ETC HAT2083R

HAT2038R/HAT2038RJ
Silicon N Channel Power MOS FET
High Speed Power Switching
ADE-208-666C (Z)
4th. Edition
February 1999
Features
•
•
•
•
For Automotive Application ( at Type Code “J “)
Low on-resistance
Capable of 4 V gate drive
High density mounting
Outline
SOP–8
8
5
7 6
3
1 2
4
5 6
D D
7 8
D D
4
G
2
G
S1
MOS1
S3
MOS2
1, 3
Source
2, 4
Gate
5, 6, 7, 8 Drain
HAT2038R/HAT2038RJ
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Drain to source voltage
VDSS
60
V
Gate to source voltage
VGSS
± 20
V
Drain current
ID
5
A
Drain peak current
ID(pulse)Note1
40
A
Body-drain diode reverse drain current
IDR
5
A
Avalanche current
IAP Note4
—
—
5
A
EAR Note4
—
—
HAT2038R
HAT2038RJ
Avalanche energy
HAT2038R
HAT2038RJ
Unit
2.14
mJ
Channel dissipation
Pch
Note2
2
W
Channel dissipation
Pch Note3
3
W
Channel temperature
Tch
150
°C
Storage temperature
Tstg
– 55 to + 150
°C
Note:
1.PW ≤ 10µs, duty cycle ≤ 1 %
2.1 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s
3.2 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s
4.Value at Tch=25°C, Rg≥50Ω
Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown voltage
V(BR)DSS
60
—
—
V
ID = 10 mA, VGS = 0
Gate to source breakdown voltage
V(BR)GSS
± 20
—
—
V
IG = ± 100 µA, VDS = 0
Gate to source leak current
IGSS
—
—
± 10
µA
VGS = ± 16 V, VDS = 0
Zero gate voltage
HAT2038R
IDSS
—
—
1
µA
VDS = 60 V, VGS = 0
drain current
HAT2038RJ
IDSS
—
—
0.1
µA
Zero gate voltage
HAT2038R
IDSS
—
—
—
µA
VDS = 48 V, VGS = 0
drain current
HAT2038RJ
IDSS
—
—
10
µA
Ta = 125°C
Gate to source cutoff voltage
VGS(off)
1.2
—
2.2
V
VDS = 10 V, I D = 1 mA
Static drain to source on state
RDS(on)
—
0.043 0.058 Ω
ID = 3 A, VGS = 10 V Note5
resistance
RDS(on)
—
0.056 0.084 Ω
ID = 3 A, VGS = 4 V Note5
Forward transfer admittance
|yfs|
6
9
—
S
ID = 3 A, VDS = 10 V Note5
Input capacitance
Ciss
—
520
—
pF
VDS = 10 V
Output capacitance
Coss
—
270
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
100
—
pF
f = 1MHz
Turn-on delay time
td(on)
—
11
—
ns
VGS =10 V, ID = 3 A
Rise time
tr
—
40
—
ns
VDD @ 30 V
Turn-off delay time
td(off)
—
110
—
ns
Fall time
tf
—
80
—
ns
Body–drain diode forward voltage
VDF
—
0.84
1.1
V
IF = 5 A, VGS = 0 Note5
Body–drain diode reverse
recovery time
trr
—
40
—
ns
IF = 5 A, VGS = 0
diF/ dt = 50 A/µs
2
HAT2038R/HAT2038RJ
Note:
5.Pulse test
Main Characteristics
Power vs. Temperature Derating
Maximum Safe Operation Area
100
Test Condition :
When using the glass epoxy board
(FR4 40x40x1.6 mm), PW < 10 s
10 µs
ive
Dr
2.0
ive
Op
er
ion
0
Dr
at
er
1.0
Op
1
50
at
ion
100
150
Ambient Temperature
30
I D (A)
Drain Current
3.0
2
Channel Dissipation
Pch (W)
4.0
200
Ta (°C)
1
1
=
10
m
µs
s
m
s(
1s
Op
ho
t)
0.3 Operation in
(P
this area is
W N
< ote
0.1 limited by R DS(on)
10 5
s)
0.03 Ta = 25 °C
1 shot pulse
0.01
3
30
0.1 0.3
1
10
100
Drain to Source Voltage V DS (V)
at
ion
Typical Transfer Characteristics
10
Pulse Test
4
2.5 V
2
(A)
3V
V DS = 10 V
Pulse Test
ID
10 V
4V
3.5 V
Drain Current
I D (A)
Drain Current
DC
er
Typical Output Characteristics
6
0
PW
3
10
8
10
10
8
6
25°C
4
Tc = 75°C
–25°C
2
VGS = 2 V
0
2
4
6
Drain to Source Voltage
8
10
V DS (V)
0
1
2
3
Gate to Source Voltage
4
5
V GS (V)
3
HAT2038R/HAT2038RJ
0.4
0.3
ID=5A
0.2
Static Drain to Source on State Resistance
R DS(on) ( Ω)
2A
1A
12
4
8
Gate to Source Voltage
16
20
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
0.20
Pulse Test
0.16
1, 2 A
0.12
ID=5A
0.08
V GS = 4 V
1, 2, 5 A
0.04
10 V
0
–40
Static Drain to Source on State Resistance
vs. Drain Current
1.0
Pulse Test
0.5
0.2
0.1
VGS = 4 V
0.05
0.1
0
4
Pulse Test
0
40
80
120
160
Case Temperature Tc (°C)
10 V
0.02
0.01
0.1
0.3
1
3
Drain Current
10
30
I D (A)
100
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
Drain to Source Saturation Voltage
V DS(on) (V)
0.5
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
20
V DS = 10 V
Pulse Test
Tc = –25 °C
10
5
25 °C
75 °C
2
1
0.5
0.1
0.2
1
2
5
0.5
Drain Current I D (A)
10
HAT2038R/HAT2038RJ
Body–Drain Diode Reverse
Recovery Time
Typical Capacitance vs.
