ETC HAT2126RP

HAT2126RP
Silicon N Channel Power MOS FET with Schottky Barrier Diode
High Speed Power Switching
ADE-208-1576D (Z)
5th. Edition
Dec. 2002
Features
•
•
•
•
Low on-resistance
Capable of 4.5 V gate drive
High density mounting
Built-in Schottky Barrier Diode
Outline
HSOP-11
10
11
9
8
7
1
1
D
2
G
2
6
5
34
7 8
D D
3
G
4, 5, 6, 9, 10 , 11
2, 3
1, 7, 8
S S S
9 10 11
MOS1
S S S
4 5 6
MOS2 and
Schottky Barrier Diode
Source
Gate
Drain
HAT2126RP
Absolute Maximum Ratings
(Ta = 25°C)
Item
Symbol
Ratings
Unit
MOS1
MOS2 & SBD
Drain to source voltage
VDSS
30
30
V
Gate to source voltage
VGSS
±20
±12
V
Drain current
ID
12
16
A
Drain peak current
Note1
ID(pulse)
96
128
A
Reverse drain current
IDR
12
16
A
Channel dissipation
Pch Note2
2.0
3.5
W
Channel temperature
Tch
150
150
°C
Storage temperature
Tstg
–55 to +150
–55 to +150
°C
Notes: 1. PW ≤ 10µs, duty cycle ≤ 1 %
2. 1 Drive operation; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW ≤ 10s
Rev.4, Dec. 2002, page 2 of 15
HAT2126RP
Electrical Characteristics
(Ta = 25°C)
• MOS1
Item
Symbol Min
Drain to source breakdown voltage V(BR)DSS
30
Typ
Max
Unit
Test Conditions
—
—
V
ID = 10mA, VGS = 0
Gate to source breakdown voltage
V(BR)GSS ±20
—
—
V
IG = ±100µA, VDS = 0
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16V, VDS = 0
Zero gate voltage drain current
IDSS
—
—
1
µA
VDS = 30V, VGS = 0
Gate to source cutoff voltage
VGS(off)
1.0
—
2.5
V
VDS = 10V, I D = 1mA
Static drain to source on state
RDS(on)
—
10
13
mΩ
ID = 6A, VGS = 10V Note3
resistance
RDS(on)
—
18
27
mΩ
ID = 6A, VGS = 4.5V Note3
Forward transfer admittance
|yfs|
12
20
—
S
ID = 6A, VDS = 10V Note3
Input capacitance
Ciss
—
1000
—
pF
VDS = 10V
Output capacitance
Coss
—
280
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
160
—
pF
f = 1MHz
Total gate charge
Qg
—
9
—
nc
VDD = 10 V
Gate to source charge
Qgs
—
3.6
—
nc
VGS = 5 V
Gate to drain charge
Qgd
—
3.2
—
nc
ID = 16 A
Turn-on delay time
td(on)
—
12
—
ns
VGS =10V, ID = 6A
Rise time
tr
—
22
—
ns
VDD ≈ 10V
Turn-off delay time
td(off)
—
55
—
ns
RL = 1.67Ω
Fall time
tf
—
9
—
ns
Rg = 4.7Ω
Body–drain diode forward voltage
VDF
—
0.82
1.07
V
IF = 12A, VGS = 0 Note3
Body–drain diode reverse
recovery time
trr
—
25
—
ns
IF =12A, VGS = 0
diF/ dt =50A/µs
Notes: 3. Pulse test
Rev.4, Dec. 2002, page 3 of 15
HAT2126RP
• MOS2 & Schottky Barrier Diode
Item
Symbol Min
Typ
Max
Unit
Test Conditions
—
—
V
ID = 10mA, VGS = 0
V(BR)GSS ±12
—
—
V
IG = ±100µA, VDS = 0
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±10V, VDS = 0
Zero gate voltage drain current
IDSS
—
—
1
mA
VDS = 30V, VGS = 0
Gate to source cutoff voltage
VGS(off)
1.4
—
2.5
V
VDS = 10V, I D =1mA
Static drain to source on state
