HAT2126RP Silicon N Channel Power MOS FET with Schottky Barrier Diode High Speed Power Switching ADE-208-1576D (Z) 5th. Edition Dec. 2002 Features • • • • Low on-resistance Capable of 4.5 V gate drive High density mounting Built-in Schottky Barrier Diode Outline HSOP-11 10 11 9 8 7 1 1 D 2 G 2 6 5 34 7 8 D D 3 G 4, 5, 6, 9, 10 , 11 2, 3 1, 7, 8 S S S 9 10 11 MOS1 S S S 4 5 6 MOS2 and Schottky Barrier Diode Source Gate Drain HAT2126RP Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit MOS1 MOS2 & SBD Drain to source voltage VDSS 30 30 V Gate to source voltage VGSS ±20 ±12 V Drain current ID 12 16 A Drain peak current Note1 ID(pulse) 96 128 A Reverse drain current IDR 12 16 A Channel dissipation Pch Note2 2.0 3.5 W Channel temperature Tch 150 150 °C Storage temperature Tstg –55 to +150 –55 to +150 °C Notes: 1. PW ≤ 10µs, duty cycle ≤ 1 % 2. 1 Drive operation; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW ≤ 10s Rev.4, Dec. 2002, page 2 of 15 HAT2126RP Electrical Characteristics (Ta = 25°C) • MOS1 Item Symbol Min Drain to source breakdown voltage V(BR)DSS 30 Typ Max Unit Test Conditions — — V ID = 10mA, VGS = 0 Gate to source breakdown voltage V(BR)GSS ±20 — — V IG = ±100µA, VDS = 0 Gate to source leak current IGSS — — ±10 µA VGS = ±16V, VDS = 0 Zero gate voltage drain current IDSS — — 1 µA VDS = 30V, VGS = 0 Gate to source cutoff voltage VGS(off) 1.0 — 2.5 V VDS = 10V, I D = 1mA Static drain to source on state RDS(on) — 10 13 mΩ ID = 6A, VGS = 10V Note3 resistance RDS(on) — 18 27 mΩ ID = 6A, VGS = 4.5V Note3 Forward transfer admittance |yfs| 12 20 — S ID = 6A, VDS = 10V Note3 Input capacitance Ciss — 1000 — pF VDS = 10V Output capacitance Coss — 280 — pF VGS = 0 Reverse transfer capacitance Crss — 160 — pF f = 1MHz Total gate charge Qg — 9 — nc VDD = 10 V Gate to source charge Qgs — 3.6 — nc VGS = 5 V Gate to drain charge Qgd — 3.2 — nc ID = 16 A Turn-on delay time td(on) — 12 — ns VGS =10V, ID = 6A Rise time tr — 22 — ns VDD ≈ 10V Turn-off delay time td(off) — 55 — ns RL = 1.67Ω Fall time tf — 9 — ns Rg = 4.7Ω Body–drain diode forward voltage VDF — 0.82 1.07 V IF = 12A, VGS = 0 Note3 Body–drain diode reverse recovery time trr — 25 — ns IF =12A, VGS = 0 diF/ dt =50A/µs Notes: 3. Pulse test Rev.4, Dec. 2002, page 3 of 15 HAT2126RP • MOS2 & Schottky Barrier Diode Item Symbol Min Typ Max Unit Test Conditions — — V ID = 10mA, VGS = 0 V(BR)GSS ±12 — — V IG = ±100µA, VDS = 0 Gate to source leak current IGSS — — ±10 µA VGS = ±10V, VDS = 0 Zero gate voltage drain current IDSS — — 1 mA VDS = 30V, VGS = 0 Gate to source cutoff voltage VGS(off) 1.4 — 2.5 V VDS = 10V, I D =1mA Static drain to source on state RDS(on) — 5.6 7.3 mΩ ID = 8A, VGS = 10V Note3 resistance RDS(on) — 7.3 9.5 mΩ ID = 8A, VGS = 4.5V Note3 Forward transfer