ETC TMP90PH44N

TOSHIBA
TLCS-90 Series
TMP90PH44
CMOS 8–Bit Microcontrollers
The function of this device is exactly the same as the
TMP90C844 by programming to the internal PROM.
The different points between TMP90PH44 and
TMP90C844 are the memory size (ROM/RAM).
The TMP90PH44N is in a Shrink Dual Inline Package.
(SDIP64-P-750)
The TMP90PH44F is in a Quad Flat Package.
(QFP64-P-1420A)
The following are the memory map of TMP90PH44 and
TMP90C844.
TMP90PH44N/TMP90PH44F
1. Outline and Characteristics
The TMP90PH44 is a system evaluation LSI having a built-in
One-Time PROM for (16K byte) for TMP90C844.
A programming and verification for the internal PROM is
achieved by using a general EPROM programmer with an
adapter socket.
Figure 1.1. TMP90PH44
Parts No.
TMP90PH44N
TMP90PH44F
ROM
OTP
16384 x 8bit
Figure 1.2. TMP90C844
RAM
Package
Adapter Socket
No.
64-SDIP
BM1148
(Under Development)
64-QFP
BM1149
(Under Development)
512 x 8bit
The information contained here is subject to change without notice.
The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties
which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic
equipments (office equipment, communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types
of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.
TOSHIBA CORPORATION
1/20
TMP90PH44
Figure 1. 3. TMP90PH44 Block Diagram
2/20
TOSHIBA CORPORATION
TMP90PH44
2. Pin Assignment and Functions
The TMP90PH44 pin assignment input/output pins name and
functions are shown below.
2.1 Pin Assignment Diagram
The TMP90PH44N pin assignment are shown in Figure 2.1 (1).
Figure 2.1 (1). Pin Assignment (Shrink DIP)
TOSHIBA CORPORATION
3/20
TMP90PH44
The TMP90PH44F pin assignment are shown in Figure 2.1 (2).
Figure 2.1 (2). Pin Assignment (Flat Package)
4/20
TOSHIBA CORPORATION
TMP90PH44
2.2 Pin Names and Functions
The TMP90PH44 has MCU mode and PROM mode.
(1)
MCU Mode (The TMP90C844 and the TMP90PH44
are pin compatible).
Table 2.2 Pin Names and Functions (1/2)
Pin Name
No. of pins
P00 ~ P07
/AD0 ~ AD7
8
P10 ~ P17
/A8 ~ A15
8
P20 ~ P27
8
I/O or tristate
I/O
/Tristate
I/O
Output
(8)
/WAIT
(1)
Address/Data bus: Operates as an 8-bit bidirectional address bus or data bus when using external memory
Port 1: An 8-bit I/O port. Each bit can be set for input or output.
Address bus:Operates as an address bus (upper 8 bits) when using external memory.
Slave bus: When used a s a slave processor,
operates as the slave bue for the transfer data to and from the master processor.
/Input
Wait: Used as an input pin when memory or perpheral LSIs with slow access times are controlled.
Port 3: 8-bit I/O port which allows I/O selection on bit basis (with programmable pull-up resistor).
P30 ~ P37
8
I/O
/SWR
(1)
/Input
/SRD
Port 0: An 8-bit I/O port. Each bit can be set for input or output.
Port 2: An 8-bit I/O port. Each bit can be set for input or output.
I/O
/SB0 ~ SB7
Function
Slave write: The strobe signal input to write data from the master processor.
Slave read: The strobe signal used by the master processor to read data.
(1)
/Input
/SCS
(1)
/Input
Slave chip select: The chip select signal input from the master processor.
Command/data: The command/data select signal input from the master processor.
C/D
(1)
Input
/STA
(1)
/Output
RxD
(1)
Input
/SCLK
(1)
/I/O
/TxD
(1)
/Output
Status output: Used to report the slave bus status to the master processor.
Serial receive data
Serial clock
Serial transmit data
P40 ~ P47
8
I/O
Port 4: 8-bit I/O port which allows I/O section on bit basis (with programmable pull-up resistor).
/TO1, 3, 4, 5
(4)
/Output
Timer outputs 1, 3, 4, and 5: Output for timer 0, or timer 1, timer 2, timer 3 and timer 4 (2 lines).
