a LC2MOS Latchable 4-/8-Channel High Performance Analog Multiplexers ADG428/ADG429 FEATURES 44 V Supply Maximum Ratings V SS to VDD Analog Signal Range Low On Resistance (60 ⍀ typ) Low Power Consumption (1.6 mW max) Low Charge Injection (<4 pC typ) Fast Switching Break-Before-Make Switching Action Plug-In Replacement for DG428/DG429 APPLICATIONS Automatic Test Equipment Data Acquisition Systems Communication Systems Avionics and Military Systems Microprocessor Controlled Analog Systems Medical Instrumentation FUNCTIONAL BLOCK DIAGRAMS ADG428 ADG429 S1A S1 DA S4A D S1B DB S4B S8 DECODERS/DRIVERS DECODERS/DRIVERS LATCHES LATCHES WR RS A2 A1 A0 WR EN RS A1 A0 EN GENERAL DESCRIPTION PRODUCT HIGHLIGHTS The ADG428 and ADG429 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels respectively. On-chip address and control latches facilitate microprocessor interfacing. The ADG428 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG429 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF. All the control inputs, address and enable inputs are TTL compatible over the full specified operating temperature range. This makes the part suitable for bus-controlled systems such as data acquisition systems, process controls, avionics and ATEs because the TTLcompatible address latches simplify the digital interface design and reduce the board space required. 1. Extended Signal Range The ADG428/ADG429 are fabricated on an enhanced LC2MOS process, giving an increased signal range that extends to the supply rails. 2. Low Power Dissipation 3. Low RON 4. Single/Dual Supply Operation 5. Single Supply Operation For applications where the analog signal is unipolar, the ADG428/ADG429 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V. The ADG428/ADG429 are designed on an enhanced LC2MOS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs. The ADG428/ADG429 are improved replacements for the DG428/DG429 Analog Multiplexers. REV. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999 ADG428/ADG429–SPECIFICATIONS DUAL SUPPLY1 (V DD = +15 V, VSS = –15 V, GND = 0 V, WR = 0 V, RS = 2.4 V unless otherwise noted) Parameter ANALOG SWITCH Analog Signal Range RON ∆RON LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage ID (OFF) ADG428 ADG429 Channel ON Leakage ID, IS (ON) ADG428 ADG429 DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current IINL or I INH CIN, Digital Input Capacitance B Version –40ⴗC to +25ⴗC +85ⴗC VSS to VDD 60 100 10 tW, Write Pulsewidth tS, Address, Enable Setup Time tH, Address, Enable Hold Time tRS, Reset Pulsewidth Charge Injection OFF Isolation Channel-to-Channel Crosstalk CS (OFF) CD (OFF) ADG428 ADG429 CD, CS (ON) ADG428 ADG429 POWER REQUIREMENTS IDD ISS 125 V Ω typ Ω max % max Test Conditions/Comments VD = ± 10 V, IS = –1 mA –10 V < VS < 10 V, IS = –1 mA ± 0.03 ± 0.3 ± 0.5 ± 50 nA typ nA max ± 0.07 ±1 ± 0.05 ±1 ± 0.7 ± 100 ± 0.5 ± 50 ± 0.07 ±1 ± 0.05 ±1 ± 0.7 ± 100 ± 0.5 ± 50 nA typ nA max nA typ nA max ±1 ±1 ± 100 ± 50 ±1 ±1 ± 100 ± 50 nA