HAT3010R Silicon N/P Channel Power MOS FET High Speed Power Switching ADE-208-1402H (Z) 9th. Edition Aug. 2002 Features • Low on-resistance • Capable of 4.5 V gate drive • High density mounting Outline SOP-8 8 5 7 6 3 1 2 4 5 6 D D 7 8 D D 4 G 2 G S1 S3 Nch Pch 1, 3 Source 2, 4 Gate 5, 6, 7, 8 Drain HAT3010R Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit Nch Pch Drain to source voltage VDSS 60 –60 V Gate to source voltage VGSS ±20 ±20 V Drain current ID 6 –5 A Drain peak current Note1 ID(pulse) 48 –40 A Body-drain diode reverse drain current IDR 6 –5 A Channel dissipation Pch Note2 2 2 W Channel dissipation Pch Note3 3 3 W Channel temperature Tch 150 150 °C Storage temperature Tstg –55 to +150 –55 to +150 °C Notes: 1. PW ≤ 10 µs, duty cycle ≤ 1 % 2. 1 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW ≤ 10 s 3. 2 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW ≤ 10 s Rev.8, Aug. 2002, page 2 of 14 HAT3010R Electrical Characteristics (Ta = 25°C) • N Channel Item Symbol Min Drain to source breakdown voltage V(BR)DSS 60 Typ Max Unit Test Conditions — — V ID = 10 mA, VGS = 0 Gate to source breakdown voltage V(BR)GSS ±20 — — V IG = ±100 µA, VDS = 0 Gate to source leak current IGSS — — ±10 µA VGS = ±16 V, VDS = 0 Zero gate voltage drain current IDSS — — 1 µA VDS = 60 V, VGS = 0 Gate to source cutoff voltage VGS(off) 1.0 — 2.5 V VDS = 10 V, I D = 1 mA Static drain to source on state RDS(on) — 25 32 mΩ ID = 3 A, VGS = 10 V Note4 resistance RDS(on) — 32 45 mΩ ID = 3 A, VGS = 4.5 V Note4 Forward transfer admittance |yfs| 7 11 — S ID = 3 A, VDS = 10 V Note4 Input capacitance Ciss — 1050 — pF VDS = 10 V Output capacitance Coss — 150 — pF VGS = 0 Reverse transfer capacitance Crss — 90 — pF f = 1 MHz Turn-on delay time td(on) — 15 — ns VGS = 10 V, ID = 3 A Rise time tr — 15 — ns VDD ≈ 30 V Turn-off delay time td(off) — 55 — ns RL = 10 Ω Fall time tf — 10 — ns Rg = 4.7 Ω Body–drain diode forward voltage VDF — 0.85 1.10 V IF = 6 A, VGS = 0 Note4 Body–drain diode reverse recovery time trr — 50 — ns IF =6 A, VGS = 0 diF/ dt =100 A/µs Notes: 4. Pulse test Rev.8, Aug. 2002, page 3 of 14 HAT3010R • P Channel Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS –60 — — V ID = –10 mA, VGS = 0 Gate to source breakdown voltage V(BR)GSS ±20 — — V IG = ±100 µA, VDS = 0 Gate to source leak current IGSS — — ±10 µA VGS = ±16 V, VDS = 0 Zero gate voltage drain current IDSS — — –1 µA VDS = –60 V, VGS = 0 Gate to source cutoff voltage VGS(off) –1.0 — –2.5 V VDS = –10 V, I D = –1 mA Static drain to source on state RDS(on) — 60 76 mΩ ID = –2.5 A, VGS = –10 V Note5 resistance RDS(on) — 90 130 mΩ ID = –2.5 Note5 Forward transfer admittance |yfs| 3 5 — S ID = –2.5 A, VDS = –10 V Note5 Input capacitance Ciss — 1350 — pF VDS = –10 V Output capacitance Coss — 135 — pF VGS = 0 Reverse transfer capacitance Crss — 85 — pF f = 1 MHz Turn-on delay time td(on) — 20 — ns VGS = –10 V, ID = –2.5 A Rise time tr — 15 — ns VDD ≈ –30 V Turn-off delay time td(off) — 55 — ns RL = 12 Ω Fall time tf — 10 — ns Rg = 4.7 Ω Body–drain diode forward voltage VDF — -0.85 -1.10 V IF = –5 A, VGS = 0 Note5 Body–drain diode reverse recovery time — 50 — ns IF = –5 A, VGS = 0 diF/ dt = 100 A/µs Notes: 5. Pulse test Rev.8, Aug. 2002, page 4 of 14 trr A, VGS = – 4.5 V HAT3010R Main Charactristice • N Channel Drain Current 10 3 1 0.3 10 10 V 4V I D (A) I D (A) 30 Typical Output Characteristics Maximum Safe Operation Area 10 µs 10 0µ s PW 1 ms =1 0m DC s Op era tio n( PW N < 1 ote 0.1 Operation in 0s 5 ) 0.03 this area is limited by R DS(on) 0.01 Ta = 25°C 0.003 1 shot Pulse 