PD - 93783E IRHG6110 RADIATION HARDENED 100V, Combination 2N-2P-CHANNEL RAD-Hard HEXFET POWER MOSFET MOSFET TECHNOLOGY THRU-HOLE (MO-036AB) ® ™ Product Summary Part Number Radiation Level RDS(on) IRHG6110 100K Rads (Si) 0.6Ω IRHG63110 300K Rads (Si) 0.6Ω IRHG6110 100K Rads (Si) 1.1Ω IRHG63110 300K Rads (Si) 1.1Ω ID CHANNEL 1.0A N 1.0A N -0.75A P -0.75A P International Rectifier’s RAD-HardTM HEXFET® MOSFET Technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. MO-036AB Features: n n n n n n n n n Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Package Light Weight Pre-Irradiation Absolute Maximum Ratings (Per Die) Parameter ID @ VGS =± 12V, TC = 25°C ID @ VGS =± 12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current ➀ Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current ➀ Repetitive Avalanche Energy ➀ Peak Diode Recovery dv/dt Operating Junction Storage Temperature Range Lead Temperature Weight N-Channel P-Channel 1.0 0.6 4.0 1.4 0.011 ±20 56 ➁ 1.0 0.14 2.4 ➂ -0.75 -0.5 -3.0 1.4 Units W 0.011 W/°C ±20 75 ⑦ -0.75 0.14 2.4 ⑧ V mJ A mJ A V/ns -55 to 150 o 300 (0.63 in./1.6 mm from case for 10s) 1.3 (Typical) C g For footnotes refer to the last page www.irf.com 1 07/17/01 IRHG6110 Pre-Irradiation Electrical Characteristics For Each N-Channel Device @ Tj = 25°C (Unless Otherwise Specified) Parameter Min Drain-to-Source Breakdown Voltage 100 ∆BVDSS/∆T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance Typ Max Units Test Conditions — — V GS = 0V, ID = 1.0mA — 0.125 — V/°C — — 2.0 0.7 — — — — — — — — 0.7 0.6 4.0 — 25 250 Ω — — — — — — — — — — — — — — — — — — — 10 100 -100 11 3.0 4.0 20 16 65 45 — V Reference to 25°C, ID = 1.0mA VGS = 12V, ID = 1.0A ➃ VGS = 12V, ID = 0.6A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 0.6A ➃ VDS= 80V, VGS= 0V VDS = 80V, VGS = 0V, TJ =125°C VGS = 20V VGS = -20V VGS =12V, ID = 1.0A, VDS = 50V V S( ) Ω BVDSS µA nA nC VDD = 50V, ID = 1.0A, VGS =12V, RG = 7.5Ω ns nH Measured from Drain lead (6mm /0.25in. from package) to Source lead (6mm /0.25in. from package) with Source wires internally bonded from Source Pin to Drain Pad Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 300 100 16 — — — pF VGS = 0V, VDS = 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics (Per Die) Parameter Min Typ Max Units IS ISM VSD t rr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — 1.0 4.0 1.5 110 390 Test Conditions A V nS nC Tj = 25°C, IS = 1.0A, VGS = 0V ➃ Tj = 25°C, IF = 1.0A, di/dt ≤ 100A/µs VDD ≤ 25V ➃ Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance (Per Die) Parameter RthJC RthJA Junction-to-Case Junction-to-Ambient Min Typ Max Units — — — — 17 90 °C/W Test Conditions Typical socket mount Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page 2 www.irf.com Pre-Irradiation IRHG6110 Electrical Characteristics For Each P-Channel Device @ Tj = 25°C (Unless Otherwise Specified) Parameter Min Drain-to-Source Breakdown Voltage -100 — — V — -0.11 — V/°C — — -2.0 0.6 — — — — — — — — 1.2 1.1 -4.0 — -25 -250 Ω — — — — — — — — — — — — — — — — — — — 10 -100 100 15 4.0 4.3 22 19 66 51 — ∆BVDSS/∆T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance Typ Max Units Test Conditions VGS = 0V, ID = -1.0mA Reference to 25°C, ID = -1.0mA nC VGS = -12V, ID = -0.75A ➃ VGS = -12V, ID =- 0.5A VDS = VGS, ID = -1.0mA VDS > -15V, IDS = -0.5A ➃ VDS= -80V, VGS= 0V VDS = -80V, VGS = 0V, TJ =125°C VGS = - 20V VGS = 20V VGS = -12V, ID = -0.75A, VDS = -50V ns VDD = -50V, ID = -0.75A, VGS = -12V, RG = 24Ω V S( ) Ω BVDSS µA nA nH Measured from Drain lead (6mm /0.25in. from package) to Source lead (6mm /0.25in. from package) with Source wires internally bonded from Source Pin to Drain Pad Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 335 100 22 — — — pF VGS = 0V, VDS = 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics (Per Die) Parameter Min Typ Max Units IS ISM VSD t rr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — -0.75 -3.0 -2.5 90 257 Test Conditions A V nS nC Tj = 25°C, IS = -0.75A, VGS = 0V ➃ Tj = 25°C, IF = -0.75A, di/dt ≤ -100A/µs VDD ≤ -25V ➃ Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance (Per Die) Parameter R thJC RthJA Junction-to-Case Junction-to-Ambient Min Typ Max Units — — — — 17 90 °C/W Test Conditions Typical socket mount Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page www.irf.com 3 Radiation Characteristics Pre-Irradiation IRHG6110 International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics For Each N-Channel Device @ Tj = 25°C, Post Total Dose Irradiation ➄➅ Parameter BVDSS V GS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD 100K Rads(Si)1 Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source ➃ On-State Resistance (TO-39) Static Drain-to-Source ➃ On-State Resistance (MO-036AB) Diode Forward Voltage ➃ 300K Rads (Si)2 Units Test Conditions V VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS= 80V, VGS =0V VGS = 12V, ID = 0.6A Min Max Min Max 100 2.0 — — — — — 4.0 100 -100 25 0.56 100 1.25 — — — — — 4.5 100 -100 25 0.66 nA — 0.60 — 0.70 Ω VGS = 12V, ID = 0.6A — 1.5 — 1.5 V VGS = 0V, IS =1.0A µA Ω 1. Part number IRHG6110 2. Part number IRHG63110 International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. Table 2. Single Event Effect Safe Operating Area (Per Die) Ion Cu Br LET MeV/(mg/cm2)) 28.0 36.8 Energy (MeV) 285 305 VDS (V) Range (µm) 43.0 39.0 @VGS=0V @VGS=-5V @VGS=-10V 100 100 100 100 90 70 @VGS=-15V 80 50 @VGS=-20V 60 — 120 100 VDS 80 Cu 60 Br 40 20 0 0 -5 -10 -15 -20 -25 VGS Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page 4 www.irf.com Radiation Characteristics Pre-Irradiation IRHG6110 International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics For Each P-Channel Device @ Tj = 25°C, Post Total Dose Irradiation ➄➅ Parameter BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD 100K Rads(Si)1 Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source ➃ On-State Resistance (TO-39) Static Drain-to-Source ➃ On-State Resistance (MO-036AB) Diode Forward Voltage ➃ Units 300K Rads (Si)2 Test Conditions Min Max Min Max -100 - 2.0 — — — — — - 4.0 -100 100 -25 1.06 -100 -2.0 — — — — — -5.0 -100 100 -25 1.06 nA µA Ω VGS = 0V, ID = -1.0mA VGS = VDS, ID = -1.0mA VGS = -20V VGS = 20 V VDS=-80V, VGS =0V VGS = -12V, ID =-0.5A — 1.1 — 1.1 Ω VGS = -12V, ID =-0.5A — -2.5 — -2.5 V VGS = 0V, IS = -0.75A V 1. Part number IRHG6110 2. Part number IRHG63110 International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. Table 2. Single Event Effect Safe Operating Area (Per Die) Ion Cu Br I LET MeV/(mg/cm2)) 28.0 36.8 59.8 Energy (MeV) 285 305 343 