max nA max 2.4 0.8 V min V max ±1 µA max pF typ VIN = 0 or VDD f = 1 MHz 300 ns typ ns max 10 ns min RL = 1 MΩ, CL = 35 pF; VS1 = ±10 V, VS8 = ⫿10 V; Test Circuit 5 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 6 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 7 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 7 2.4 0.8 ± 0.1 8 ±1 300 ± 0.1 8 110 250 10 tOPEN tOFF (EN, RS) 125 VSS to VDD 60 100 10 Units ± 0.03 ± 0.3 ± 0.5 ± 50 DYNAMIC CHARACTERISTICS2 tTRANSITION 110 250 tON (EN, WR) T Version –55ⴗC to +25ⴗC +125ⴗC 115 150 105 150 4 4 ns typ ns max ns typ ns max ns min ns min ns min ns min pC typ –75 –60 85 –75 –60 85 dB typ dB min dB typ 11 11 pF typ 40 20 40 20 pF typ pF typ 54 34 54 34 pF typ pF typ 20 100 0.001 5 20 100 0.001 5 µA typ µA max µA typ µA max 225 300 100 100 10 100 115 150 105 150 225 300 100 100 10 100 VD = ± 10 V, VS = ⫿10 V; Test Circuit 2 VD = ± 10 V, VS = ⫿10 V; Test Circuit 3 VS = VD = ± 10 V; Test Circuit 4 VS = +5 V VS = 0 V, RS = 0 Ω, CL = 10 nF; Test Circuit 10 RL = 1 kΩ, CL = 15 pF, f = 100 kHz; VS = 7 V rms, VEN = 0 V; Test Circuit 11 RL = 1 kΩ, CL = 15 pF, f = 100 kHz; Test Circuit 12 f = 1 MHz f = 1 MHz f = 1 MHz VIN = 0 V, VEN = 0 V NOTES 1 Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C. 2 Guaranteed by design, not subject to production test. Specifications subject to change without notice. –2– REV. C ADG428/ADG429 SINGLE SUPPLY1 (VDD = +12 V, VSS = 0 V, GND = 0 V, WR = 0 V, RS = 2.4 V unless otherwise noted) Parameter B Version –40ⴗC to +25ⴗC +85ⴗC ANALOG SWITCH Analog Signal Range RON 90 ∆RON LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage ID (OFF) ADG428 ADG429 Channel ON Leakage ID, IS (ON) ADG428 ADG429 DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current IINL or I INH CIN, Digital Input Capacitance DYNAMIC CHARACTERISTICS2 tTRANSITION T Version –55ⴗC to +25ⴗC +125ⴗC 0 to VDD 0 to VDD 90 200 200 10 10 ± 0.005 ± 0.5 ± 50 ± 0.005 ± 0.5 ± 0.015 ±1 ± 100 ± 0.008 ±1 ± 50 ± 0.015 ±1 ± 0.008 ±1 ± 0.02 ±1 ± 0.01 ±1 ± 0.02 ±1 ± 0.01 ±1 ± 100 ± 50 2.4 0.8 ±1 8 ± 50 ± 100 ± 50 Units V Ω typ Ω max % max nA typ nA max nA typ nA max nA typ nA max ±1 µA max pF typ VIN = 0 or VDD f = 1 MHz RL = 1 MΩ, CL = 35 pF; VS1 = 10 V/0 V, V S8 = 0 V/10 V; Test Circuit 5 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 6 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 7 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 7 450 ns typ ns max tOPEN 25 10 25 10 ns min tON (EN, WR) 200 300 80 300 OFF Isolation Channel-to-Channel Crosstalk CS (OFF) CD (OFF) ADG428 ADG429 CD, CS (ON) ADG428 ADG429 POWER REQUIREMENTS IDD 4 4 ns typ ns max ns typ ns max ns min ns min ns min ns min pC typ –75 –60 85 –75 –60 85 dB typ dB min dB typ 11 11 pF typ 40 20 40 20 pF typ pF typ 54 34 54 34 pF typ pF typ 20 100 20 100 µA typ µA max 400 100 100 10 100 400 400 100 100 10 100 VS = +5 V VS = 6 V, RS = 0 Ω, CL = 10 nF; Test Circuit 10 RL = 1 kΩ, CL = 15 pF, f = 100 kHz; VS = 7 V rms, VEN = 0 V; Test Circuit 