ETC HAT3010R

HAT3010R
Silicon N/P Channel Power MOS FET
High Speed Power Switching
ADE-208-1402H (Z)
9th. Edition
Aug. 2002
Features
• Low on-resistance
• Capable of 4.5 V gate drive
• High density mounting
Outline
SOP-8
8
5
7 6
3
1 2
4
5 6
D D
7 8
D D
4
G
2
G
S1
S3
Nch
Pch
1, 3
Source
2, 4
Gate
5, 6, 7, 8 Drain
HAT3010R
Absolute Maximum Ratings
(Ta = 25°C)
Item
Symbol
Ratings
Unit
Nch
Pch
Drain to source voltage
VDSS
60
–60
V
Gate to source voltage
VGSS
±20
±20
V
Drain current
ID
6
–5
A
Drain peak current
Note1
ID(pulse)
48
–40
A
Body-drain diode reverse drain current
IDR
6
–5
A
Channel dissipation
Pch Note2
2
2
W
Channel dissipation
Pch
Note3
3
3
W
Channel temperature
Tch
150
150
°C
Storage temperature
Tstg
–55 to +150
–55 to +150
°C
Notes: 1. PW ≤ 10 µs, duty cycle ≤ 1 %
2. 1 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW ≤ 10 s
3. 2 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW ≤ 10 s
Rev.8, Aug. 2002, page 2 of 14
HAT3010R
Electrical Characteristics (Ta = 25°C)
• N Channel
Item
Symbol Min
Drain to source breakdown voltage V(BR)DSS
60
Typ
Max
Unit
Test Conditions
—
—
V
ID = 10 mA, VGS = 0
Gate to source breakdown voltage
V(BR)GSS ±20
—
—
V
IG = ±100 µA, VDS = 0
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
Zero gate voltage drain current
IDSS
—
—
1
µA
VDS = 60 V, VGS = 0
Gate to source cutoff voltage
VGS(off)
1.0
—
2.5
V
VDS = 10 V, I D = 1 mA
Static drain to source on state
RDS(on)
—
25
32
mΩ
ID = 3 A, VGS = 10 V Note4
resistance
RDS(on)
—
32
45
mΩ
ID = 3 A, VGS = 4.5 V Note4
Forward transfer admittance
|yfs|
7
11
—
S
ID = 3 A, VDS = 10 V Note4
Input capacitance
Ciss
—
1050
—
pF
VDS = 10 V
Output capacitance
Coss
—
150
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
90
—
pF
f = 1 MHz
Turn-on delay time
td(on)
—
15
—
ns
VGS = 10 V, ID = 3 A
Rise time
tr
—
15
—
ns
VDD ≈ 30 V
Turn-off delay time
td(off)
—
55
—
ns
RL = 10 Ω
Fall time
tf
—
10
—
ns
Rg = 4.7 Ω
Body–drain diode forward voltage
VDF
—
0.85
1.10
V
IF = 6 A, VGS = 0 Note4
Body–drain diode reverse
recovery time
trr
—
50
—
ns
IF =6 A, VGS = 0
diF/ dt =100 A/µs
Notes: 4. Pulse test
Rev.8, Aug. 2002, page 3 of 14
HAT3010R
• P Channel
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown
voltage
V(BR)DSS
–60
—
—
V
ID = –10 mA, VGS = 0
Gate to source breakdown
voltage
V(BR)GSS ±20
—
—
V
IG = ±100 µA, VDS = 0
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
Zero gate voltage drain current
IDSS
—
—
–1
µA
VDS = –60 V, VGS = 0
Gate to source cutoff voltage
VGS(off)
–1.0
—
–2.5
V
VDS = –10 V, I D = –1 mA
Static drain to source on state
RDS(on)
—
60
76
mΩ
ID = –2.5 A, VGS = –10 V Note5
resistance
RDS(on)
—
90
130
mΩ
ID = –2.5
Note5