/TI0, 2, 4, 5
(4)
/Input
Timer inputs 0, 2, 4, and 5: Input for timer 0, or timer 1, timer 2 and timer 4 (2 lines).
/INT0
(1)
/Input
Interrupt request terminal 0: Interrupt request pin 0: Level/rise edge programmable interrupt request pin
/INT1
(1)
/Input
Interrupt request terminal 1: Interrupt request pin 1: Rise/fall edge programmable interrupt request pin.
INT2
(1)
/Input
P50 ~ P53
/AN0 ~ AN3
4
Input
P56
/RD
1
Output
TOSHIBA CORPORATION
Interrupt request terminal 2: Interrupt request pin 2: Rise edge interrupt request pin.
Port 50 ~ 53: 1-bit output ports.
Analog input: 4 analog inputs to A/D converter.
Port 56: A 1-bit output port.
Read: Strobe signal output for reading external memory.
5/20
TMP90PH44
Table 2.2 Pin Names and Functions (2/2)
(2)
Pin name
No. of pins
I/O or tristate
P57
/WR
1
Output
P60 ~ P63
/M00 ~
M03
4
I/0
/Output
P70 ~ P73
/M10 ~
M13
4
I/O
Output
Function
Port 57: A 1-bit output port.
Write: Strobe signal output for writing external memory.
Port 6: 4-bit I/O port which allows I/O selection on bit basis.
Stepping motor control port 0 or pattern generation port 0.
Port 7: 4-bit I/O port which allows I/O selection on bit basis.
Stepping motor control port 0 or pattern generation port 1.
ALE
1
Output
Address latch enable
CLK
1
Output
Clock output: Generates clock pulse at 1/4 frequency of clock oscillation. It is pulled up internally during resetting.
EA
1
Input
External access: Connects with VCC pin in the TMP90PH44 built ROM is used.
Reset: Initializes the TMP90PH44.
(pull-up resistance is built-in).
RESET
1
Input
X1, X2
2
I/O
Crystal oscillator connection pin
VREF
1
–
Input of reference voltage to A/D converter
AGND
1
–
GND pin for A/D converter
VCC
1
–
Power supply (+5V +/- 10%)
GND
1
–
GND pin (0V)
PROM Mode
Table 2.3
Pin Function
Name
No. of
pins
I/O
A7 ~ A0
8
Input
A13 ~ A8
6
Input
2
Input
D7 ~ D0
8
I/0
OE
1
Input
Output Enable Input
P26
CE
1
Input
Chip Enable Input
P27
VPP
1
Power
Supply
12.5V/5V (Programming Power Supply)
EA
VCC
1
Power Supply
5V
VCC
VSS
1
Power Supply
0V
VSS
Pin Name
No. of pins
I/O
P20 ~ P27
8
Input
Be fixed to “L” level.
P40 ~ P44
5
Input
Be fixed to “L or H” level.
P45, P46
2
Input
Be fixed to “H” level.
P47
1
Input
Be fixed to “L or H” level.
P50 ~ P53
P30 ~ P37
4
8
Input
Be fixed to “L or H” level.
A14
A15
6/20
Function
Program Memory Address Input
Pin Name
(MCU mode)
P73 ~ P70
P63 ~ P60
P15 ~ P10
P16
Be fixed to “L” level ,
P17
Data Input/Output
P07 ~ P00
Pin Setting
VREF
1
–
Be fixed to “L” level.
AGND
1
–
Be fixed to “L” level.
RESET
1
Input
Be fixed to “L” level.
CLK
1
Input
Be fixed to “L” level.
ALE
1
Output
Open
X1
1
Input
X2
1
Output
Resonator connection pin
TOSHIBA CORPORATION
TMP90PH44
3. Operation
The TMP90PH44 is the OTP version of the TMP90C844 that
is replaced an internal ROM from Mask ROM to EPROM.
The function of TMP90PH44 is exactly the same as that
of TMP90C844 except the internal ROM/RAM size.
Refer to the TMP90C844 except the functions which are
not described this section.
The following is an explanation of the hardware configuration
and operation in the relation to the TMP90PH44.
The TMP90PH44 has an MCU mode and a PROM mode.