11 RL = 1 kΩ, CL = 15 pF, f = 100 kHz; Test Circuit 12 f = 1 MHz f = 1 MHz f = 1 MHz NOTES 1 Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C. 2 Guaranteed by design, not subject to production test. Specifications subject to change without notice. REV. C VS = VD = 10 V/0 V; Test Circuit 4 V min V max 250 350 tW, Write Pulsewidth tS, Address, Enable Setup Time tH, Address, Enable Hold Time tRS, Reset Pulsewidth Charge Injection VD = 10 V/0 V, VS = 0 V/10 V; Test Circuit 2 VD = 10 V/0 V, VS = 0 V/10 V; Test Circuit 3 2.4 0.8 450 tOFF (EN, RS) 0 V < VS < 10 V, IS = –1 mA ± 50 ± 100 250 350 200 300 80 300 VD = +10 V, IS = –500 µA nA typ nA max nA max nA max 8 400 Test Conditions/Comments –3– VIN = 0 V, VEN = 0 V ADG428/ADG429 ABSOLUTE MAXIMUM RATINGS 1 ADG428 PIN CONFIGURATIONS A0 2 EN 3 VSS 4 16 ADG428 15 A2 GND S1 5 TOP VIEW 14 VDD (Not to Scale) 13 S5 6 S2 3 2 1 EN 4 A1 A1 NC RS 17 WR 18 A0 WR 1 PLCC 20 19 PIN 1 IDENTIFIER VSS 5 ADG428 S1 6 TOP VIEW (Not to Scale) S2 7 11 S7 D 9 10 S8 9 10 11 12 13 S7 S4 8 S8 S6 NC 12 D S3 7 S4 S3 8 18 A2 17 GND 16 VDD 15 S5 14 S6 NC = NO CONNECT ADG429 PIN CONFIGURATIONS A1 EN 3 16 GND VSS 4 ADG429 15 VDD S1A 5 TOP VIEW 14 S1B (Not to Scale) 13 S2B S2A 6 A1 RS 17 RS 18 A0 2 NC WR 1 WR PLCC A0 DIP 3 2 1 20 19 EN 4 PIN 1 IDENTIFIER VSS 5 ADG429 S1A 6 TOP VIEW (Not to Scale) S2A 7 S4A 8 11 S4B DA 9 10 DB 9 10 11 12 13 S4B S3B DB 12 NC S3A 8 S3A 7 DA NOTES 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. 2 Overvoltages at A, EN, WR, RS, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given. DIP/SOIC S4A VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V Analog, Digital Inputs2 . . . . . . . . . . VSS – 2 V to V DD + 2 V or 30 mA, Whichever Occurs First Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 30 mA Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C Extended (T Version) . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C Cerdip Package, Power Dissipation . . . . . . . . . . . . . . . 900 mW θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 73°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +300°C Plastic Package, Power Dissipation . . . . . . . . . . . . . . . 470 mW θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 115°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C SOIC Package, Power Dissipation . . . . . . . . . . . . . . . . 600 mW θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 77°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C PLCC Package, Power Dissipation . . . . . . . . . . . . . . . 800 mW θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 90°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C RS (TA = +25°C unless otherwise noted.) 18 GND 17 VDD 16 S1B 15 S2B 14 S3B NC = NO CONNECT ORDERING GUIDE Model1 Temperature Range Package Options2 ADG428BN ADG428BP ADG428BR ADG428TQ –40°C to +85°C –40°C to +85°C –40°C to +85°C –55°C to +125°C N-18 P-20A R-18 Q-18 ADG429BN ADG429BP ADG429TQ –40°C to +85°C –40°C to +85°C –55°C to +125°C N-18 P-20A Q-18 NOTES 1 For availability of MIL-STD-883, Class B processed parts, contact factory. 