provided
–
4.5
5.5
0.42
FCR5.0MC5
5.0
Provided
Provided
–
4.5
5.5
0.38
Murata Mfg.
CSA5.00MG040
5.0
100
100
–
4.5
5.5
0.51
Co. Ltd.
CST5.00MGW040
5.0
Provided
Provided
–
4.5
5.5
0.51
5.0
Provided
Provided
680
4.5
5.5
0.20
TDK Corp.
Part Number
C2
Kyocera Corp. KBR-5.0MKS
Recommended Circuit
Constants
Oscillation
Voltage Range
Oscillation Stabilization
Time (MAX.)
MAX. (V)
TOST (ms)
Cautions 1. Connect the oscillation circuit as closely to X1 and X2 pins as possible.
2. Do not route any other signal lines in the range indicated by the broken line in the above figure.
3. Thoroughly evaluate the matching between the µPD70F3003 and resonator.
(b) External clock input
X1
X2
Open
High-speed CMOS inverter
External clock
Cautions 1. Connect the high-speed CMOS inverter as closely to X1 pin as possible.
2. Thoroughly evaluate the matching between the µPD70F3003 and high-speed CMOS inverter.
18
Data Sheet U12036EJ3V1DS00
µPD70F3003
DC Characteristics (TA = –40 to +70 °C, VDD = 5.0 V ± 5 %, VSS = 0 V)
Parameter
Symbol
Input voltage, high
VIH
Condition
MAX.
Unit
2.2
VDD + 0.3
V
0.8 VDD
VDD + 0.3
V
Except X1 and Note
–0.5
+0.8
V
Note
–0.5
0.2 VDD
V
Except X1 and Note
Note
Input voltage, low
VIL
MIN.
TYP.
Clock input voltage, high
VXH
X1
0.8 VDD
VDD + 0.5
V
Clock input voltage, low
VXL
X1
–0.5
+0.6
V
Schmitt trigger input threshold voltage VT
+
VT
–
+
Schmitt trigger input hysteresis width
VT – VT
Output voltage, high
VOH
–
Note, rising
3.0
V
Note, falling
2.0
V
Note
0.5
V
IOH = –2.5 mA
0.7 VDD
V
IOH = –100 µA
VDD – 0.5
V
Output voltage, low
VOL
IOC = 2.5 mA
0.45
V
Input leakage current, high
ILIH
VI = VDD
10
µA
Input leakage current, low
ILIL
VI = 0 V
–10
µA
Output leakage current, high
ILOH
VO = VDD
10
µA
Output leakage current, low
ILOL
VO = 0 V
–10
µA
Software pull-up resistor
R
P35/INTP131/SO3,
P36/INTP132/SI3,
P37/INTP133/SCK3
40
90
kΩ
IDD1
Direct mode
2.6 × φ + 7.5
2.9 × φ + 22
mA
PLL mode
2.7 × φ + 9.5
3.0 × φ + 25
mA
Direct mode
1.4 × φ + 7.5
1.5 × φ + 18
mA
PLL mode
1.5 × φ + 9.5
1.6 × φ + 20
mA
Direct mode
18.6 × φ + 100 22 × φ + 200
µA
Supply current
Operating
In HALT mode
In IDLE mode
IDD2
IDD3
15
0.05 × φ + 4
0.1 × φ + 8
mA
–40 °C ≤ TA ≤ +50 °C
2
50
µA
50 °C < TA ≤ 70 °C
2
200
µA
PLL mode
In STOP mode IDD4
Note
P02/TCLR11, P03/TI11, P04/INTP110-P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/INTP121/
SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1,
P32/TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/SCK3, P112/
TCLR14, P113/TI14, P114/INTP140-P117/INTP143, RESET, NMI, MODE
Remarks 1. TYP. value is a value for your reference at TA = 25 °C and VDD = 5.0 V. The supply current does
not include AVREF1-AVREF3 and the current running through the software pull-up resistor.
2. φ : Internal system clock frequency
Data Sheet U12036EJ3V1DS00
19
µPD70F3003
Data Retention Characteristics (TA = –40 to +70 °C)
Parameter
Symbol
Condition
MIN.
Data hold voltage
VDDDR
STOP mode
Data hold current
IDDDR
VDD = VDDDR –40 °C ≤ TA ≤ +50 °C
TYP.
MAX.