0.001 30 100 0.1 0.3 1 3 10 Drain to Source Voltage V DS (V) Drain Current 100 3V 8 6 4 2 Pulse Test 2.5 V VGS = 2 V 0 2 4 6 Drain to Source Voltage 8 10 V DS (V) Note 5 : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm) Drain to Source Saturation Voltage vs. Gate to Source Voltage Typical Transfer Characteristics Drain to Source Saturation Voltage V DS(on) (mV) 10 Drain Current ID (A) V DS = 10 V Pulse Test 8 6 4 Tc = 75°C 25°C 2 −25°C 0 1 2 3 Gate to Source Voltage 4 V GS (V) 5 300 Pulse Test 200 ID=5A 100 2A 1A 0 15 5 10 20 Gate to Source Voltage V GS (V) Rev.8, Aug. 2002, page 5 of 14 Drain to Source On State Resistance R DS(on) (mΩ ) Static Drain to Source on State Resistance vs. Drain Current 1.0 Pulse Test 0.5 0.2 0.1 VGS = -4.5 V 0.05 0.02 -10 V 50 10 3 Drain Current 30 I D (A) 100 Forward Transfer Admittance vs. Drain Current 20 10 Tc = -25°C 25°C 75°C 5 2 V DS = 10 V Pulse Test 1 0.5 0.1 0.3 1 3 10 30 Drain Current I D (A) Rev.8, Aug. 2002, page 6 of 14 100 Static Drain to Source on State Resistance vs. Temperature 0.10 Pulse Test 0.08 1, 2 A ID=5A 0.06 0.04 V GS = 4.5 V 1, 2, 5 A 0.02 10 V 0 -40 0 40 80 120 160 Case Temperature Tc (°C) Body-Drain Diode Reverse Recovery Time 1000 Reverse Recovery Time trr (ns) Forward Transfer Admittance |yfs| (S) 0.01 1 Static Drain to Source on State Resistance R DS(on) (Ω ) HAT3010R 500 di / dt = 100 A / µs V GS = 0, Ta = 25°C 200 100 50 20 10 0.1 0.3 1 3 10 30 100 Reverse Drain Current I DR (A) HAT3010R Typical Capacitance vs. Drain to Source Voltage V DS (V) 1000 Ciss 500 200 Coss 100 50 Crss VGS = 0 f = 1 MHz 20 10 0 Drain to Source Voltage Capacitance C (pF) 2000 80 60 12 8 40 20 4 V DD = 50 V 25 V 10 V 8 16 24 32 Gate Charge Qg (nc) 0 40 Reverse Drain Current vs. Source to Drain Voltage 1000 10 300 100 t d(off) tr 30 t d(on) 10 tf 3 V GS = 10 V, V DD = 30 V PW = 5 µs, duty < 1 % 0.3 1 3 10 30 Drain Current I D (A) 100 Reverse Drain Current I DR (A) Switching Time t (ns) V GS V DS Switching Characteristics 1 0.1 16 V DD = 50 V 25 V 10 V 0 10 20 30 40 50 Drain to Source Voltage V DS (V) 20 ID=6A Gate to Source Voltage 100 5000 V GS (V) Dynamic Input Characteristics Pulse Test 8 10 V 6 4 5V V GS = 0, -5 V 2 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 V SD (V) Rev.8, Aug. 2002, page 7 of 14 HAT3010R • P Channel Drain Current -10 -3 -1 Op era tio -0.3 n( PW N < 1 ote -0.1 Operation in 0s 5 ) -0.03 this area is limited by R DS(on) -0.01 Ta = 25°C -0.003 1 shot Pulse -0.001 -0.1 -0.3 -1 -3 -10 -30 -100 Drain to Source Voltage V DS (V) Pulse Test -10 V I D (A) I D (A) -30 Typical Output Characteristics -10 -8 -6 V -4.5 V -3.5 V -6 Drain Current Maximum Safe Operation Area 10 µs 10 0µ s PW 1 ms =1 0m DC s -100 -4 -2 VGS = -2.5 V 0 -2 -4 -6 Drain to Source Voltage -8 -10 V DS (V) Note 5 : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm) Drain to Source Saturation Voltage vs. Gate to Source Voltage Typical Transfer Characteristics -1 V DS = -10 V Pulse Test -8 -6 -4 -2 Tc = 75°C 0 25°C −25°C -1 -2 -3 -4 -5 Gate to Source Voltage V GS (V) Rev.8, Aug. 2002, page 8 of 14 Drain to Source Saturation Voltage V DS(on) (V) Drain Current ID (A) -10 Pulse Test -0.8 -0.6 -0.4 I D = -5 A -0.2 -2 A -1 A 0 -15 -5 -10 -20 Gate to Source Voltage V GS (V) HAT3010R Drain to Source On State Resistance R DS(on) (mΩ ) 1.0 Pulse Test 0.5 0.20 0.2 0.1 0.05 -10 V 0.05 -3 -10 Drain Current -30 -100 10 Tc = -25°C 25°C 75°C 2 V DS = -10 V Pulse Test 0.5 -0.1 -0.3 -1 -3 -10 -30 Drain Current I D (A) -100 –5 A –10 V –1, –2 A 0 40 80 120 160 Case Temperature Tc (°C) Body-Drain Diode Reverse