2 N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; R = Small Outline IC (SOIC). CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG428/ADG429 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. –4– WARNING! ESD SENSITIVE DEVICE REV. C ADG428/ADG429 TERMINOLOGY VDD Most positive power supply potential. VSS Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground. ADG428 Truth Table A2 A0 EN WR RS ON SWITCH X X X g 1 Maintains Previous Switch Condition X X X X 0 NONE (Latches Cleared) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 NONE 1 2 3 4 5 6 7 8 A1 Latching X GND Ground (0 V) reference. RON Ohmic resistance between D and S. Reset ∆RON Difference between the RON of any two channels. X IS (OFF) Source leakage current when the switch is off. Transparent Operation X 0 0 0 0 1 1 1 1 ID (OFF) Drain leakage current when the switch is off. ID, IS (ON) Channel leakage current when the switch is on. VD (VS ) Analog voltage on terminals D, S. CS (OFF) Channel input capacitance for “OFF” condition. CD (OFF) Channel output capacitance for “OFF” condition. CD, CS (ON) “ON” switch capacitance. CIN Digital input capacitance. tON (EN) Delay time between the 50% and 90% points of the digital input and switch “ON” condition. tOFF (EN) tTRANSITlON A1 X tOPEN “OFF” time measured between 80% points of both switches when switching from one address state to another. VINL Maximum input voltage for Logic “0.” X 0 0 1 1 VINH Minimum input voltage for Logic “1.” Input current of the digital input. Off Isolation A measure of unwanted signal coupling through an “OFF” channel. Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching. IDD Positive supply current. ISS Negative supply current. REV. C EN WR RS ON SWITCH PAIR X X g 1 Maintains Previous Switch Condition X X X 0 NONE (Latches Cleared) 0 0 0 0 0 1 1 1 1 1 NONE 1 2 3 4 A0 Reset X A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance. 0 1 1 1 1 1 1 1 1 Latching Delay time between the 50% and 90% points of the digital inputs and the switch “ON” condition when switching from one address state to another. Crosstalk X 0 1 0 1 0 1 0 1 ADG429 Truth Table Delay time between the 50% and 90% points of the digital input and switch “OFF” condition. IINL (IINH) X 0 0 1 1 0 0 1 1 Transparent Operation –5– X 0 1 0 1 0 1 1 1 1 ADG428/ADG429 TIMING DIAGRAMS 3V 3V WR 50% 50% RS 50% 50% 0V 0V tRS tW tS tOFF (RS) tH VO 3V 2V A0, A1, (A2) EN 0.8VO SWITCH OUTPUT 0.8V 0V 0V Figure 1. Figure 2. Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while WR is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of WR. Figure 2 shows the Reset Pulsewidth, tRS, and the Reset Turnoff Time, tOFF, (RS). Note: All digital input signals rise and fall times are measured from 10% to 90% of 3 V. tr = tf = 20 ns. Typical Characteristics 140 600 TA = +258C 500 120 RON – V RON – V 400 100 90 80 VDD = +15V 70 VSS = –15V VDD = +12V VSS = –12V VDD = +5V VSS = 0V 450 VDD = +5V VSS = –5V 110 350 300 VDD = +10V VSS = 0V VDD = +15V VSS = 0V 250 200 VDD = +10V VSS = –10V VDD = +12V VSS = 0V 150 60 100 50 40 –15 TA = +258C 550 130 50 –10 –5 0 VD (VS) – Volts 5 10 0 15 0 3 6 9 12 15 VD (VS) – Volts Figure 3. RON as a Function of VD (VS ): Dual Supply Voltage Figure 5. R ON as a Function of VD (V S): Single Supply Voltage 80 160 VDD = +15V VSS = –15V 75 VDD = +12V VSS = 0V 150 140 70 130 RON – V RON – V 65 60 55 120 +1258C 110 +1258C 100 +858C 90 +858C 50 +258C 80 +258C 45 40 –15 70 –10 –5 0 VD (VS) – Volts 5 10 60 15 0 Figure 4. RON as a Function of VD (VS ) for Different Temperatures 2 4 6 VD (VS) – Volts 8 10 15 Figure 6. R ON as a Function of VD (V S) for Different Temperatures –6– REV. C ADG428/ADG429 6000 1000 VDD = +15V VSS = –15V 5500 VDD = +15V VSS = –15V 5000 4500 100 3500 ISS – mA IDD – mA 4000 3000 2500 10 EN = 2.4V 2000 EN = 0V 1500 1 EN = 2.4V 1000 EN = 0V 500 0 10 100 1k 10k 100k SWITCHING FREQUENCY – Hz 1M 0.1 10 10M Figure 7. Positive Supply Current vs. Switching Frequency 10M 200 VDD = +15V VSS = –15V 120 VDD = +12V VSS = 0V 180 tTRANSITION 110 tTRANSITION tON (EN) 160 tON (EN) 140 t – ns 100 t – ns 1M Figure 10. Negative Supply Current vs. Switching Frequency 130 90 120 80 100 70 80 tOFF (EN) 60 50 1k 10k 100k SWITCHING FREQUENCY – Hz 100 1 3 5 tOFF (EN) 60 7 9 VIN – Volts 11 13 40 1 15 Figure 8. Switching Time vs. V IN (Bipolar Supply) 3 5 7 VIN – Volts 9 11 13 Figure 11. Switching Time vs. VIN (Single Supply) 500 300 VIN = +5V VIN = +5V 275 450 250 400 225 350 200 300 t – ns t – ns 175 tON (EN) 150 125 250 tON (EN) 200 tTRANSITION 100 150 tTRANSITION tOFF (EN) 75 100 50 0 65 0 67 69 611 VSUPPLY – Volts 613 5 615 6 7 8 9 10 11 VSUPPLY – Volts 12 13 14 15 Figure 12. Switching Time vs. Single Supply Figure 9. Switching Time vs. Bipolar Supply REV. C tOFF (EN) 50 25 –7– ADG428/ADG429 100 110 VDD = +15V VSS = –15V VDD = +15V VSS = –15V 105 90 100 85 95 CROSSTALK – dB OFF ISOLATION – dB 95 80 75 70 65 60 55 90 85 80 75 70 65 50 60 45 55 40 100 1k 10k 100k FREQUENCY – Hz 1M 50 1k 10M Figure 13. OFF Isolation vs. Frequency 100k FREQUENCY – Hz 1M 10M Figure 15. Crosstalk vs. Frequency 0.04 0.2 VDD = +15V VSS = –15V TA = +258C VDD = +12V VSS = 0V TA = +258C 0.03 LEAKAGE CURRENT – nA LEAKAGE CURRENT – nA 10k 0.1 ID (ON) IS (OFF) 0 ID (OFF) ID (ON) 0.02 0.01 ID (OFF) 0 IS (OFF) –0.01 –0.02 –0.03 –0.1 –15 –10 –5 0 VD (VS) – Volts 5 10 –0.04 15 0 Figure 14. Leakage Currents as a Function of VD (V S) 2 4 6 VD (VS) – Volts 8 10 12 Figure 16. Leakage Currents as a Function of VD (VS) –8– REV. C ADG428/ADG429 TEST CIRCUITS I DS V1 VDD VSS VDD VSS S1 S2 S D S8 D GND VS VS EN +0.8V A ID (OFF) VD RON = V1/I DS Test Circuit 1. On Resistance S1 Test Circuit 3. I D (OFF) VDD VSS VDD VSS VDD VSS VDD VSS S1 IS (OFF) S2 A S8 VS D D EN GND VD S8 +0.8V GND VS EN ID (ON) A 2.4V VD Test Circuit 4. I D (ON) Test Circuit 2. IS (OFF) VDD VSS VDD VSS 3V ENABLE DRIVE – VIN 50% 50% A0 VS1 S1 VIN 0V 