Unit
5.5
V
0.2 VDDDR
50
µA
0.2 VDDDR
200
µA
1.5
50 °C < TA ≤ 70 °C
Supply voltage rise time
tRVD
200
µs
Supply voltage fall time
tFVD
200
µs
Supply voltage hold time
(vs. STOP mode setting)
tHVD
0
ms
STOP mode release signal input time
tDREL
0
ns
Data hold input voltage, high
VIHDR
Note
0.9 VDDDR
VDDDR
V
Data hold input voltage, low
VILDR
Note
0
0.1 VDDDR
V
Note
P02/TCLR11, P03/TI11, P04/INTP110-P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/INTP121/
SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, P32/
TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/SCK3, P112/
TCLR14, P113/TI14, P114/INTP140-P117/INTP143, RESET, NMI, MODE, X1
Remark TYP. value is a value for your reference at TA = 25 °C and VDD = 5.0 V.
STOP mode is set (at fifth clock after PSC register has been set).
VDD
VDD
VDD
VDDDR
tHVD
RESET (input)
NMI (input)
(Release by falling edge)
tFVD
tRVD
VIHDR
VIHDR
NMI (input)
(Release by rising edge)
VILDR
20
Data Sheet U12036EJ3V1DS00
tDREL
µPD70F3003
AC Characteristics (TA = –40 to +70 °C, VDD = 5.0 V ± 5 %, VSS = 0 V)
AC test input wave
(a) P02/TCLR11, P03/TI11, P04/INTP110-P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/INTP121/
SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, P32/
TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/SCK3, P112,TCLR14,
P113/TI14, P114/INTP140-P117/INTP143, RESET, NMI, MODE, X1
VDD
0.8 VDD
0.8 VDD
Test point
0V
0.2 VDD
0.2 VDD
(b) Other than (a)
2.4 V
2.2 V
2.2 V
Test point
0.4 V
0.8 V
0.8 V
AC test output test point
2.2 V
2.2 V
Test point
0.8 V
0.8 V
Load condition
DUT
(tested device)
CL = 50 pF
Caution If the load capacitance exceeds 50 pF due to the circuit configuration,
decrease the load capacitance of this device to less then 50 pF by using a buffer.
Data Sheet U12036EJ3V1DS00
21
µPD70F3003
(1) Clock timing
Parameter
X1 input cycle
X1 input width, high
X1 input width, low
X1 input rise time
X1 input fall time
CPU operating frequency
Symbol
<1>
<2>
<3>
<4>
<5>
tCYX
tWXH
tWXL
tXR
tXF
φ
—
Condition
MIN.
MAX.
Unit
Direct mode
20
25
ns
PLL mode (PLL lock status)
200
227
ns
Direct mode
7
ns
PLL mode
80
ns
Direct mode
7
ns
PLL mode
80
ns
Direct mode
7
ns
PLL mode
15
ns
Direct mode
7
ns
PLL mode
15
ns
20
25
MHz
Note
25
MHz
50
ns
Direct mode
PLL mode
CLKOUT output cycle
<6>
tCYK
40
CLKOUT width, high
<7>
tWKH
0.5 T – 5
ns
CLKOUT width, low
<8>
tWKL
0.5 T – 5
ns
CLKOUT rise time
<9>
tXR
5
ns
CLKOUT fall time
<10>
tXF
5
ns
X1 ↓→ CLKOUT delay time
<11>
tDXK
17
ns
Note
Direct mode
3
Self oscillation frequency.
Remark T = tCYK
Parameter
Self oscillation frequency
Symbol
—
φP
Condition
PLL mode
TYP.
Unit
5
MHz
<1>
<2>
<3>
X1 (input)
<4>
<11>
<5>
<6>
<11>
<7>
<8>
CLKOUT (output)
<9>
22
Data Sheet U12036EJ3V1DS00
<10>
µPD70F3003
(2) Input wave
(a) P02/TCLR11, P03/TI11, P04/INTP110-P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/INTP121/
SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, P32/
TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/SCK3, P112/TCLR14,
P113/TI14, P114/INTP140-P117/INTP143, RESET, NMI, MODE
Parameter
Symbol
Condition
MIN.
MAX.
Unit
Input rise time
<12>
tIR2
20
ns
Input fall time
<13>
tIF2
20
ns
VDD
0.8 VDD
0.8 VDD
Input signal
0.2 VDD
0V
0.2 VDD
< 13 >
< 12 >
(b) Other than (a)
Parameter
Symbol
Condition
MIN.