3.1 MCU Mode
(1)
Mode Setting and Function
The MCU mode is set by opening the CLK pin (Output
status).
In the MCU mode, the operation is the same as that of
TMP90C844.
(2)
Memory Map
Figure 1.1 and Figure 1.2 show the memory map of
TMP90PH44 and TMP90C844.
Figure 3.1 shows the memory map of TMP90PH44,
and the accessing area by the respective addressing
mode.
Figure 3.1. TMP90PH44 Memory Map
3.2 PROM Mode
(1)
Mode Setting and Function
PROM mode is set by setting the RESET and CLK
pins to the “L” level.
TOSHIBA CORPORATION
The programming and verification for the internal
PROM is achieved by using a general EPROM programmer
with the adaptor socket. The device selection (ROM
Type) should be “27256” with following conditions.
size: 256K-bit (32K x 8-bit) VPP: 12.5V TPW: 1msec
Figure 3.2 shows the setting of pins in PROM mode.
7/20
TMP90PH44
Figure 3.2. PROM Mode Pin Setting
(2)
Programming Flow Chart
The programming mode is set by applying 12.5V
(programming voltage) to the VPP pin when the following
pins are set as follows,
(Vcc : 6.0V)
*These conditions can be
(RESET): “L” level) obtained by using adaptor
(CLK) : “L” level) socket.
After the address and data have been fixed, a data on
the Data Bus is programmed when the CE pin is set to
“Low” (1ms plus is required).
General programming procedure of an EPROM
programmer is as follows,
8/20
• Write a data to a specified address for 1ms.
• Verify the data. If the read-out data does not match
the expected data, another writing is performed until
the correct data is written (Max. 25 times).
After the correct data is written, an additional writing is
performed by using three times longer programming
pulse width (1ms x programming times), or using three
times more programming pulse number. Then, verify
the data and increment the address.
The verification for all data is done under the condition
of Vpp = Vcc = 5V after all data were written.
Figure 3.3 shows the programming flow chart.
TOSHIBA CORPORATION
TMP90PH44
Figure 3.3. Flow Chart
TOSHIBA CORPORATION
9/20
TMP90PH44
4. Electrical Characteristics (Preliminary)
TMP90PH44N/TMP90PH44F
4.1 Absolute Maximum Ratings
Symbol
Parameter
VCC
Power supply voltage
VIN
Input voltage
Unit
-0.5 ~ + 7
V
-0.5 ~ VCC + 0.5
V
F 500
Power dissipation (Ta = 85°C)
PD
Rating
mW
N 600
260
°C
TSTG
Storage temperature
-65 ~ 150
°C
TOPR
Operating temperature
-40 ~ 85
°C
TSOLDER
Soldering temperature (10s)
4.2 DC Characteristics
VCC = 5V ± 10% TA = -20 ~ 70°C (1 ~ 16MHz)
Typical values are for TA = 25°C and Vcc = 5V.
Symbol
Parameter
Min
Max
Unit
Test Conditions
VIL
Input Low Voltage (P0)
-0.3
0.8
V
–
VIL1
P1, P2, P3, P4, P5, P6, P7
-0.3
0.3VCC
V
–
VIL2