50V A1 S2–S7 A2 tTRANSITION ADG428* tTRANSITION 2.4V 90% VS8 S8 EN OUTPUT D RS OUTPUT GND 90% WR 1MV 35pF *SIMILAR CONNECTION FOR ADG429 Test Circuit 5. Switching Time of Multiplexer, tTRANSITION 3V VDD VSS VDD VSS A0 ADDRESS DRIVE – VIN VS S1 VIN 50V 0V A1 S2–S7 A2 ADG428* 2.4V S8 EN OUTPUT 80% D RS 80% OUTPUT GND WR tOPEN *SIMILAR CONNECTION FOR ADG429 Test Circuit 6. Break-Before-Make Delay, tOPEN REV. C –9– 1kV 35pF ADG428/ADG429 VDD VSS VDD VSS 3V ENABLE DRIVE –VIN 50% A0 50% S1 VS A1 0V S2–S8 A2 tON (EN) ADG428* tOFF (EN) VO 0.9VO RS 2.4V OUTPUT D 0.9VO EN OUTPUT (VO) VIN 0V 1kV 50V 35pF WR GND *SIMILAR CONNECTION FOR ADG429 Test Circuit 7. Enable Delay, t ON (EN), t OFF (EN) VDD VSS VDD VSS 3V WR 50% A0 S2–S8 A2 2.4V tON (WR) VO VS S1 A1 0V ADG428* EN OUTPUT RS D WR OUTPUT 1kV 0.2VO 35pF GND VRS 0V VWR *SIMILAR CONNECTION FOR ADG429 Test Circuit 8. Write Turn-On Time, tON (WR) 3V VDD VSS VDD VSS A0 RS 50% S1 A1 0V VS S2–S8 A2 ADG428* tOFF (RS) 2.4V EN OUTPUT D VO RS 0.8VO OUTPUT 1kV GND VIN 35pF WR 0V *SIMILAR CONNECTION FOR ADG429 Test Circuit 9. Reset Turn-Off Time, tOFF (RS ) –10– REV. C ADG428/ADG429 3V VDD VSS VDD VSS A0 EN RS 2.4V A1 A2 S DVOUT VOUT ADG428* VS D RS QINJ = CL 3 DVOUT EN VIN VOUT CL 10nF GND WR *SIMILAR CONNECTION FOR ADG429 Test Circuit 10. Charge Injection VDD VSS VDD VSS A0 RS A1 A2 2.4V ADG428 S1 0V EN WR VSS EN A1 A2 RS 1kV S2 VS S8 2.4V ADG428 D VOUT 1kV GND WR Test Circuit 12. Crosstalk Test Circuit 11. OFF Isolation REV. C VDD A0 VOUT 1kV GND VSS S1 D S8 VS VDD –11– ADG428/ADG429 OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 0.180 (4.57) 0.165 (4.19) 19 18 PIN 1 IDENTIFIER 4 TOP VIEW (PINS DOWN) 8 0.020 (0.50) R 1 0.060 (1.52) 0.015 (0.38) 0.840 (21.34) MAX 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.022 (0.58) 0.014 (0.36) 0.040 (1.01) 0.025 (0.64) 0.356 (9.04) SQ 0.350 (8.89) 0.395 (10.02) SQ 0.385 (9.78) 9 PIN 1 0.021 (0.53) 0.013 (0.33) 0.330 (8.38) 0.032 (0.81) 0.290 (7.37) 0.026 (0.66) 0.050 (1.27) BSC 14 13 9 0.310 (7.87) 0.220 (5.59) 0.025 (0.63) 0.015 (0.38) 3 10 0.110 (2.79) 0.085 (2.16) 0.320 (8.13) 0.290 (7.37) 0.150 (3.81) MIN 0.100 (2.54) BSC Plastic DIP (N-18) 0.015 (0.381) 0.008 (0.204) 0.070 (1.78) SEATING 0.030 (0.76) PLANE SOIC (R-18) 0.910 (23.12) 0.890 (22.61) 0.4625 (11.75) 0.4469 (11.35) 10 1 9 0.260 (6.61) 0.240 (6.10) PIN 1 0.180 (4.48) MAX 0.175 (4.45) 0.120 (3.05) 0.020 (0.508) 0.105 (2.67) 0.065 (1.66) SEATING PLANE 0.015 (0.381) 0.095 (2.42) 0.045 (1.15) 18 10 1 9 0.306 (7.78) 0.294 (7.47) 0.140 (3.56) 0.120 (3.05) 0.120 (0.305) 0.008 (0.203) PIN 1 0.0118 (0.30) 0.0040 (0.10) 0.1043 (2.65) 0.0926 (2.35) 0.0291 (0.74) x 45° 0.0098 (0.25) 8° 0.0500 0.0192 (0.49) 0° (1.27) 0.0138 (0.35) SEATING 0.0125 (0.32) PLANE BSC 0.0091 (0.23) 0.0500 (1.27) 0.0157 (0.40) PRINTED IN U.S.A. 18 0.4193 (10.65) 0.3937 (10.00) 0.048 (1.21) 0.042 (1.07) 0.056 (1.42) 0.042 (1.07) 18 0.2992 (7.60) 0.2914 (7.40) 0.048 (1.21) 0.042 (1.07) C1825c–0–5/99 Cerdip (Q-18) PLCC (P-20A) –12– REV. C