RDS(on)
—
5.6
7.3
mΩ
ID = 8A, VGS = 10V Note3
resistance
RDS(on)
—
7.3
9.5
mΩ
ID = 8A, VGS = 4.5V Note3
Forward transfer admittance
|yfs|
25
41
—
S
ID = 8A, VDS = 10V Note3
Input capacitance
Ciss
—
3800
—
pF
VDS = 10V
Output capacitance
Coss
—
745
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
300
—
pF
f = 1MHz
Total gate charge
Qg
—
34
—
nc
VDD = 10 V
Gate to source charge
Qgs
—
10
—
nc
VGS = 5 V
Gate to drain charge
Qgd
—
8
—
nc
ID = 16 A
Turn-on delay time
td(on)
—
18
—
ns
VGS = 10V, ID = 8A
Rise time
tr
—
22
—
ns
VDD ≈ 10V
Turn-off delay time
td(off)
—
88
—
ns
RL = 1.25Ω
Fall time
tf
—
9.0
—
ns
Rg = 4.7Ω
Schottky Barrier diode forward
voltage
VF
—
0.5
—
V
IF = 3.5A, VGS = 0 Note3
Body–drain diode reverse
recovery time
trr
—
35
—
ns
IF = 16A, VGS = 0
diF/ dt =50A/µs
Drain to source breakdown voltage V(BR)DSS
Gate to source breakdown voltage
Notes: 3. Pulse test
Rev.4, Dec. 2002, page 4 of 15
30
HAT2126RP
Main Characteristics
• MOS1
Power vs. Temperature Derating
1000
3.0
2.0
1.0
0
I D (A)
Test Condition :
When using the glass epoxy board
(FR4 40x40x1.6 mm), PW < 10 s
50
100
Ambient Temperature
150
200
10 V
PW
10
DC
=1
s
s
0m
Op
0µ
1m
s(
1s
ho
t)
tio
n(
Operation in this PW N
≤ 1 ote
area is limited
0s 4
0.1 by RDS(on)
)
1
era
Ta = 25°C
0.01 1 shot Pulse
0.1
1
10
100
Drain to Source Voltage V DS (V)
Note 4 :
When using the glass epoxy board
(FR4 40x40x1.6 mm)
Ta (°C)
Typical Transfer Characteristics
20
V DS = 10 V
Pulse Test
3.4 V
10
3V
Drain Current
I D (A)
I D (A)
4V
Drain Current
10 µs
10
Typical Output Characteristics
20
Maximum Safe Operation Area
100
Drain Current
Channel Dissipation
Pch (W)
4.0
10
Tc = 75°C
25°C
Pulse Test
0
VGS = 2.5 V
0.5
1.0
Drain to Source Voltage V DS (V)
−25°C
0
1
2
3
Gate to Source Voltage
4
5
V GS (V)
Rev.4, Dec. 2002, page 5 of 15
Static Drain to Source on State Resistance
R DS(on) (m Ω)
120
I D = 10 A
80
5A
40
2A
12
4
8
Gate to Source Voltage
16
20
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
50
Pulse Test
40
10 A
30
20
I D = 2 A, 5 A
V GS = 4.5 V
10
10 V
0
-40
2 A, 5 A, 10 A
0
40
80
120
160
Case Temperature Tc (°C)
Rev.4, Dec. 2002, page 6 of 15
RDS(on) (mΩ)
Pulse Test
160
0
Static Drain to Source on State Resistance
vs. Drain Current
100
Pulse Test
Drain to Source On State Resistance
200
Drain to Source Saturation Voltage vs
Gate to Source Voltage
Forward Transfer Admittance |yfs| (S)
Drain to Source Voltage V DS(on) (mV)
HAT2126RP
V GS = 4.5 V
10
10 V
0.1
1
100
10
Drain Current
100
I D (A)
Forward Transfer Admittance vs.
Drain Current
50
20
Tc = –25°C
10
5
25°C
2
1
75°C
0.5
V DS = 10 V
Pulse Test
0.2
0.1
0.1 0.2 0.5 1
2
5 10 20
Drain Current
I D (A)
50 100
Typical Capacitance vs.