RESET, P45 (INTO)
-0.3
0.25VCC
V
–
VIL3
EA
-0.3
0.3
V
–
VIL4
X1
-0.3
0.2VCC
V
–
VIH
Input High Voltage (P0)
2.2
VCC + 0.3
V
–
VIH1
P1, P2, P3, P4, P5, P6, P7
0.7VCC
VCC + 0.3
V
–
VIH2
RESET, P45 (INT0)
0.75VCC
VCC + 0.3
V
–
VIH3
EA
VCC - 0.3
VCC + 0.3
V
–
VIH4
X1
0.8VCC
VCC + 0.3
V
VOL
Output Low Voltage
–
0.45
V
IOL = 1.6mA
VOH
VOH1
VOH2
Output High Voltage
2.4
0.75VCC
0.9VCC
–
V
V
V
IOH = -400µA
IOH = -100µA
IOH = -20µA
IDAR
Darlington Drive Current
(8 I/O pins) (Note)
-1.0
-3.5
mA
VEXT = 1.5V
REXT = 1.1kΩ
–
ILI
Input Leakage Current
0.02 (Typ)
±5
µA
0.0 ≤ Vin ≤ VCC
ILO
Output Leakage Current
0.05 (Typ)
± 10
µA
0.2 ≤ Vin ≤ VCC - 0.2
Operating Current (RUN)
Idle 1
35 (Typ)
1.5 (Typ)
50
5
mA
mA
tosc = 16MHz
STOP (TA = -20 ~ 70°C)
STOP (TA = 0 ~ 50°C)
0.2 (Typ)
40
10
µA
µA
0.2 ≤ Vin ≤ VCC - 0.2
VSTOP
Power Down Voltage (@STOP)
2.0
6.0
V
VIL2 = 0.2VCC,
VIH2 = 0.8VCC
RRST
RESET Pull Up Register
50
150
KΩ
CIO
Pin Capacitance
–
10
pF
VTH
Schmitt width RESET, P45)
0.4
1.0 (Typ)
V
ICC
10/20
–
testfreq = 1MHz
–
TOSHIBA CORPORATION
TMP90PH44
4.3 AC Characteristics
VCC = 5V ± 10% TA = -20 ~ 70°C (1 ~ 16MHz)
Variable
Symbol
12.5MHz Clock
16MHz Clock
Parameter
Unit
Min
Max
Min
Max
Min
Max
80
1000
80
–
62.5
–
ns
4x
4x
320
–
250
–
ns
2x - 40
–
120
–
85
–
ns
tOSC
Oscillation cycle ( = x)
tCYC
CLK Period
tWH
CLK High width
tWL
CLK Low width
2x - 40
–
120
–
85
–
ns
tAL
A0 ~ 7 effective address→ALE fall
0.5x - 15
–
25
–
16
–
ns
tLA
ALE fall →A0 ~ 7 hold
0.5x - 15
–
25
–
16
–
ns
tLL
ALE Pulse width
x - 40
–
40
–
23
–
ns
tLC
ALE fall RD/WR fall
0.5x - 30
–
10
–
1
–
ns
tCL
RD/WR →ALE rise
0.5x - 20
–
20
–
11
–
ns
tACL
A0 ~ 7 effective address →RD/WR fall
x - 25
–
55
–
38
–
ns
tACH
Upper effective address →RD/WR fall
1.5x - 50
–
70
–
44
–
ns
0.5x - 20
–
20
–
11
–
ns
–
3.0x - 35
–
205
–
153
ns
tCA
RD/WR fall →Upper address hold
tADL
A0 ~ 7 effective address →Effective data input
tADH
Upper effective address →Effective data input
–
3.5x - 55
–
225
164
164
ns
tRD
RD fall →Effective data input
–
2.0x - 50
–
110
–
75
ns
tRR
RD Pulse width
2.0x - 40
–
120
–
85
–
ns
0
–
0
–
0
–
ns
x - 15
–
65
–
48
–
ns
tHR
RD rise →Data hold
tRAE
RD rise→ Address enable
tWW
WR pulse width
2.0x - 40
–
120
–
85
–
ns
tDW
Effective data→WR rise
2.0x - 50
–
110
–
75
–
ns
tWD
WR rise→Effective data hold
0.5x - 10
–
30
–
21
–
ns
tACKH
Upper address→CLK fall
2.5x - 50
–
150
–
106
–
ns
tACKL
Lower address →CLK fall
2.0x - 50
–
110
–
75
–
ns
tCKHA
CLK fall→Upper address hold
1.5x - 80
–
40
–
13
–
ns
tCCK
RD/WR→CLK fall
x - 25
–
55
–
37
–
ns
tCKHC
CLK fall→RD/WR rise
x - 60
–
20
–
2
–
ns
tDCK
Valid data CLK fall
x - 50
–
30
–
12
–
ns
tCWA
RD/WR fall→Valid WAIT
–
x - 40
–
40
–
22