MAX.
Unit
Input rise time
<14>
tIR1
10
ns
Input fall time
<15>
tIF1
10
ns
2.4 V
2.2 V
2.2 V
Input signal
0.4 V
0.8 V
< 15 >
Data Sheet U12036EJ3V1DS00
0.8 V
< 14 >
23
µPD70F3003
(3) Output wave (other than CLKOUT)
Parameter
Symbol
Condition
MIN.
MAX.
Unit
Output rise time
<16>
tOR
12
ns
Output fall time
<17>
tOF
12
ns
2.2 V
2.2 V
Output signal
0.8 V
0.8 V
< 16 >
< 17 >
(4) Reset timing
Parameter
Symbol
RESET width, high
<18>
tWRSH
RESET width, low
<19>
tWRSL
Condition
On power application, or on
releasing STOP
mode
Except on power
application, or
except on releasing STOP mode
MIN.
RESET (input)
24
Data Sheet U12036EJ3V1DS00
Unit
500
ns
500 + TOST
ns
500
ns
Remark TOST: oscillation stabilization time
< 18 >
MAX.
< 19 >
µPD70F3003
(5) Read timing (1/2)
Parameter
MIN.
MAX.
Unit
tDKA
3
20
ns
CLKOUT ↑→ R/W, UBEN, LBEN, delay time <78>
tDKA2
–2
+13
ns
CLKOUT ↑→ address float delay time
<21>
tFKA
3
15
ns
CLKOUT ↓→ ASTB delay time
<22>
tDKST
–2
+13
ns
CLKOUT ↓→ DSTB delay time
<23>
tDKD
–2
+13
ns
Data input setup time (vs. CLKOUT ↑) <24>
tSIDK
7
ns
Data input hold time (vs. CLKOUT ↑)
<25>
tHKID
5
ns
WAIT setup time (vs. CLKOUT ↓)
<26>
tSWTK
8
ns
WAIT hold time (vs. CLKOUT ↓)
<27>
tHKWT
5
ns
Address hold time (vs. CLKOUT ↑) <28>
tHKA
0
ns
Address setup time (vs. ASTB ↓)
<29>
tSAST
0.5 T – 10
ns
Address hold time (vs. ASTB ↓)
<30>
tHSTA
0.5 T – 10
ns
CLKOUT ↑→ address delay time
Symbol
<20>
Condition
DSTB ↓→ address float delay time <31>
tFDA
0
ns
Data input setup time (vs. address)
<32>
tSAID
(2 + n) T – 20
ns
Data input setup time (vs. DSTB ↓)
<33>
tSDID
(1 + n) T – 20
ns
ASTB ↓→ DSTB ↓ delay time
<34>
tDSTD
0.5 T – 10
ns
Data input hold time (vs. DSTB ↑)
<35>
tHDID
0
ns
DSTB ↑→ address output delay time
<36>
tDDA
(1 + i) T – 3
ns
DSTB ↑→ ASTB ↑ delay time
<37>
tDDSTH
0.5 T – 10
ns
DSTB ↑→ ASTB ↓ delay time
<38>
tDDSTL
(1.5 + i) T – 10
ns
DSTB width, low
<39>
tWDL
(1 + n) T – 10
ns
ASTB width, high
<40>
tWSTH
T – 10
ns
WAIT setup time (vs. address)
<41>
tSAWT1
<42>
tSAWT2
<43>
tHAWT1
<44>
tHAWT2
<45>
tSSTWT1
<46>
tSSTWT2
<47>
tHSTWT1
<48>
tHSTWT2
WAIT hold time (vs. address)
WAIT setup time (vs. ASTB ↓)
WAIT hold time (vs. ASTB ↓)
n≥1
n≥1
1.5 T – 20
ns
(1.5 + n) T – 20
ns
(0.5 + n) T
ns
(1.5 + n) T
ns
n≥1
n≥1
T – 15
ns
(1 + n) T – 15
ns
nT
ns
(1 + n) T
ns
Remarks 1. T = tCYK
2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when
the programmable wait state is inserted.
3. i indicates the number of idle states (0 or 1) t be inserted in the read cycle.