Drain to Source Voltage
2000
di / dt = 50 A / µs
V GS = 0, Ta = 25 °C
200
1000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
500
100
50
20
10
Coss
100
50
Crss
0
40
20
0
V DS
12
V DD = 10 V
25 V
50 V
V DD = 50 V
25 V
10 V
8
16
24
32
Gate Charge Qg (nc)
8
4
0
40
20
30
40
50
Switching Characteristics
300
Switching Time t (ns)
16
V GS
1000
V GS (V)
I D = 5A
10
Drain to Source Voltage V DS (V)
Gate to Source Voltage
20
80
60
VGS = 0
f = 1 MHz
10
0.2
0.5
1
2
5
10
Reverse Drain Current I DR (A)
Dynamic Input Characteristics
100
V DS (V)
200
20
5
0.1
Drain to Source Voltage
Ciss
500
t d(off)
100
tf
30
tr
t d(on)
10
3
1
0.1
V GS = 10 V, V DD = 30 V
PW = 5 µs, duty < 1 %
0.2
0.5
1
Drain Current
2
5
I D (A)
10
5
HAT2038R/HAT2038RJ
Maximun Avalanche Energy vs.
Channel Temperature Derating
Reverse Drain Current vs.
Source to Drain Voltage
Repetive Avalanche Energy E AR (mJ)
Reverse Drain Current I DR (A)
10
10 V
8
5V
6
V GS = 0, –5 V
4
2
Pulse Test
0
0.4
0.8
1.2
1.6
Source to Drain Voltage
2.0
2.5
I AP = 5 A
V DD = 25 V
L = 100 µH
duty < 0.1 %
Rg > 50 Ω
2.0
1.5
1.0
0.5
0
25
50
V SD (V)
Avalanche Test Circuit
100
125
EAR =
1
2
• L • I AP •
2
VDSS
VDSS – V DD
I AP
Monitor
V (BR)DSS
I AP
Rg
D. U. T
V DS
VDD
ID
Vin
15 V
50Ω
0
VDD
Switching Time Test Circuit
Switching Time Waveform
Vout
Monitor
Vin Monitor
90%
D.U.T.
RL
Vin
Vin
10 V
50Ω
V DD
= 30 V
Vout
10%
10%
90%
td(on)
6
150
Avalanche Waveform
L
V DS
Monitor
75
Channel Temperature Tch (°C)
tr
10%
90%
td(off)
tf
HAT2038R/HAT2038RJ
Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation)
Normalized Transient Thermal Impedance
γ s (t)
10
1
D=1
0.5
0.2
0.1
0.1
0.05
0.02
0.01
θ ch – f(t) = γ s (t) • θ ch – f
θ ch – f = 125 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.01
e
uls
p
ot
PDM
h
0.001
1s
D=
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
Normalized Transient Thermal Impedance
γ s (t)
10
1
Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation)
D=1
0.5
0.2
0.1
0.01
0.1
0.05
0.02
θ ch – f(t) = γ s (t) • θ ch – f
θ ch – f = 166 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.01
e
uls
0.001
PDM
p
ot
D=
1
sh
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
7
HAT2038R/HAT2038RJ
Package Dimensions
Unit: mm
1
4
6.2 Max
0.25 Max
5
1.75 Max
8
4.0 Max
5.0 Max
0 – 8°
0.51 Max
1.27 Max
0.25 Max
1.27
0.15
0.25 M
Hitachi code
EIAJ
JEDEC
FP–8DA
—
MS-012AA
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi
bears no responsibility for problems that may arise with third party’s rights, including intellectual property
rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality
and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily
injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety
equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions
and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the
guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due
to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
8
HAT2038R/HAT2038RJ
Hitachi, Ltd.
Semiconductor & IC Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
9