Drain to Source Voltage
Body-Drain Diode Reverse
Recovery Time
100
10000
VGS = 0
f = 1 MHz
5000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
HAT2126RP
50
20
10
0.1
di / dt = 50 A / µs
V GS = 0, Ta = 25°C
2000
Ciss
1000
500
Coss
200
100
Crss
50
20
10
0
0.3
1
3
10
30
100
Reverse Drain Current I DR (A)
12
VDS
10
0
8
VDD = 25 V
10 V
5V
8
16
24
Gate Charge
4
32
Qg (nC)
0
40
V GS (V)
16
20
25
30
V GS = 10 V, V DD = 10 V
500 Rg =4.7 Ω, duty ≤ 1 %
Switching Time t (ns)
30
VGS
VDD = 5 V
10 V
25 V
20
Switching Characteristics
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
40
15
1000
20
I D = 12 A
10
Drain to Source Voltage V DS (V)
Dynamic Input Characteristics
50
5
200
100
t d(off)
50
tr
20
t d(on)
10
5
tf
2
1
5 10 20 50 100
0.1 0.2 0.5 1 2
Drain Current I D (A)
Rev.4, Dec. 2002, page 7 of 15
HAT2126RP
Reverse Drain Current vs.
Source to Drain Voltage
Reverse Drain Current IDR (A)
20
10 V
5V
V GS = 0V, -5 V
10
Pulse Test
0
0.4
0.8
1.2
Source to Drain Voltage
1.6
2.0
V SD (V)
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
10
1
D=1
0.5
0.1
0.01
0.2
0.1
0.05
θ ch - f(t) = γ s (t) x θ ch - f
θ ch - f = 110°C/W, Ta = 25°C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.02
0.01
0.001
t
sho
lse
PDM
pu
D=
1
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
Pulse Width PW (S)
Rev.4, Dec. 2002, page 8 of 15
10
100
1000
10000
HAT2126RP
• MOS2 & Schottky Barrier Diode
Power vs. Temperature Derating
Maximum Safe Operation Area
500
Test Condition :
When using the glass epoxy board
(FR4 40x40x1.6 mm), PW < 10 s
I D (A)
10 µs
6.0
100
10
Drain Current
Channel Dissipation
Pch (W)
8.0
4.0
2.0
10
DC
PW
Op
era
tio
0µ
s
1m
s
=1
0m
n(
PW
1
Operation in
this area is
0.1 limited by R DS(on)
s
< 1Note
0s 4
)
Ta = 25°C
1 shot Pulse
0
50
100
Ambient Temperature
150
200
Ta (°C)
0.01
0.1 0.3
1
3
10
30
100
Drain to Source Voltage V DS (V)
Note 4 :
When using the glass epoxy board
(FR4 40x40x1.6 mm)
Typical Output Characteristics
2.3 V
(A)
4V
V DS = 10 V
Pulse Test
Pulse Test
ID
40
Typical Transfer Characteristics
50
10 V
30
Drain Current
Drain Current
I D (A)
50
2.1 V
20
10
V GS = 1.9 V
40
30
20
10
Tc = 75°C
25°C
-25°C
0
2
4
6
Drain to Source Voltage
8
V DS (V)
10
0
1
2
3
Gate to Source Voltage
5
4
V GS (V)
Rev.4, Dec. 2002, page 9 of 15
HAT2126RP
Static Drain to Source on State Resistance
vs. Drain Current
100
Pulse Test
50
0.08
I D = 10 A
0.04
5A
0.02
Static Drain to Source on State Resistance
R DS(on) (m Ω)
0
2A
4
8
12
Gate to Source Voltage
16
20
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
20
Pulse Test
16
I D = 2 A, 5 A, 10 A
12
V GS = 4.5 V
8
4
0
-40
2 A, 5 A, 10 A
10 V
0
40
80
120
160
Case Temperature Tc (°C)
Rev.4, Dec. 2002, page 10 of 15
Drain to Source On State Resistance
R DS(on) (m Ω)
0.06
Pulse Test
20
VGS = 4.5 V
10
5
10 V
2
1
0.1 0.2 0.5 1 2
5 10 20 50 100
Drain Current I D (A)
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |yfs| (S)
V DS(on) (V)
0.10
Drain to Source Voltage
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
100
30
Tc = -25°C
10
75°C
25 °C
3
1
0.3
0.1
0.1
V DS = 10 V
Pulse Test
0.3
1
3
10
30
Drain Current I D (A)
100
HAT2126RP
Body - Drain Diode Reverse
Recovery Time
Typical Capacitance vs.