admittance |yfs| 25 41 — S ID = 8A, VDS = 10V Note3 Input capacitance Ciss — 3800 — pF VDS = 10V Output capacitance Coss — 745 — pF VGS = 0 Reverse transfer capacitance Crss — 300 — pF f = 1MHz Total gate charge Qg — 34 — nc VDD = 10 V Gate to source charge Qgs — 10 — nc VGS = 5 V Gate to drain charge Qgd — 8 — nc ID = 16 A Turn-on delay time td(on) — 18 — ns VGS = 10V, ID = 8A Rise time tr — 22 — ns VDD ≈ 10V Turn-off delay time td(off) — 88 — ns RL = 1.25Ω Fall time tf — 9.0 — ns Rg = 4.7Ω Schottky Barrier diode forward voltage VF — 0.5 — V IF = 3.5A, VGS = 0 Note3 Body–drain diode reverse recovery time trr — 35 — ns IF = 16A, VGS = 0 diF/ dt =50A/µs Drain to source breakdown voltage V(BR)DSS Gate to source breakdown voltage Notes: 3. Pulse test Rev.4, Dec. 2002, page 4 of 15 30 HAT2126RP Main Characteristics • MOS1 Power vs. Temperature Derating 1000 3.0 2.0 1.0 0 I D (A) Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s 50 100 Ambient Temperature 150 200 10 V PW 10 DC =1 s s 0m Op 0µ 1m s( 1s ho t) tio n( Operation in this PW N ≤ 1 ote area is limited 0s 4 0.1 by RDS(on) ) 1 era Ta = 25°C 0.01 1 shot Pulse 0.1 1 10 100 Drain to Source Voltage V DS (V) Note 4 : When using the glass epoxy board (FR4 40x40x1.6 mm) Ta (°C) Typical Transfer Characteristics 20 V DS = 10 V Pulse Test 3.4 V 10 3V Drain Current I D (A) I D (A) 4V Drain Current 10 µs 10 Typical Output Characteristics 20 Maximum Safe Operation Area 100 Drain Current Channel Dissipation Pch (W) 4.0 10 Tc = 75°C 25°C Pulse Test 0 VGS = 2.5 V 0.5 1.0 Drain to Source Voltage V DS (V) −25°C 0 1 2 3 Gate to Source Voltage 4 5 V GS (V) Rev.4, Dec. 2002, page 5 of 15 Static Drain to Source on State Resistance R DS(on) (m Ω) 120 I D = 10 A 80 5A 40 2A 12 4 8 Gate to Source Voltage 16 20 V GS (V) Static Drain to Source on State Resistance vs. Temperature 50 Pulse Test 40 10 A 30 20 I D = 2 A, 5 A V GS = 4.5 V 10 10 V 0 -40 2 A, 5 A, 10 A 0 40 80 120 160 Case Temperature Tc (°C) Rev.4, Dec. 2002, page 6 of 15 RDS(on) (mΩ) Pulse Test 160 0 Static Drain to Source on State Resistance vs. Drain Current 100 Pulse Test Drain to Source On State Resistance 200 Drain to Source Saturation Voltage vs Gate to Source Voltage Forward Transfer Admittance |yfs| (S) Drain to Source Voltage V DS(on) (mV) HAT2126RP V GS = 4.5 V 10 10 V 0.1 1 100 10 Drain Current 100 I D (A) Forward Transfer Admittance vs. Drain Current 50 20 Tc = –25°C 10 5 25°C 2 1 75°C 0.5 V DS = 10 V Pulse Test 0.2 0.1 0.1 0.2 0.5 1 2 5 10 20 Drain Current I D (A) 50 100 Typical Capacitance vs. Drain to Source Voltage Body-Drain Diode Reverse Recovery Time 100 10000 VGS = 0 f = 1 MHz 5000 Capacitance C (pF) Reverse Recovery Time trr (ns) HAT2126RP 50 20 10 0.1 di / dt = 50 A / µs V GS = 0, Ta = 25°C 2000 Ciss 1000 500 