Range (µm) 43.0 39.0 32.6 VDS (V) @VGS=0V @VGS=5V -100 -100 -100 -100 -60 — @VGS=10V -100 -70 — @VGS=15V @VGS=20V -70 -60 -50 -40 — — -120 -100 VDS -80 Cu Br I -60 -40 -20 0 0 5 10 15 20 VGS Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 5 IRHG6110 Pre-Irradiation N-Channel Q1,Q3 100 100 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V 10 5.0V 1 0.1 20µs PULSE WIDTH T = 25 C ° J 0.01 0.1 1 10 10 0.1 100 10 TJ = 150 ° C V DS = 50V 20µs PULSE WIDTH 13 15 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 6 R DS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) TJ = 25 ° C 11 1 10 100 Fig 2. Typical Output Characteristics 3.0 9 ° J VDS , Drain-to-Source Voltage (V) 100 7 20µs PULSE WIDTH T = 150 C 0.01 0.1 Fig 1. Typical Output Characteristics 1 5.0V 1 VDS , Drain-to-Source Voltage (V) 5 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP ID = 1.0A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 12V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature( °C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com Pre-Irradiation IRHG6110 N-Channel Q1,Q3 VGS Ciss Crss Coss C, Capacitance (pF) 400 = 0V, f = 1MHz = Cgs + Cgd , Cds SHORTED = Cgd = Cds + Cgd Ciss 300 200 Coss 100 Crss 20 VGS , Gate-to-Source Voltage (V) 500 0 1 10 VDS = 80V VDS = 50V VDS = 20V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 100 0 VDS , Drain-to-Source Voltage (V) 4 8 12 16 QG , Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 100us I D , Drain Current (A) ISD , Reverse Drain Current (A) ID = 1.0A 10 TJ = 150 ° C 1 1ms 1 10ms TJ = 25 ° C 0.1 0.0 V GS = 0 V 0.5 1.0 1.5 2.0 2.5 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 3.0 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 7 IRHG6110 Pre-Irradiation N-Channel Q1,Q3 RD V DS 1.0 VGS I D , Drain Current (A) D.U.T. RG 0.8 + -V DD VGS 0.6 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 0.4 Fig 10a. Switching Time Test Circuit VDS 0.2 90% 0.0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS td(on) Fig 9. Maximum Drain Current Vs. Case Temperature tr t d(off) tf Fig 10b. Switching Time Waveforms 100 Thermal Response (Z thJA ) D = 0.50 0.20 0.10 10 0.05 0.02 P DM 0.01 1 t1 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.0001 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJA + TA 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 8 www.irf.com Pre-Irradiation IRHG6110 N-Channel Q1,Q3 15V D R IV E R L VDS D .U .T. RG IA S VGS 20V tp + V - DD 0 .01 Ω Fig 12a. Unclamped Inductive Test Circuit A EAS , Single Pulse Avalanche Energy (mJ) 150 ID 0.45A 0.63A BOTTOM 1.0A TOP 120 90 60 30 0 25 V (B R )D S S 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) tp Fig 12c. Maximum Avalanche Energy Vs. Drain Current IAS Current Regulator Same Type as D.U.T. Fig 12b. Unclamped Inductive Waveforms 50KΩ QG 12V .2µF .3µF 12 V QGS QGD + V - DS VGS VG 3mA Charge Fig 13a. Basic Gate Charge Waveform www.irf.com D.U.T. IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 9 IRHG6110 Pre-Irradiation P-Channel Q2,Q4 100 100 VGS -15V -12V -10V -9.0V -8.0V -7.0V -6.0V BOTTOM -5.0V 10 -5.0V 1 0.1 20µs PULSE WIDTH T = 25 C ° J 0.01 0.1 1 10 10 -5.0V 1 0.1 100 3.0 10 TJ = 150 ° C V DS = -50V 20µs PULSE WIDTH 11 13 15 -VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 10 