ns
4.4 A/D Conversion Characteristics
VCC = 5V ± 10% TA = -020 ~ 70°C
f = 1 ~ 16MHz
Symbol
Parameter
Condition
Min
Max
VREF
Analog reference voltage
Vcc - 1.5
Vcc
Vcc
AGND
Analog reference voltage
Vss
Vss
Vss
VAIN
Analog input voltage range
Vss
–
Vcc
IREF
Supply current for analog reference voltage
–
0.5
1.0
Total error
(TA = 25°C, Vcc = VREF = 5.0V)
–
–
1.0
Total error
–
–
2.5
Error
(Quantize
error of ± 0.5
LSB not
included)
Unit
V
mA
LSB
TOSHIBA CORPORATION
11/20
TMP90PH44
4.5 Zero-Cross Characteristics
VCC = 5V ± 10% TA = -20 ~ 70°C
f = 1 ~ 16MHz
Symbol
Parameter
VZX
Zero-cross detection input
AZX
Zero-cross accuracy
FZX
Zero-cross detection input frequency
Condition
Min
Max
Unit
AC coupling C = 0.1µF
1
1.8
VAC P - P
50/60Hz sine wave
–
135
mV
–
0.04
1
kHz
4.6 Timer/ Counter Input Clock (TI0, TI2, and TI4)
VCC = 5V ± 10% TA = -20 ~ 70°C
f = 1 ~ 16MHz
Variable
Symbol
12.5MHz Clock
16MHz Clock
Parameter
Unit
Min
Max
Min
Max
Min
Max
tVCK
Clock cycle
8x + 100
–
740
–
600
–
ns
tVCKL
Low clock pulse width
4x + 40
–
360
–
290
–
ns
tVCKH
High clock pulse width
4x + 40
–
360
–
290
–
ns
4.7 Interrupt Operation
VCC = 5V ± 10% TA = -20 ~ 70°C
f = 1 ~ 16MHz
Variable
Symbol
12.5MHz Clock
16MHz Clock
Parameter
Unit
Min
Max
Min
Max
Min
Max
4x
–
320
–
250
–
ns
4x
–
320
–
250
–
ns
8x + 100
–
740
–
600
–
ns
8x + 100
–
740
–
600
–
ns
INT0 Low level pulse width
tINTAL
tINTAH
INT0 High level pulse width
INT1, INT2 Low level pulse width
tINTBL
INT1, INT2 High level pulse width
tINTBH
4.8 Serial Channel Timing-I/O Interface Mode
(1) SCLK Input Mode
VCC = 5V ± 10% TA = -20 ~ 70°C
f = 1 ~ 16MHz
Variable
Symbol
12.5MHz Clock
16MHz Clock
Parameter
tSCY
SCLK cycle
Unit
Min
Max
Min
Max
Min
Max
16x
–
1.28
–
1
–
µs
ns
tOSS
Output Data →rising edge of SCLK
tSCY /2 - 5x - 50
–
190
–
137
–
tOHS
SCLK rising edge→output data hold
5x -100
–
300
–
212
–
ns
tHSR
SCLK rising edge→input data hold
0
–
0
–
0
–
ns
tSRD
SCLK rising edge→ effective data input
–
tSCY - 5x - 50
–
780
–
587
ns
12/20
TOSHIBA CORPORATION
TMP90PH44
(2) SCLK Output Mode
Variable
Symbol
12.5MHz Clock
16MHz Clock
Parameter
Unit
Min
Max
Min
Max
Min
Max
tSCY
SCLK cycle (programmable)
16x
8192x
1.28
655.4
1
512
µs
tOSS
Output Data →rising edge of SCLK
tSCY - 2x - 50
–
970
–
725
–
ns
tOHS
SCLK rising edge→output data hold
2x - 80
–
80
–
45
–
ns
tHSR
SCLK rising edge→input data hold
0
–
0
–
0
–
ns
tSRD
SCLK rising edge→ effective data input
–
tSCY - 2x - 150
–
970
–
725
ns
4.9 Slave Bus Interface Timing: RD, WR Bus Mode
VCC = 5V ± 10% TA = -20 ~ 70°C
f = 1 ~ 16MHz
Symbol
Parameter
Min
Max
Unit
TSAR
C/D setup →SRD fall
20
–
ns
THRA
SRD rise→ C/D hold
5
–
ns
TSCR
SCS setup →SRD fall
0
–
ns
THRC