4. Be sure to observe at least one of data input hold times tHKID (<25>) and tHDID (<35>).
Data Sheet U12036EJ3V1DS00
25
µPD70F3003
(5) Read Timing (2/2): 1 wait
T1
T2
TW
T3
CLKOUT (output)
< 78 >
< 20 >
< 28 >
A16-A19 (output)
Note
< 32 >
< 21 >
AD0-AD15 (I/O)
< 24 >
A0-A15 (output)
D0-D15 (input)
< 22 >
< 29 >
< 25 >
< 35 >
< 30 >
< 22 >
ASTB (output)
< 40>
< 37 >
< 34 > < 31 >
< 23 >
< 23 >
< 33 >
< 36 >
DSTB (output)
< 38 >
< 39 >
< 45 > < 26 >
< 27 >
< 26 >
< 27 >
< 47 >
< 46 >
< 48 >
WAIT (input)
< 41 >
< 43 >
< 42 >
< 44 >
Note R/W (output), UBEN (output), LBEN (output)
Remark The broken line indicates the high-impedance state.
26
Data Sheet U12036EJ3V1DS00
µPD70F3003
(6) Write timing (1/2)
Parameter
CLKOUT ↑→ address delay time
Symbol
MIN.
MAX.
Unit
tDKA
3
20
ns
CLKOUT ↑→ R/W, UBEN, LBEN delay time <78>
tDKA2
–2
+13
ns
CLKOUT ↓→ ASTB delay time
<22>
tDKST
–2
+13
ns
CLKOUT ↑→ DSTB delay time
<23>
tDKD
–2
+13
ns
WAIT setup time (vs. CLKOUT ↓)
<26>
tSWTK
8
ns
WAIT hold time (vs. CLKOUT ↓)
<27>
tHKWT
5
ns
Address hold time (vs. CLKOUT ↑) <28>
tHKA
0
ns
Address setup time (vs. ASTB ↓)
<29>
tSAST
0.5 T – 10
ns
Address hold time (vs. ASTB ↓)
<30>
tHSTA
0.5 T – 10
ns
ASTB ↓→ DSTB ↓ delay time
<34>
tDSTD
0.5 T – 10
ns
DSTB ↑→ ASTB ↑ delay time
<37>
tDDSTH
0.5 T – 10
ns
DSTB width, low
<39>
tWDL
(1 + n) T – 10
ns
ASTB width, high
<40>
tWSTH
T – 10
ns
WAIT setup time (vs. address)
<41>
tSAWT1
<42>
tSAWT2
<43>
tHAWT1
<44>
tHAWT2
<45>
tSSTWT1
<46>
tSSTWT2
<47>
tHSTWT1
<48>
tHSTWT2
CLKOUT ↑→ data output delay time
<49>
tDKOD
20
ns
DSTB ↓→ data output delay time
<50>
tDDOD
10
ns
Data output hold time (vs. CLKOUT ↑) <51>
tHKOD
0
ns
Data output setup time (vs. DSTB ↑)
<52>
tSODD
(1 + n) T – 15
ns
Data output hold time (vs. DSTB ↑) <53>
tHDOD
T – 10
ns
WAIT hold time (vs. address)
WAIT setup time (vs. ASTB ↓)
WAIT hold time (vs. ASTB ↓)
<20>
Condition
n≥1
n≥1
ns
(1.5 + n) T – 20
ns
(0.5 + n) T
ns
(1.5 + n) T
ns
n≥1
n≥1
1.5 T – 20
T – 15
ns
(1 + n) T – 15
ns
nT
ns
(1 + n) T
ns
Remarks 1. T = tCYK
2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when
the programmable wait state is inserted.
Data Sheet U12036EJ3V1DS00
27
µPD70F3003
(6) Write timing (2/2): 1 wait
T1
T2
TW
T3
CLKOUT (output)
< 78 >
< 20 >
< 28 >
A16-A19 (output)
Note
< 49 >
AD0-AD15 (I/O)
< 51 >
A0-A15 (output)
D0-D15 (output)
< 22 >
< 29 >
< 30 >
< 22 >
ASTB (output)
< 23 >
< 23 >
< 40 >
< 34 > < 50 >
< 53 >
< 52 >
DSTB (output)
< 39 >
< 45 > < 26 >
< 27 >
< 26 >
< 27 >
< 47 >
< 46 >
< 48 >
WAIT (input)
< 41 >
< 43 >
< 42 >
< 44 >
Note R/W (output), UBEN (output), LBEN (output)
Remark The broken line indicates the high-impedance state.
28
Data Sheet U12036EJ3V1DS00
< 37 >
µPD70F3003
(7) Bus hold timing (1/2)
Parameter
HLDRQ setup time (vs. CLKOUT ↓)
Symbol
Condition
MIN.