R DS(on) , Drain-to-Source On Resistance (Normalized) -I D , Drain-to-Source Current (A) TJ = 25 ° C 9 10 100 Fig 2. Typical Output Characteristics 100 7 ° J 1 -VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1 20µs PULSE WIDTH T = 150 C 0.01 0.1 -VDS , Drain-to-Source Voltage (V) 5 VGS -15V -12V -10V -9.0V -8.0V -7.0V -6.0V BOTTOM -5.0V TOP -I D , Drain-to-Source Current (A) -I D , Drain-to-Source Current (A) TOP ID = -0.75A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = -12V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature( °C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com Pre-Irradiation IRHG6110 P-Channel Q2,Q4 VGS Ciss Crss Coss C, Capacitance (pF) 500 = = = = 0V, f = 1MHz Cgs + Cgd , Cds SHORTED Cgd Cds + Cgd 400 Ciss 300 200 Coss 100 Crss 20 -VGS , Gate-to-Source Voltage (V) 600 10 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 100 0 -VDS , Drain-to-Source Voltage (V) 2 4 6 8 10 12 14 Q G , Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 -II D , Drain Current (A) -ISD , Reverse Drain Current (A) VDS =-80V VDS =-50V VDS =-20V 16 0 1 ID = -0.75A TJ = 150 ° C TJ = 25 ° C 1 1ms 1 10ms V GS = 0 V 0.1 0.0 1.0 2.0 3.0 4.0 -VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 5.0 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 1 10 100 1000 -VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 11 IRHG6110 Pre-Irradiation P-Channel Q2,Q4 0.8 RD V DS VGS -ID , Drain Current (A) 0.6 D.U.T. RG + 0.5 V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 0.3 Fig 10a. Switching Time Test Circuit 0.2 td(on) tr t d(off) tf VGS 10% 0.0 25 50 75 100 125 150 TC , Case Temperature ( °C) 90% VDS Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10b. Switching Time Waveforms 100 Thermal Response (Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 P DM 0.01 1 t1 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.0001 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJA + TA 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 12 www.irf.com Pre-Irradiation IRHG6110 P-Channel Q2,Q4 L VDS IA S tp VD D A D R IV E R 0.0 1Ω 15V Fig 12a. Unclamped Inductive Test Circuit IAS EAS , Single Pulse Avalanche Energy (mJ) D .U .T. RG -20V VGS 200 ID -0.34A -0.47A BOTTOM -0.75A TOP 160 120 80 40 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current tp V (BR)DSS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG -12V 12V .2µF .3µF -12V QGS QGD D.U.T. +VDS VGS VG -3mA Charge Fig 13a. Basic Gate Charge Waveform www.irf.com IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 13 IRHG6110 Pre-Irradiation Footnotes: ➀ Repetitive Rating; Pulse width limited by ➄ Total Dose Irradiation with VGS Bias. maximum junction temperature. ➁ VDD = 25V, starting TJ = 25°C, L= 112mH, Peak IL = 1.0A, VGS = 12V ➂ ISD ≤ 1.0A, di/dt ≤ 187A/µs, VDD ≤ 100V, TJ ≤ 150°C ➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2% 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A ➅ Total Dose Irradiation with VDS Bias. 80 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A ⑦ VDD = - 25V, starting TJ = 25°C, L= 267mH, Peak IL = - 0.75A, VGS = -12V ⑧ ISD ≤ - 0.75A, di/dt ≤ - 132A/µs, VDD ≤ -100V, TJ ≤ 150°C Case Outline and Dimensions — MO-036AB IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 07/01 14 www.irf.com