Forward transfer admittance
|yfs|
3
5
—
S
ID = –2.5 A, VDS = –10 V Note5
Input capacitance
Ciss
—
1350
—
pF
VDS = –10 V
Output capacitance
Coss
—
135
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
85
—
pF
f = 1 MHz
Turn-on delay time
td(on)
—
20
—
ns
VGS = –10 V, ID = –2.5 A
Rise time
tr
—
15
—
ns
VDD ≈ –30 V
Turn-off delay time
td(off)
—
55
—
ns
RL = 12 Ω
Fall time
tf
—
10
—
ns
Rg = 4.7 Ω
Body–drain diode forward voltage VDF
—
-0.85
-1.10
V
IF = –5 A, VGS = 0 Note5
Body–drain diode reverse
recovery time
—
50
—
ns
IF = –5 A, VGS = 0
diF/ dt = 100 A/µs
Notes: 5. Pulse test
Rev.8, Aug. 2002, page 4 of 14
trr
A, VGS = – 4.5 V
HAT3010R
Main Charactristice
• N Channel
Drain Current
10
3
1
0.3
10
10 V
4V
I D (A)
I D (A)
30
Typical Output Characteristics
Maximum Safe Operation Area
10
µs
10
0µ
s
PW 1 ms
=1
0m
DC
s
Op
era
tio
n(
PW
N
< 1 ote
0.1 Operation in
0s 5
)
0.03 this area is
limited by R DS(on)
0.01
Ta = 25°C
0.003
1 shot Pulse
0.001
30
100
0.1 0.3
1
3
10
Drain to Source Voltage V DS (V)
Drain Current
100
3V
8
6
4
2
Pulse Test
2.5 V
VGS = 2 V
0
2
4
6
Drain to Source Voltage
8
10
V DS (V)
Note 5 :
When using the glass epoxy board
(FR4 40 x 40 x 1.6 mm)
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
Typical Transfer Characteristics
Drain to Source Saturation Voltage
V DS(on) (mV)
10
Drain Current
ID
(A)
V DS = 10 V
Pulse Test
8
6
4
Tc = 75°C
25°C
2
−25°C
0
1
2
3
Gate to Source Voltage
4
V GS (V)
5
300
Pulse Test
200
ID=5A
100
2A
1A
0
15
5
10
20
Gate to Source Voltage V GS (V)
Rev.8, Aug. 2002, page 5 of 14
Drain to Source On State Resistance
R DS(on) (mΩ )
Static Drain to Source on State Resistance
vs. Drain Current
1.0
Pulse Test
0.5
0.2
0.1
VGS = -4.5 V
0.05
0.02
-10 V
50
10
3
Drain Current
30
I D (A)
100
Forward Transfer Admittance vs.
Drain Current
20
10
Tc = -25°C
25°C
75°C
5
2
V DS = 10 V
Pulse Test
1
0.5
0.1
0.3
1
3
10
30
Drain Current I D (A)
Rev.8, Aug. 2002, page 6 of 14
100
Static Drain to Source on State Resistance
vs. Temperature
0.10
Pulse Test
0.08
1, 2 A
ID=5A
0.06
0.04
V GS = 4.5 V
1, 2, 5 A
0.02
10 V
0
-40
0
40
80
120
160
Case Temperature Tc (°C)
Body-Drain Diode Reverse
Recovery Time
1000
Reverse Recovery Time trr (ns)
Forward Transfer Admittance |yfs| (S)
0.01
1
Static Drain to Source on State Resistance
R DS(on) (Ω )
HAT3010R
500
di / dt = 100 A / µs
V GS = 0, Ta = 25°C
200
100
50
20
10
0.1
0.3
1
3
10
30
100
Reverse Drain Current I DR (A)
HAT3010R
Typical Capacitance vs.
Drain to Source Voltage
V DS (V)
1000
Ciss
500
200
Coss
100
50
Crss
VGS = 0
f = 1 MHz
20
10
0
Drain to Source Voltage
Capacitance C (pF)
2000
80
60
12
8
40
20
4
V DD = 50 V
25 V
10 V
8
16
24
32
Gate Charge Qg (nc)
0
40
Reverse Drain Current vs.