MAX.
Unit
<54>
tSHOK
8
ns
HLDRQ hold time (vs. CLKOUT ↓) <55>
tHKHQ
5
ns
CLKOUT ↑→ HLDAK delay time
<56>
tDKHA
HLDRQ width, high
<57>
tWHQH
T + 10
ns
HLDAK width, low
<58>
tWHAL
T – 10
ns
CLKOUT↑ → Bus float delay time
<59>
tDKF
HLDAK ↑→ bus output delay time
<60>
tDHAC
HLDRQ ↓→ HLDAK ↓ delay time
<61>
tDHQHA1
HLDRQ ↑→ HLDAK ↑ delay time
<62>
tDHQHA2
20
20
–3
0.5 T
ns
ns
ns
(2 n + 7.5) T + 20
ns
1.5 T + 20
ns
Remarks 1. T = tCYK
2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when
the programmable wait state is inserted.
Data Sheet U12036EJ3V1DS00
29
µPD70F3003
(7) Bus hold timing (2/2)
TH
TH
TH
TH
TI
CLKOUT (output)
< 54 >
< 54 > < 55 >
< 57 >
HLDRQ (input)
< 56 >
< 56 >
< 61 >
< 62 >
HLDAK (output)
< 58 >
< 60 >
< 59 >
A16-A19 (output)
Note
AD0-AD15 (I/O)
D0-D15
(input or output)
ASTB (output)
DSTB (output)
R/W (output)
Note UBEN (output), LBEN (output)
Remark The broken line indicates the high-impedance state.
30
Data Sheet U12036EJ3V1DS00
µPD70F3003
(8) Interrupt timing
Parameter
Symbol
Condition
MIN.
MAX.
Unit
NMI width, high
<63>
tWNIH
500
ns
NMI width, low
<64>
tWNIL
500
ns
INTPn width, high
<65>
tWITH
n = 110-113,
120-123,
130-133,
140-143
3 T + 10
ns
INTPn width, low
<66>
tWITL
n = 110-113,
120-123,
130-133,
140-143
3 T + 10
ns
Remark T = tCYK
< 63 >
< 64 >
< 65 >
< 66>
NMI (input)
INTPn (input)
Remark n = 110-113, 120-123, 130-133, 140-143
Data Sheet U12036EJ3V1DS00
31
µPD70F3003
(9) CSI timing (1/2)
(a) Master mode
(i)
CSI0-CSI2 timing
Parameter
Symbol
Condition
MIN.
MAX.
Unit
SCKn cycle
<67>
tCYSK1
Output
160
ns
SCKn width, high
<68>
tWSKH1
Output
0.5 tCYSK1 – 20
ns
SCKn width, low
<69>
tWSKL1
Output
0.5 tCYSK1 – 20
ns
SIn setup time (vs. SCKn ↑)
<70>
tSSISK1
50
ns
SIn hold time (vs. SCKn ↑)
<71>
tHSKSI1
0
ns
SOn output delay time (vs. SCKn ↓)
<72>
tDSKSO1
SOn output hold time (vs. SCKn ↑) <73>
tHSKSO1
18
0.5 tCYSK1 – 5
ns
ns
Remark n = 0-2
(ii) CSI3 timing
Parameter
SCK3 cycle
Symbol
<67>
SCK3 width, high
<68>
tCYSK3
Condition
Output
tWSKH3
Output
Output
MIN.
RL = 1.5
kΩ
CL = 50
pF
MAX.
Unit
500
ns
0.5 tCYSK3 – 150
ns
SCK3 width, low
<69>
tWSKL3
0.5 tCYSK3 – 70
ns
SI3 setup time (vs. SCK3 ↑)
<70>
tSSISK3
100
ns
SI3 hold time (vs. SCK3 ↑)
<71>
tHSKSI3
50
ns
SO3 output delay time (vs. SCK3 ↓)
<72>
tDSKSO3
SO3 output hold time (vs. SCK3 ↑) <73>
tHSKSO3
RL = 1.5 KΩ
CL = 50 pF
150
tWSKH3
ns
ns
Remark R L and C L are the load resistance and load capacitance respectively of the SCK3 and SO3 output
lines.
(b) Slave mode
(i)
CSI0-CSI2 timing
Parameter
Symbol
Condition
MIN.
MAX.