Recovery Time 1000 Reverse Recovery Time trr (ns) Forward Transfer Admittance vs. Drain Current 1 0 –40 I D (A) 20 5 V GS = –4.5 V 0.10 0.01 -1 50 –5 A I D = -1, –2 A 0.15 VGS = -4.5 V 0.02 Forward Transfer Admittance |yfs| (S) Static Drain to Source on State Resistance vs. Temperature 0.25 Pulse Test Static Drain to Source on State Resistance R DS(on) (Ω ) Static Drain to Source on State Resistance vs. Drain Current 500 di / dt = 100 A / µs V GS = 0, Ta = 25°C 200 100 50 20 10 -0.1 -0.3 -1 -3 -10 -30 -100 Reverse Drain Current I DR (A) Rev.8, Aug. 2002, page 9 of 14 HAT3010R Typical Capacitance vs. Drain to Source Voltage Ciss 500 -4 I D = -5 A -8 -40 200 Coss 100 50 Crss VGS = 0 f = 1 MHz 20 10 0 -10 -20 -30 -40 -50 Drain to Source Voltage V DS (V) -100 tf 3 1 -0.1 V GS = -10 V, VDD = -30 V PW = 5 µs, duty < 1 % -0.3 -1 -3 -10 -30 Drain Current I D (A) Rev.8, Aug. 2002, page 10 of 14 -100 Reverse Drain Current I DR (A) tr t d(on) 10 8 -16 16 24 32 Gate Charge Qg (nc) -20 40 -10 300 30 0 -12 Reverse Drain Current vs. Source to Drain Voltage 1000 t d(off) V GS V DD = -10 V -25 V -50 V -80 Switching Characteristics 100 V DS -60 Pulse Test -8 -10 V -6 -4 -5 V V GS = 0, 5 V -2 0 -0.4 -0.8 -1.2 Source to Drain Voltage -1.6 -2.0 V SD (V) V GS (V) 0 V DD= -10 V -25 V -50 V -20 1000 Switching Time t (ns) 0 Gate to Source Voltage Capacitance C (pF) 2000 Drain to Source Voltage DSV DS (V) Dynamic Input Characteristics 5000 HAT3010R Power vs. Temperature Derating Test Condition : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW < 10 s 3.0 2.0 2 Dr ive Dr Op er ion ive at er 1 1.0 Op Channel Dissipation Pch (W) 4.0 0 50 at ion 100 Ambient Temperature 150 200 Ta (°C) Rev.8, Aug. 2002, page 11 of 14 HAT3010R Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation) Normalized Transient Thermal Impedance γ s (t) 10 D=1 1 0.1 0.05 θ ch - f(t) = γs (t) x θ ch - f θ ch - f = 125°C/W, Ta = 25°C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 0.01 e uls p ot PDM h 1s 0.001 D= PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 10 Pulse Width PW (S) 100 1000 10000 Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation) Normalized Transient Thermal Impedance γ s (t) 10 1 D=1 0.5 0.2 0.1 0.01 0.1 0.05 θ ch - f(t) = γs (t) x θ ch - f θ ch - f = 166°C/W, Ta = 25°C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 lse 0.001 PDM u tp ho 1s D= PW T PW T 0.0001 10 µ 100 µ Rev.8, Aug. 2002, page 12 of 14 1m 10 m 100 m 1 10 Pulse Width PW (S) 100 1000 10000 HAT3010R Package Dimensions As of January, 2002 Unit: mm 3.95 4.90 5.3 Max 5 8 *0.22 ± 0.03 0.20 ± 0.03 4 1.75 Max 1 0.75 Max + 0.10 6.10 – 0.30 1.08 0.14 – 0.04 *0.42 ± 0.08 0.40 ± 0.06 + 0.11 0˚ – 8˚ 1.27 + 0.67 0.60 – 0.20 0.15 0.25 M *Dimension including the plating thickness Base material dimension Hitachi Code JEDEC JEITA Mass (reference value) FP-8DA Conforms — 0.085 g Rev.8, Aug. 2002, page 13 of 14 HAT3010R Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109 URL http://www.hitachisemiconductor.com/ For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel : <65>-6538-6533/6538-8577 Fax : <65>-6538-6933/6538-3877 URL : http://semiconductor.hitachi.com.sg Hitachi Europe GmbH Electronic Components Group Dornacher Str 3 D-85622 Feldkirchen Postfach 201, D-85619 Feldkirchen Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://semiconductor.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel : <852>-2735-9218 Fax : <852>-2730-0281 URL : http://semiconductor.hitachi.com.hk Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan. Colophon 7.0 Rev.8, Aug. 2002, page 14 of 14