Source to Drain Voltage
1000
10
300
100
t d(off)
tr
30
t d(on)
10
tf
3
V GS = 10 V, V DD = 30 V
PW = 5 µs, duty < 1 %
0.3
1
3
10
30
Drain Current I D (A)
100
Reverse Drain Current I DR (A)
Switching Time t (ns)
V GS
V DS
Switching Characteristics
1
0.1
16
V DD = 50 V
25 V
10 V
0
10
20
30
40
50
Drain to Source Voltage V DS (V)
20
ID=6A
Gate to Source Voltage
100
5000
V GS (V)
Dynamic Input Characteristics
Pulse Test
8
10 V
6
4
5V
V GS = 0, -5 V
2
0
0.4
0.8
1.2
Source to Drain Voltage
1.6
2.0
V SD (V)
Rev.8, Aug. 2002, page 7 of 14
HAT3010R
• P Channel
Drain Current
-10
-3
-1
Op
era
tio
-0.3
n(
PW
N
< 1 ote
-0.1 Operation in
0s 5
)
-0.03 this area is
limited by R DS(on)
-0.01
Ta = 25°C
-0.003
1 shot Pulse
-0.001
-0.1 -0.3
-1
-3
-10 -30 -100
Drain to Source Voltage V DS (V)
Pulse Test
-10 V
I D (A)
I D (A)
-30
Typical Output Characteristics
-10
-8
-6 V
-4.5 V
-3.5 V
-6
Drain Current
Maximum Safe Operation Area
10
µs
10
0µ
s
PW 1 ms
=1
0m
DC
s
-100
-4
-2
VGS = -2.5 V
0
-2
-4
-6
Drain to Source Voltage
-8
-10
V DS (V)
Note 5 :
When using the glass epoxy board
(FR4 40 x 40 x 1.6 mm)
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
Typical Transfer Characteristics
-1
V DS = -10 V
Pulse Test
-8
-6
-4
-2
Tc = 75°C
0
25°C
−25°C
-1
-2
-3
-4
-5
Gate to Source Voltage V GS (V)
Rev.8, Aug. 2002, page 8 of 14
Drain to Source Saturation Voltage
V DS(on) (V)
Drain Current
ID
(A)
-10
Pulse Test
-0.8
-0.6
-0.4
I D = -5 A
-0.2
-2 A
-1 A
0
-15
-5
-10
-20
Gate to Source Voltage V GS (V)
HAT3010R
Drain to Source On State Resistance
R DS(on) (mΩ )
1.0
Pulse Test
0.5
0.20
0.2
0.1
0.05
-10 V
0.05
-3
-10
Drain Current
-30
-100
10
Tc = -25°C
25°C
75°C
2
V DS = -10 V
Pulse Test
0.5
-0.1
-0.3
-1
-3
-10
-30
Drain Current I D (A)
-100
–5 A
–10 V
–1, –2 A
0
40
80
120
160
Case Temperature Tc (°C)
Body-Drain Diode Reverse
Recovery Time
1000
Reverse Recovery Time trr (ns)
Forward Transfer Admittance vs.
Drain Current
1
0
–40
I D (A)
20
5
V GS = –4.5 V
0.10
0.01
-1
50
–5 A
I D = -1, –2 A
0.15
VGS = -4.5 V
0.02
Forward Transfer Admittance |yfs| (S)
Static Drain to Source on State Resistance
vs. Temperature
0.25
Pulse Test
Static Drain to Source on State Resistance
R DS(on) (Ω )
Static Drain to Source on State Resistance
vs. Drain Current
500
di / dt = 100 A / µs
V GS = 0, Ta = 25°C
200
100
50
20
10
-0.1
-0.3
-1
-3
-10 -30 -100
Reverse Drain Current I DR (A)
Rev.8, Aug. 2002, page 9 of 14
HAT3010R
Typical Capacitance vs.