Unit
SCKn cycle
<67>
tCYSK2
Input
160
ns
SCKn width, high
<68>
tWSKH2
Input
50
ns
SCKn width, low
<69>
tWSKL2
Input
50
ns
SIn setup time (vs. SCKn ↑)
<70>
tSSISK2
10
ns
SIn hold time (vs. SCKn ↑)
<71>
tHSKSI2
10
ns
SOn output delay time (vs. SCKn ↓)
<72>
tDSKSO2
SOn output hold time (vs. SCKn ↑) <73>
tHSKSO2
Remark n = 0-2
32
Data Sheet U12036EJ3V1DS00
45
tWSKH2
ns
ns
µPD70F3003
(9) CSI timing (2/2)
(ii) CSI3 timing
Parameter
Symbol
Condition
MIN.
MAX.
Unit
SCK3 cycle
<67>
tCYSK4
Input
500
ns
SCK3 width, high
<68>
tWSKH4
Input
100
ns
SCK3 width, low
<69>
tWSKL4
Input
180
ns
SI3 setup time (vs. SCK3 ↑)
<70>
tSSISK4
100
ns
SI3 hold time (vs. SCK3 ↑)
<71>
tHSKSI4
50
ns
SO3 output delay time (vs. SCK3 ↓)
<72>
tDSKSO4
RL = 1.5 kΩ
SO3 output hold time (vs. SCK3 ↑) <73>
tHSKSO4
CL = 50 pF
150
tWSKH4
ns
ns
Remark R L and C L are the load resistance and load capacitance respectively of the SCK3 and SO3 output
lines.
< 67 >
< 69 >
< 68 >
SCKn (I/O)
< 70 >
SIn (input)
< 71 >
Input data
< 72 >
< 73 >
SOn (output)
Output data
Remark 1. The broken line indicates the high-impedance state.
2. n = 0-3
Data Sheet U12036EJ3V1DS00
33
µPD70F3003
(10) RPU timing
Parameter
Symbol
Condition
MIN.
MAX.
Unit
TI1n width, high
<74>
tWTIH
3 T + 10
ns
TI1n width, low
<75>
tWTIL
3 T + 10
ns
TCLR1n width, high
<76>
tWTCH
3 T + 10
ns
TCLR1n width, low
<77>
tWTCL
3 T + 10
ns
Remark T = tCYK
<74>
<75>
<76>
<77>
TI1n (input)
TCLR1n (input)
Remark n = 1-4
34
Data Sheet U12036EJ3V1DS00
µPD70F3003
A/D Converter Characteristics (TA = –40 to +70 °C, VDD = AVDD = 5 V ±5 %, VSS = VSS = 0 V)
Parameter
Resolution
Overall error
Symbol
Conditions
—
Note 1
Quantize error
TYP.
Sampling time
Zero-scale error
Note 1
Note 1
Non-linear error
Note 1
Analog input
voltageNote 2
MAX.
10
Unit
bit
—
4.5 V ≤ AVREF1 ≤ AVDD
±0.55
%FSR
—
3.5 V ≤ AVREF1 ≤ AVDD
±0.7
%FSR
±1/2
LSB
—
Conversion time
Full-scale error
MIN.
4.5 V ≤ AVREF1 ≤ AVDD
48
tCYK
3.5 V ≤ AVREF1 ≤ AVDD
48
tCYK
tSAMP
4.5 V ≤ AVREF1 ≤ AVDD
8
tCYK
—
3.5 V ≤ AVREF1 ≤ AVDD
8
tCYK
—
4.5 V ≤ AVREF1 ≤ AVDD
±3.0
±4.5
LSB
—
3.5 V ≤ AVREF1 ≤ AVDD
±3.0
±5.5
LSB
—
4.5 V ≤ AVREF1 ≤ AVDD
±1.5
±2.5
LSB
—
3.5 V ≤ AVREF1 ≤ AVDD
±1.5
±4.5
LSB
—
4.5 V ≤ AVREF1 ≤ AVDD
±1.5
±3.5
LSB
—
3.5 V ≤ AVREF1 ≤ AVDD
±1.5
±4.5
LSB
tCONV
VIAN
–0.3
AVDD
+0.3
V
Reference voltage
AVREF1
3.5
AVDD
V
AVREF1 current
AIREF1
1.2
3.0
mA
AIDD
2.3
6.0
mA
AVDD supply current
Notes 1. Except quantize error
2. The conversion result is 000H when VIAN = 0.
Converted with 10-bit resolution when 0 < VIAN < AVREF1.