Drain to Source Voltage
10000
Ciss
Capacitance C (pF)
Reverse Recovery Time trr (ns)
100
50
20
3000
1000
300
Crss
100
30
di/dt = 50 A/µs
VGS = 0, Ta = 25˚C
10
0.1 0.2
0.5 1
2
Reverse Drain Current
Coss
VGS = 0
f = 1 MHz
10
5 10 20
I DR (A)
0
10
20
10
0
12
V DS
V DD= 25 V
10 V
5V
V DD= 25 V
10 V
5V
20
40
60
80
Gate Charge Qg (nc)
50
8
4
0
100
V GS (V)
t d(off)
100
Switching Time t (ns)
V GS
30
40
Switching Characteristics
16
40
30
200
20
I D = 16 A
Gate to Source Voltage
Drain to Source Voltage
V DS (V)
Dynamic Input Characteristics
50
20
Drain to Source Voltage V DS (V)
50
tf
tr
20
t d(on)
10
5
V GS = 10 V , VDS = 10 V
Rg = 4.7 Ω, duty < 1 %
2
0.1 0.2
0.5 1
2
Drain Current
5 10
I D (A)
20
Rev.4, Dec. 2002, page 11 of 15
HAT2126RP
Reverse Drain Current vs.
Source to Drain Voltage
Reverse Drain Current I DR (A)
20
16
12
10 V
5V
8
V GS = 0
4
Pulse Test
0
0.2
0.4
0.6
Source to Drain Voltage
0.8
1.0
V SD (V)
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
10
1
D=1
0.5
0.1
0.01
0.2
0.1
0.05
θ ch - f(t) = γ s (t) x θ ch - f
θ ch - f = 90.0°C/W, Ta = 25°C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.02
0.01
PDM
lse
0.001
u
tp
D=
o
1sh
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
Pulse Width PW (S)
Rev.4, Dec. 2002, page 12 of 15
10
100
1000
1000
HAT2126RP
Switching Time Test Circuit
Switching Time Waveform
Vout
Monitor
Vin Monitor
Rg
90%
D.U.T.
RL
Vin
Vin
10 V
V DS
= 10 V
Vout
10%
10%
10%
90%
td(on)
tr
90%
td(off)
tf
Rev.4, Dec. 2002, page 13 of 15
HAT2126RP
Package Dimensions
8.65
9.05MAX
0.75MAX
6.10 +0.10
–0.30
0.20±0.05
1.27MAX
1.75MAX
3.95
Unit: mm
1.08
1.27
1.905
0.14 +0.11
–0.04
0˚ – 8˚
1.67±0.06
0.60 +0.67
–0.20
0.40±0.06
0.15
0.25 M
Rev.4, Dec. 2002, page 14 of 15
Hitachi Code
JEDEC
JEITA
Mass (reference value)
FP-11DTV
—
—
0.165 g
HAT2126RP
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL
http://www.hitachisemiconductor.com/
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe Ltd.
Electronic Components Group
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00
Singapore 049318
Tel : <65>-6538-6533/6538-8577
Fax : <65>-6538-6933/6538-3877
URL : http://semiconductor.hitachi.com.sg
Hitachi Europe GmbH
Electronic Components Group
Dornacher Str 3
D-85622 Feldkirchen
Postfach 201, D-85619 Feldkirchen
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road
Hung-Kuo Building
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://semiconductor.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon Hong Kong
Tel : <852>-2735-9218
Fax : <852>-2730-0281
URL : http://semiconductor.hitachi.com.hk
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.
Colophon 7.0
Rev.4, Dec. 2002, page 15 of 15