Coss 200 100 Crss 50 20 10 0 0.3 1 3 10 30 100 Reverse Drain Current I DR (A) 12 VDS 10 0 8 VDD = 25 V 10 V 5V 8 16 24 Gate Charge 4 32 Qg (nC) 0 40 V GS (V) 16 20 25 30 V GS = 10 V, V DD = 10 V 500 Rg =4.7 Ω, duty ≤ 1 % Switching Time t (ns) 30 VGS VDD = 5 V 10 V 25 V 20 Switching Characteristics Gate to Source Voltage V DS (V) Drain to Source Voltage 40 15 1000 20 I D = 12 A 10 Drain to Source Voltage V DS (V) Dynamic Input Characteristics 50 5 200 100 t d(off) 50 tr 20 t d(on) 10 5 tf 2 1 5 10 20 50 100 0.1 0.2 0.5 1 2 Drain Current I D (A) Rev.4, Dec. 2002, page 7 of 15 HAT2126RP Reverse Drain Current vs. Source to Drain Voltage Reverse Drain Current IDR (A) 20 10 V 5V V GS = 0V, -5 V 10 Pulse Test 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 V SD (V) Normalized Transient Thermal Impedance vs. Pulse Width Normalized Transient Thermal Impedance γ s (t) 10 1 D=1 0.5 0.1 0.01 0.2 0.1 0.05 θ ch - f(t) = γ s (t) x θ ch - f θ ch - f = 110°C/W, Ta = 25°C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 0.001 t sho lse PDM pu D= 1 PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 Pulse Width PW (S) Rev.4, Dec. 2002, page 8 of 15 10 100 1000 10000 HAT2126RP • MOS2 & Schottky Barrier Diode Power vs. Temperature Derating Maximum Safe Operation Area 500 Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s I D (A) 10 µs 6.0 100 10 Drain Current Channel Dissipation Pch (W) 8.0 4.0 2.0 10 DC PW Op era tio 0µ s 1m s =1 0m n( PW 1 Operation in this area is 0.1 limited by R DS(on) s < 1Note 0s 4 ) Ta = 25°C 1 shot Pulse 0 50 100 Ambient Temperature 150 200 Ta (°C) 0.01 0.1 0.3 1 3 10 30 100 Drain to Source Voltage V DS (V) Note 4 : When using the glass epoxy board (FR4 40x40x1.6 mm) Typical Output Characteristics 2.3 V (A) 4V V DS = 10 V Pulse Test Pulse Test ID 40 Typical Transfer Characteristics 50 10 V 30 Drain Current Drain Current I D (A) 50 2.1 V 20 10 V GS = 1.9 V 40 30 20 10 Tc = 75°C 25°C -25°C 0 2 4 6 Drain to Source Voltage 8 V DS (V) 10 0 1 2 3 Gate to Source Voltage 5 4 V GS (V) Rev.4, Dec. 2002, page 9 of 15 HAT2126RP Static Drain to Source on State Resistance vs. Drain Current 100 Pulse Test 50 0.08 I D = 10 A 0.04 5A 0.02 Static Drain to Source on State Resistance R DS(on) (m Ω) 0 2A 4 8 12 Gate to Source Voltage 16 20 V GS (V) Static Drain to Source on State Resistance vs. Temperature 20 Pulse Test 16 I D = 2 A, 5 A, 10 A 12 V GS = 4.5 V 8 4 0 -40 2 A, 5 A, 10 A 10 V 0 40 80 120 160 Case Temperature Tc (°C) Rev.4, Dec. 2002, page 10 of 15 Drain to Source On State Resistance R DS(on) (m Ω) 0.06 Pulse Test 20 VGS = 4.5 V 10 5 10 V 2 1 0.1 0.2 0.5 1 2 5 10 20 50 100 Drain Current I D (A) Forward Transfer Admittance vs. Drain Current Forward Transfer Admittance |yfs| (S) V DS(on) (V) 0.10 Drain to Source