The conversion result is 3FFH when AVREF1 ≤ VIAN ≤ AVDD.
Data Sheet U12036EJ3V1DS00
35
µPD70F3003
D/A Converter Characteristics (TA = –40 to + 70 °C, VDD = AVDD = 5 V ±5 %, VSS = AVSS = 0 V)
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
8
bit
Resolution
—
Overall error
—
Load conditions: 2 MΩ, 30 pF
AVREF2 = VDD
AVREF3 = 0
0.8
%
—
Load conditions: 2 MΩ, 30 pF
AVREF2 = 0.75 VDD
AVREF3 = 0.25 VDD
1.0
%
—
Load conditions: 4 MΩ, 30 pF
AVREF2 = VDD
AVREF3 = 0
0.6
%
—
Load conditions: 4 MΩ, 30 pF
AVREF2 = 0.75 VDD
AVREF3 = 0.25 VDD
0.8
%
—
Load conditions: 2 MΩ, 30 pF
10
µs
Settling time
Output resistance
RO
AVREF2 input voltage
AVREF2
0.75 VDD
VDD
V
AVREF3 input voltage
AVREF3
0
0.25 VDD
V
AVREF2-AVREF3
resistance value
RAIREF
36
10
DACS0, DACS1 = 55H
2
Data Sheet U12036EJ3V1DS00
5
kΩ
kΩ
µPD70F3003
4.2 Flash Memory Programming Mode
Basic Characteristics (TA = 10 to 40 °C (When overwritten), TA = –40 to +70 °C (When not overwritten), VDD
= 5 V ±5 %, VSS = 0 V, VPP = 10 V ± 0.3 V)
Parameter
Symbol
Operating frequency
fX
Supply voltage
VDD
Conditions
MIN.
TYP.
MAX.
Unit
20
25
MHz
4.75
5.25
V
VPPL
VPP low level detection
–0.5
0.2 VDD
V
VPPM
VPP, VDD level detection
0.8 VDD
1.2 VDD
V
VPPH
VPP high voltage detection
9.7
10.3
V
3.0 × φ + 25
mA
100
mA
5
times
VDD supply current
IDO
VPP supply current
IPP
Number of rewrite
CWRT
Write time
tWRT
Note 1
200
500
µs
Erasure time
tERASE
Note 2
20
40
s
VPP = 10 V
Notes 1. When retried 10 times with 50 µs write time.
2. When retried 20 times with 2 s erasure time.
Remark φ: Internal system clock frequency.
Data Sheet U12036EJ3V1DS00
37
µPD70F3003
Serial Write Operation Characteristics
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
VDD ↑→ RESET ↑ setup time
<101>
tDRRR
10
ms
VPP ↑→ RESET ↑ setup time
<102>
tPSRR
1.0
µs
RESET ↑→ VPP count start time
<103>
tRRCF
5T + 500
ns
Count end time
<104>
tCOUNT
VPP counter width, high
<105>
tCH
1.0
µs
VPP counter width, low
<106>
tCL
1.0
µs
Remark
10
T = t CYK
VDD
VDD
<104>
0V
<103>
<105>
VPPH
VPP
VPPM
<106>
VPPL
VDD
<102>
RESET (input)
0V
<101>
38
Data Sheet U12036EJ3V1DS00
ms
µPD70F3003
5. PACKAGE DRAWING
100 PIN PLASTIC QFP (FINE PITCH) ( 14)
A
B
75
76
51
50
detail of lead end
S
C D
R
Q
26
25
100
1
F
G
H
I
J
M
K
P
N
S
L
S
M
NOTE
1. Controlling dimension
ITEM
millimeter.
2. Each lead centerline is located within 0.10 mm (0.004 inch) of
its true position (T.P.) at maximum material condition.
MILLIMETERS
INCHES
A
16.0±0.2
B
14.0±0.2
0.630±0.008
0.551 +0.009
–0.008
C
14.0±0.2
0.551 +0.009
–0.008
D
16.0±0.2
0.630±0.008
F
G
1.0
1.0
0.039
0.039
H
0.22 +0.05
–0.04
0.009±0.002
I
0.10
0.004
J
0.5 (T.P.)
0.020 (T.P.)
