HAT2038R/HAT2038RJ Silicon N Channel Power MOS FET High Speed Power Switching ADE-208-666C (Z) 4th. Edition February 1999 Features • • • • For Automotive Application ( at Type Code “J “) Low on-resistance Capable of 4 V gate drive High density mounting Outline SOP–8 8 5 7 6 3 1 2 4 5 6 D D 7 8 D D 4 G 2 G S1 MOS1 S3 MOS2 1, 3 Source 2, 4 Gate 5, 6, 7, 8 Drain HAT2038R/HAT2038RJ Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Drain to source voltage VDSS 60 V Gate to source voltage VGSS ± 20 V Drain current ID 5 A Drain peak current ID(pulse)Note1 40 A Body-drain diode reverse drain current IDR 5 A Avalanche current IAP Note4 — — 5 A EAR Note4 — — HAT2038R HAT2038RJ Avalanche energy HAT2038R HAT2038RJ Unit 2.14 mJ Channel dissipation Pch Note2 2 W Channel dissipation Pch Note3 3 W Channel temperature Tch 150 °C Storage temperature Tstg – 55 to + 150 °C Note: 1.PW ≤ 10µs, duty cycle ≤ 1 % 2.1 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s 3.2 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s 4.Value at Tch=25°C, Rg≥50Ω Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS 60 — — V ID = 10 mA, VGS = 0 Gate to source breakdown voltage V(BR)GSS ± 20 — — V IG = ± 100 µA, VDS = 0 Gate to source leak current IGSS — — ± 10 µA VGS = ± 16 V, VDS = 0 Zero gate voltage HAT2038R IDSS — — 1 µA VDS = 60 V, VGS = 0 drain current HAT2038RJ IDSS — — 0.1 µA Zero gate voltage HAT2038R IDSS — — — µA VDS = 48 V, VGS = 0 drain current HAT2038RJ IDSS — — 10 µA Ta = 125°C Gate to source cutoff voltage VGS(off) 1.2 — 2.2 V VDS = 10 V, I D = 1 mA Static drain to source on state RDS(on) — 0.043 0.058 Ω ID = 3 A, VGS = 10 V Note5 resistance RDS(on) — 0.056 0.084 Ω ID = 3 A, VGS = 4 V Note5 Forward transfer admittance |yfs| 6 9 — S ID = 3 A, VDS = 10 V Note5 Input capacitance Ciss — 520 — pF VDS = 10 V Output capacitance Coss — 270 — pF VGS = 0 Reverse transfer capacitance Crss — 100 — pF f = 1MHz Turn-on delay time td(on) — 11 — ns VGS =10 V, ID = 3 A Rise time tr — 40 — ns VDD @ 30 V Turn-off delay time td(off) — 110 — ns Fall time tf — 80 — ns Body–drain diode forward voltage VDF — 0.84 1.1 V IF = 5 A, VGS = 0 Note5 Body–drain diode reverse recovery time trr — 40 — ns IF = 5 A, VGS = 0 diF/ dt = 50 A/µs 2 HAT2038R/HAT2038RJ Note: 5.Pulse test Main Characteristics Power vs. Temperature Derating Maximum Safe Operation Area 100 Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s 10 µs ive Dr 2.0 ive Op er ion 0 Dr at er 1.0 Op 1 50 at ion 100 150 Ambient Temperature 30 I D (A) Drain Current 3.0 2 Channel Dissipation Pch (W) 4.0 200 Ta (°C) 1 1 = 10 m µs s m s( 1s Op ho t) 0.3 Operation in (P this area is W N < ote 0.1 limited by R DS(on) 10 5 s) 0.03 Ta = 25 °C 1 shot pulse 0.01 3 30 0.1 0.3 1 10 100 Drain to Source Voltage V DS (V) at ion Typical Transfer Characteristics 10 Pulse Test 4 2.5 V 2 (A) 3V V DS = 10 V Pulse Test ID 10 V 4V 3.5 V Drain Current I D (A) Drain Current DC er Typical Output Characteristics 6 0 PW 3 10 8 10 10 8 6 25°C 4 Tc = 75°C –25°C 2 VGS = 2 V 0 2 4 6 Drain to Source Voltage 8 10 V DS (V) 0 1 2 3 Gate to Source Voltage 4 5 V GS (V) 3 HAT2038R/HAT2038RJ 0.4 0.3 ID=5A 0.2 Static Drain to Source on State Resistance R DS(on) ( Ω) 2A 1A 12 4 8 Gate to Source Voltage 16 20 V GS (V) Static Drain to Source on State Resistance vs. Temperature 0.20 Pulse Test 0.16 