Voltage Drain to Source Saturation Voltage vs. Gate to Source Voltage 100 30 Tc = -25°C 10 75°C 25 °C 3 1 0.3 0.1 0.1 V DS = 10 V Pulse Test 0.3 1 3 10 30 Drain Current I D (A) 100 HAT2126RP Body - Drain Diode Reverse Recovery Time Typical Capacitance vs. Drain to Source Voltage 10000 Ciss Capacitance C (pF) Reverse Recovery Time trr (ns) 100 50 20 3000 1000 300 Crss 100 30 di/dt = 50 A/µs VGS = 0, Ta = 25˚C 10 0.1 0.2 0.5 1 2 Reverse Drain Current Coss VGS = 0 f = 1 MHz 10 5 10 20 I DR (A) 0 10 20 10 0 12 V DS V DD= 25 V 10 V 5V V DD= 25 V 10 V 5V 20 40 60 80 Gate Charge Qg (nc) 50 8 4 0 100 V GS (V) t d(off) 100 Switching Time t (ns) V GS 30 40 Switching Characteristics 16 40 30 200 20 I D = 16 A Gate to Source Voltage Drain to Source Voltage V DS (V) Dynamic Input Characteristics 50 20 Drain to Source Voltage V DS (V) 50 tf tr 20 t d(on) 10 5 V GS = 10 V , VDS = 10 V Rg = 4.7 Ω, duty < 1 % 2 0.1 0.2 0.5 1 2 Drain Current 5 10 I D (A) 20 Rev.4, Dec. 2002, page 11 of 15 HAT2126RP Reverse Drain Current vs. Source to Drain Voltage Reverse Drain Current I DR (A) 20 16 12 10 V 5V 8 V GS = 0 4 Pulse Test 0 0.2 0.4 0.6 Source to Drain Voltage 0.8 1.0 V SD (V) Normalized Transient Thermal Impedance vs. Pulse Width Normalized Transient Thermal Impedance γ s (t) 10 1 D=1 0.5 0.1 0.01 0.2 0.1 0.05 θ ch - f(t) = γ s (t) x θ ch - f θ ch - f = 90.0°C/W, Ta = 25°C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 PDM lse 0.001 u tp D= o 1sh PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 Pulse Width PW (S) Rev.4, Dec. 2002, page 12 of 15 10 100 1000 1000 HAT2126RP Switching Time Test Circuit Switching Time Waveform Vout Monitor Vin Monitor Rg 90% D.U.T. RL Vin Vin 10 V V DS = 10 V Vout 10% 10% 10% 90% td(on) tr 90% td(off) tf Rev.4, Dec. 2002, page 13 of 15 HAT2126RP Package Dimensions 8.65 9.05MAX 0.75MAX 6.10 +0.10 –0.30 0.20±0.05 1.27MAX 1.75MAX 3.95 Unit: mm 1.08 1.27 1.905 0.14 +0.11 –0.04 0˚ – 8˚ 1.67±0.06 0.60 +0.67 –0.20 0.40±0.06 0.15 0.25 M Rev.4, Dec. 2002, page 14 of 15 Hitachi Code JEDEC JEITA Mass (reference value) FP-11DTV — — 0.165 g HAT2126RP Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109 URL http://www.hitachisemiconductor.com/ For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel : <65>-6538-6533/6538-8577 Fax : <65>-6538-6933/6538-3877 URL : http://semiconductor.hitachi.com.sg Hitachi Europe GmbH Electronic Components Group Dornacher Str 3 D-85622 Feldkirchen Postfach 201, D-85619 Feldkirchen Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://semiconductor.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel : <852>-2735-9218 Fax : <852>-2730-0281 URL : http://semiconductor.hitachi.com.hk Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan. Colophon 7.0 Rev.4, Dec. 2002, page 15 of 15