K
1.0±0.2
0.039 +0.009
–0.008
L
0.5±0.2
0.020 +0.008
–0.009
M
0.17 +0.03
–0.07
0.007 +0.001
–0.003
N
0.10
0.004
P
1.45±0.05
0.057 +0.003
–0.002
Q
0.125±0.075
0.005±0.003
R
S
5°±5°
1.7 MAX.
5°±5°
0.067 MAX.
P100GC-50-7EA-3
Data Sheet U12036EJ3V1DS00
39
µPD70F3003
6. RECOMMENDED SOLDERING CONDITIONS
Solder this product under the following recommended conditions.
For details of the recommended soldering conditions, refer to information document Semiconductor Device
Mounting Technology Manual (C10535E).
For soldering methods and conditions other than those recommended, consult NEC.
Table 6-1. Soldering Conditions of Surface Mount Type
Soldering Method(s)
Soldering Conditions
Recommended
Conditions Symbol
Infrared reflow
Package peak temperature: 235 °C, Time: 30 secs. max. (210 °C min.),
Number of times: twice max., Number of days: 7Note (after that,
prebaking is necessary at 125 °C for 10 hours)
<Precaution>
Products other than in heat-resistance trays (such as those packaged
in a magazine, taping, or non-heat-resistance tray) cannot be baked
while they are in their package.
IR35-107-2
VPS
Package peak temperature: 215 °C, Time: 40 secs. max. (200 °C min.),
Number of times: twice max., Number of days: 7Note (after that,
prebaking is necessary at 125 °C for 10 hours)
<Precaution>
Products other than in heat-resistance trays (such as those packaged
in a magazine, taping, or non-heat-resistance tray) cannot be baked
while they are in their package.
VP15-107-2
Partial pin heating
Pin temperature: 300 °C max., Time: 3 seconds max. (per device side)
—
Note
Number of days in storage after the dry pack has been opened. The storage conditions are at 25 °C, 65%
RH MAX.
Caution
40
Do not use two or more soldering methods in combination. (except partial heating).
Data Sheet U12036EJ3V1DS00
µPD70F3003
[MEMO]
Data Sheet U12036EJ3V1DS00
41
µPD70F3003
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note: Strong electric field, when exposed to a MOS device, can cause destruction
of the gate oxide and ultimately degrade the device operation. Steps must
be taken to stop generation of static electricity as much as possible, and
quickly dissipate it once, when it has occurred. Environmental control must
be adequate. When it is dry, humidifier should be used. It is recommended
to avoid using insulators that easily build static electricity. Semiconductor
devices must be stored and transported in an anti-static container, static
shielding bag or conductive material.
All test and measurement tools
including work bench and floor should be grounded. The operator should
be grounded using wrist strap. Semiconductor devices must not be touched
with bare hands. Similar precautions need to be taken for PW boards with
semiconductor devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS
Note: No connection for CMOS device inputs can be cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input
level may be generated due to noise, etc., hence causing malfunction. CMOS
device behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using a pull-up or pull-down
circuitry.
Each unused pin should be connected to VDD or GND with a
resistor, if it is considered to have a possibility of being an output pin. All
handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device.
Immediately after the power source is turned ON, the devices with reset
function have not yet been initialized. Hence, power-on does not guarantee
out-pin levels, I/O settings or contents of registers. Device is not initialized
until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.
42
Data Sheet U12036EJ3V1DS00
µPD70F3003
Regional Information
Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:
• Device availability
• Ordering information
• Product release schedule
• Availability of related technical literature
• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)
• Network requirements
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.
NEC Electronics Inc. (U.S.)
NEC Electronics (Germany) GmbH
NEC Electronics Hong Kong Ltd.
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics (France) S.A.
NEC Electronics Singapore Pte. Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Italiana s.r.l.
NEC Electronics (Germany) GmbH
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388
NEC Electronics (France) S.A.
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490
NEC Electronics (UK) Ltd.
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829
J99.1
Data Sheet U12036EJ3V1DS00
43
µPD70F3003
Related document
: µ PD703003 Data Sheet (U12261E)
µ PD703003A, 703004A, 703025A Data Sheet (U13188J) (Japanese version)
µ PD70F3003A, 70F3025A Data Sheet (U13189E)
V850 Family Instruction Table (U10229E)
Reference document : Concept of Electrical Characteristics - Microcomputers (IEI-601) (Japanese version)
Some of the related documents are preliminary editions but are not so specified here.
V850 Family and V853 are trademarks of NEC Corporation.
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program“ for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98.8