Drain to Source Voltage
Ciss
500
-4
I D = -5 A
-8
-40
200
Coss
100
50
Crss
VGS = 0
f = 1 MHz
20
10
0
-10
-20
-30
-40
-50
Drain to Source Voltage V DS (V)
-100
tf
3
1
-0.1
V GS = -10 V, VDD = -30 V
PW = 5 µs, duty < 1 %
-0.3
-1
-3
-10 -30
Drain Current I D (A)
Rev.8, Aug. 2002, page 10 of 14
-100
Reverse Drain Current I DR (A)
tr
t d(on)
10
8
-16
16
24
32
Gate Charge Qg (nc)
-20
40
-10
300
30
0
-12
Reverse Drain Current vs.
Source to Drain Voltage
1000
t d(off)
V GS
V DD = -10 V
-25 V
-50 V
-80
Switching Characteristics
100
V DS
-60
Pulse Test
-8
-10 V
-6
-4
-5 V
V GS = 0, 5 V
-2
0
-0.4
-0.8
-1.2
Source to Drain Voltage
-1.6
-2.0
V SD (V)
V GS (V)
0
V DD= -10 V
-25 V
-50 V
-20
1000
Switching Time t (ns)
0
Gate to Source Voltage
Capacitance C (pF)
2000
Drain to Source Voltage DSV DS (V)
Dynamic Input Characteristics
5000
HAT3010R
Power vs. Temperature Derating
Test Condition :
When using the glass epoxy board
(FR4 40 x 40 x 1.6 mm), PW < 10 s
3.0
2.0
2
Dr
ive
Dr
Op
er
ion
ive
at
er
1
1.0
Op
Channel Dissipation
Pch (W)
4.0
0
50
at
ion
100
Ambient Temperature
150
200
Ta (°C)
Rev.8, Aug. 2002, page 11 of 14
HAT3010R
Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation)
Normalized Transient Thermal Impedance
γ s (t)
10
D=1
1
0.1
0.05
θ ch - f(t) = γs (t) x θ ch - f
θ ch - f = 125°C/W, Ta = 25°C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.02
0.01
0.01
e
uls
p
ot
PDM
h
1s
0.001
D=
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
Pulse Width PW (S)
100
1000
10000
Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation)
Normalized Transient Thermal Impedance
γ s (t)
10
1
D=1
0.5
0.2
0.1
0.01
0.1
0.05
θ ch - f(t) = γs (t) x θ ch - f
θ ch - f = 166°C/W, Ta = 25°C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.02
0.01
lse
0.001
PDM
u
tp
ho
1s
D=
PW
T
PW
T
0.0001
10 µ
100 µ
Rev.8, Aug. 2002, page 12 of 14
1m
10 m
100 m
1
10
Pulse Width PW (S)
100
1000
10000
HAT3010R
Package Dimensions
As of January, 2002
Unit: mm
3.95
4.90
5.3 Max
5
8
*0.22 ± 0.03
0.20 ± 0.03
4
1.75 Max
1
0.75 Max
+ 0.10
6.10 – 0.30
1.08
0.14 – 0.04
*0.42 ± 0.08
0.40 ± 0.06
+ 0.11
0˚ – 8˚
1.27
+ 0.67
0.60 – 0.20
0.15
0.25 M
*Dimension including the plating thickness
Base material dimension
Hitachi Code
JEDEC
JEITA
Mass (reference value)
FP-8DA
Conforms
—
0.085 g
Rev.8, Aug. 2002, page 13 of 14
HAT3010R
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL
http://www.hitachisemiconductor.com/
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe Ltd.
Electronic Components Group
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00
Singapore 049318
Tel : <65>-6538-6533/6538-8577
Fax : <65>-6538-6933/6538-3877
URL : http://semiconductor.hitachi.com.sg
Hitachi Europe GmbH
Electronic Components Group
Dornacher Str 3
D-85622 Feldkirchen
Postfach 201, D-85619 Feldkirchen
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road
Hung-Kuo Building
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://semiconductor.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon Hong Kong
Tel : <852>-2735-9218
Fax : <852>-2730-0281
URL : http://semiconductor.hitachi.com.hk
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.
Colophon 7.0
Rev.8, Aug. 2002, page 14 of 14