SRD rise →SCS hold
TWRD
SRD pulse width
0
–
ns
120
–
ns
ns
TARD
SRD fall →effective data output
–
80
TVRB
SRD rise →effective data hold
10
85
ns
TSAW
C/D setup →SWR fall
20
–
ns
THWA
SWR rise →C/D hold
5
–
ns
TSCW
SCR setup →SWR fall
0
–
ns
ns
THWC
SWR rise →SCS hold
0
–
TWWR
SWR pulse width
120
–
ns
TSBW
effective data input →SWR rise
80
–
ns
THWB
SWR rise →effective data hold
10
–
ns
Min
Max
Unit
ns
Slave Bus Interface Timing: DS, R/W Bus Mode
Symbol
Parameter
TSAD
C/D setup →DS fall
20
–
THDA
DSrise→ C/D hold
5
–
ns
TSCD
SCS setup →DS fall
0
–
ns
THDC
DS rise →SCS hold
0
–
ns
TSAD
SCS setup →DS fall
20
–
ns
THDA
DS rise →R/W hold
TWDS
DS pulse width
TADS
DS fall →effective data output
TVDB
TSBD
THDB
5
–
ns
120
–
ns
–
80
ns
DS rise →effective data hold
10
85
ns
Effective data input → DS rise
80
–
ns
DS rise →effective data hold
10
–
ns
TOSHIBA CORPORATION
13/20
TMP90PH44
STA Change Timing
X = 1/fosc
Variable
Symbol
16MHz Clock
Parameter
Unit
Min
Max
Min
Max
tRPH
STA fall after Output Buffer is read
–
2x + 50
–
175
ns
tWPH
STA rise after Input Buffer is written
–
2x + 50
–
175
ns
4.10 Read Operation (PROM Mode)
DC Characteristic, AC Characteristic
TA = -40 ~ 85°C Vcc = 5V ± 10%
Symbol
Parameter
VPP
VIH1
VIL1
VPP Read Voltage
Input High Voltage (A0 ~ A15, CE, OE)
Input Low Voltage (A0 ~ A15, CE, OE)
tACC
Address to Output Delay
Condition
Min
Max
Unit
–
–
–
4.5
0.7 x VCC
-0.3
5.5
Vcc + 0.3
0. 3 x VCC
V
V
V
CL = 50PF
–
2.25TCYC + α
ns
TCYC = 400ns (10MHz Clock)
α = 200ns
4.11 Programming Operation (PROM Mode)
DC Characteristic, AC Characteristic
TA = 25 ± 5°C Vcc = 6V ± 0.25V
Symbol
14/20
Parameter
VPP
VIH
VIL
VIH1
VIL1
ICC
IPP
Programming Voltage
Input High Voltage (D0 ~ D7)
Input Low Voltage (D0 ~ D7)
Input High Voltage (A0 ~ A15, CE, OE)
Input Low Voltage (A0 ~ A15, CE, OE)
VCC Supply Current
VPP Supply Current
tPW
CE Programming Pulse Width
Condition
Min
Typ
Max
Unit
–
–
–
–
–
fOSC = 10MHz
VPP = 13.00V
12.25
0.2VCC + 1.1
-0.3
0.7VCC
-0.3
–
–
12.50
12.75
VCC + 0.3
0.2VCC - 0.1
VCC + 0.3
0.3VCC
50
50
V
V
V
V
V
mA
mA
CL = 50PF
0.95
1.00
1.05
ms
TOSHIBA CORPORATION
TMP90PH44
4.12 Timing Chart
TOSHIBA CORPORATION
15/20
TMP90PH44
4.13 Timing Chart for I/O Interface Mode
16/20
TOSHIBA CORPORATION
TMP90PH44
4.14 Timing Chart for Slave Bus Interface: RD, WR Bus Mode
(1) Read Operation
(2) Write Operation
TOSHIBA CORPORATION
17/20
TMP90PH44
4.15 Timing Chart for Slave Bus Interface: DS, R/W Bus Mode
(1) Read Operation
(2) Write Operation
18/20
TOSHIBA CORPORATION
TMP90PH44
4.16 Read Operation Timing Chart (PROM Mode)
TOSHIBA CORPORATION
19/20
TMP90PH44
4.17 Programming Operation Timing Chart (PROM Mode)
20/20
TOSHIBA CORPORATION