1, 2 A 0.12 ID=5A 0.08 V GS = 4 V 1, 2, 5 A 0.04 10 V 0 –40 Static Drain to Source on State Resistance vs. Drain Current 1.0 Pulse Test 0.5 0.2 0.1 VGS = 4 V 0.05 0.1 0 4 Pulse Test 0 40 80 120 160 Case Temperature Tc (°C) 10 V 0.02 0.01 0.1 0.3 1 3 Drain Current 10 30 I D (A) 100 Forward Transfer Admittance vs. Drain Current Forward Transfer Admittance |y fs | (S) Drain to Source Saturation Voltage V DS(on) (V) 0.5 Drain to Source On State Resistance R DS(on) ( Ω ) Drain to Source Saturation Voltage vs. Gate to Source Voltage 50 20 V DS = 10 V Pulse Test Tc = –25 °C 10 5 25 °C 75 °C 2 1 0.5 0.1 0.2 1 2 5 0.5 Drain Current I D (A) 10 HAT2038R/HAT2038RJ Body–Drain Diode Reverse Recovery Time Typical Capacitance vs. Drain to Source Voltage 2000 di / dt = 50 A / µs V GS = 0, Ta = 25 °C 200 1000 Capacitance C (pF) Reverse Recovery Time trr (ns) 500 100 50 20 10 Coss 100 50 Crss 0 40 20 0 V DS 12 V DD = 10 V 25 V 50 V V DD = 50 V 25 V 10 V 8 16 24 32 Gate Charge Qg (nc) 8 4 0 40 20 30 40 50 Switching Characteristics 300 Switching Time t (ns) 16 V GS 1000 V GS (V) I D = 5A 10 Drain to Source Voltage V DS (V) Gate to Source Voltage 20 80 60 VGS = 0 f = 1 MHz 10 0.2 0.5 1 2 5 10 Reverse Drain Current I DR (A) Dynamic Input Characteristics 100 V DS (V) 200 20 5 0.1 Drain to Source Voltage Ciss 500 t d(off) 100 tf 30 tr t d(on) 10 3 1 0.1 V GS = 10 V, V DD = 30 V PW = 5 µs, duty < 1 % 0.2 0.5 1 Drain Current 2 5 I D (A) 10 5 HAT2038R/HAT2038RJ Maximun Avalanche Energy vs. Channel Temperature Derating Reverse Drain Current vs. Source to Drain Voltage Repetive Avalanche Energy E AR (mJ) Reverse Drain Current I DR (A) 10 10 V 8 5V 6 V GS = 0, –5 V 4 2 Pulse Test 0 0.4 0.8 1.2 1.6 Source to Drain Voltage 2.0 2.5 I AP = 5 A V DD = 25 V L = 100 µH duty < 0.1 % Rg > 50 Ω 2.0 1.5 1.0 0.5 0 25 50 V SD (V) Avalanche Test Circuit 100 125 EAR = 1 2 • L • I AP • 2 VDSS VDSS – V DD I AP Monitor V (BR)DSS I AP Rg D. U. T V DS VDD ID Vin 15 V 50Ω 0 VDD Switching Time Test Circuit Switching Time Waveform Vout Monitor Vin Monitor 90% D.U.T. RL Vin Vin 10 V 50Ω V DD = 30 V Vout 10% 10% 90% td(on) 6 150 Avalanche Waveform L V DS Monitor 75 Channel Temperature Tch (°C) tr 10% 90% td(off) tf HAT2038R/HAT2038RJ Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation) Normalized Transient Thermal Impedance γ s (t) 10 1 D=1 0.5 0.2 0.1 0.1 0.05 0.02 0.01 θ ch – f(t) = γ s (t) • θ ch – f θ ch – f = 125 °C/W, Ta = 25 °C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.01 e uls p ot PDM h 0.001 1s D= PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 10 100 1000 10000 Pulse Width PW (S) Normalized Transient Thermal Impedance γ s (t) 10 1 Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation) D=1 0.5 0.2 0.1 0.01 0.1 0.05 0.02 θ ch – f(t) = γ s (t) • θ ch – f θ ch – f = 166 °C/W, Ta = 25 °C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.01 e uls 0.001 PDM p ot D= 1 sh PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 10 100 1000 10000 Pulse Width PW (S) 7 HAT2038R/HAT2038RJ Package Dimensions Unit: mm 1 4 6.2 Max 0.25 Max 5 1.75 Max 8 4.0 Max 5.0 Max 0 – 8° 0.51 Max 1.27 Max 0.25 Max 1.27 0.15 0.25 M Hitachi code EIAJ JEDEC FP–8DA — MS-012AA Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. 8 HAT2038R/HAT2038RJ Hitachi, Ltd. Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. 9